
Growing Adaptive Multi-Hyperplane Machines (APPENDIX)

Theorem 2. Let W∗ be the solution of (6), and T be the total number of training iterations. Further, let the pruning be
performed as described above, p be a starting probability of weight duplication, and 0 < β < 1 is a multiplicative factor
that reduces p after every weight duplication. Then,
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T
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)
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Proof. The proof closely follows the proof of Theorems 1 and 3 from (Wang et al., 2011). First, we rewrite the update rule
of SGD with the pruning step as W(t+1) ← W(t) − η(t)∂(t), where ∂(t) = ∇(t) + E(t), and E(t) = E

(t)
prune + E

(t)
dupl

where we can see that the weight matrix degradation at the tth training iteration E(t) is equal to the sum of weight matrix
degradation E

(t)
prune due to pruning and weight matrix degradation E

(t)
dupl due to weight duplication. Clearly, E(t)

prune = 0

if no pruning is used, and E
(t)
dupl = 0 if no duplication is used at the tth training iteration. Note that, in contrast to (Wang

et al., 2011), we also included the weight duplication degradation. The relative progress towards the optimal solution W∗

at the tth round D(t) can be lower bounded as

D(t) = ||W(t) −W∗||2 − ||W(t) − η(t)∇(t) − η(t)E(t) −W∗||2

= −(η(t))2||∂(t)||2 + 2η(t)‖(E(t))T(W(t) −W∗)‖+ 2η(t)‖(∇(t))T(W(t) −W∗)‖

≥1 −(η(t))2||∂(t)||2 − 2η(t)||E(t)|| (2 + c)(1 + h) + 2

λ

+ 2η(t)

(
L(t)(W(t))− L(t)(W∗) +

λ

2
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)
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(2)

where h = p/(1− β). For the second term in the r.h.s. of the inequality in (2), we first bounded ‖W(t)‖ as

||W(t)|| ≤ ||(1− η(t−1)λ)W(t−1)||+ 2η(t−1) + ‖∆pruneW
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(3)

where, in contrast to (Wang et al., 2011), we added the ‖∆duplW
(t−1)‖ term equal to the norm of the duplicated weight.

This term is upper bounded by (2 + c)/λ, as the norm of any weight is upper bounded by the weight matrix norm when
weight duplication is not used during training (Wang et al., 2011). The duplication probability p drops by a factor of β
whenever the weight duplication is performed, introducing the multiplication factor of

∑T−1
t=0 pβt to the total weight matrix

norm degradation due to duplication, where the sum of geometric sequence of duplication probabilities is upper bounded
by h = p/(1− β). We then use triangle inequality to bound ||W(t) −W∗|| ≤ (2 + c)(1 + h)/λ+ 2/λ by using the fact
that ‖W∗‖ ≤ 2/λ according to the result in (Kivinen et al., 2002). Lastly, the third term in the r.h.s. of the inequality in
(2) was obtained using function L(t)(W(t))’s λ-strong convexity (Shalev-Shwartz & Singer, 2007).

Dividing both sides of inequality (2) by 2η(t) and rearranging, we obtain

L(t)(W(t))− L(t)(W∗) ≤ D(t)
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2
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2
+
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λ
‖E(t)‖, (4)
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Summing over all t and dividing by T , we obtain
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We bound the first and second terms in the r.h.s. of inequality (5) as
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In =1, the first and second terms vanish after plugging in ηt ≡ 1/(λt).

Next, we bound the third term in the r.h.s. of inequality (5) as follows,
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In ≤1 we bound the terms in the parentheses according to the divergence rate of the harmonic series, as well as according
to upper bounds on the sum of low-order power series.

Next, we bound the fourth term in the r.h.s. of inequality (5) as follows,
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We bounded ‖E(t)
prune‖ using the bound on ‖∆W

(t)
prune‖, and bounded ‖E(t)

dupl‖ using the bound on ‖W(t)‖. We obtain
(1) by combining inequality (5) with inequalities (6), (7), and (8).

Theorem 3. Let F be a class of functions that MM can implement, and w.l.o.g. ‖x‖ ≤ 1. Then, with probability of at least
1− δ, the risk of any function f ∈ F is bounded from above as

R(f) ≤ R̃N (f) +
4 + 4K‖W‖√

N
+ (‖W‖+ 1)

√
ln 1

δ

2N
, (9)

where K =
M∑
i=1

bi
M∑
j 6=i

bj , and bi is the number of weights for the ith class.

Proof. The proof closely follows the proof of Theorem 6 from (Guermeur, 2010). For the clarity of notation, we introduce
fi(x) = g(i, x) = maxj wTi,jx, and fi,j(x) = wTi,jx, i ∈ {1, . . . ,M}, j ∈ {1, . . . , bi}. Then, let F stand for the product
space FM , so that (f1(·), . . . , fM (·)) ∈ F . Additionally, in order to retain the generality of the Theorem and its proof,
in the following we use κ to denote a kernel function as in (Guermeur, 2010), and Φ(x) to denote a kernel mapping from
the original input space to the feature space induced by the kernel function κ. However, note that the MM model, although
being non-linear classifier, uses a linear kernel to compare each weight wi,j to a new data point, and in the following we
can also set Φ(x) = x. Further, let ‖w‖∞ ≤ Λw and let ∀x ∈ RD, ‖x‖ ≤ ΛΦ(RD).

It follows,
∀f ∈ F , R(f) ≤ R̃(f). (10)

Consequently,

∀f ∈ F , R(f) ≤ R̃N (f) + sup
f∈F

(
R̃(f)− R̃N (f)

)
. (11)

The rest of the proof consists in the computation of an upper bound on the supremum of the empirical process appearing in
(11). Let Z denote a random pair (X,Y ) and Zi its copies which constitute the N -sample DN : DN = (Zi)1≤i≤N . After
simplifying notation this way, the bounded differences inequality can be applied to the supremum of interest by setting
n = N , (Ti)1≤i≤n = DN (i.e., Ti = Zi), and f(T1, . . . , Tn) = supf∈F

(
R̃(f)− R̃N (f)

)
. The functions f ∈ F take

their values in the interval [−BF , BF ]M , with BF = ΛwΛΦ(X). Consequently, the loss function associated with the risk
R̃ takes its values in the interval [0,KF ]. We can then get the following result (Guermeur, 2010): With probability of at
least 1− δ,

sup
f∈F

(R̃(f)− R̃N (f)) ≤ EDN
sup
f∈F

(R̃(f)− R̃N (f)) +KF

√
ln( 1

δ )

2N
. (12)

Further, it can be shown that

EDN
sup
f∈F

(R̃(f)− R̃N (f)) ≤ 4

(
1√
N

+ Eσ,DN

[
sup
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1

N

∣∣∣∣∣
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1

2

(
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fk(Xi)

)∣∣∣∣∣
])

. (13)

In order to address the specific case of the considered MM model, we will introduce a different definition of cat than in the
proof of Theorem 6 in (Guermeur, 2010). For n ∈ N∗, let zn = ((xi, yi))1≤i≤n ∈ (RD × Y)n and let cat be a mapping
from F × RD × Y into {1, . . . ,M}2 × N2 such that

∀(f, x, y) ∈ F × RD × Y, cat(f,x, y) =(k, l, p, q)⇒ (k = y) ∧ (l 6= y) ∧
(
f l(x) = max

i6=y
f i(x)

)
∧ (p = arg max

j
wT
k,jx) ∧ (q = arg max

j
wT
l,jx).

(14)

The rest of the proof is straightforward modification of the proof of Theorem 6 in (Guermeur, 2010). By construction of
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the mapping cat,

∀zN ∈ (RD × Y)N ,
1

2
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[
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≤ 1

2
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∑
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∣∣∣∣∣∣
 .

(15)

Then, let ΠN be the set of all mappings πN from {1, . . . , N} into (k, l, p, q) ∈ {1, . . . ,M}2 ×N2, such that for all values
of i, the pair (k, l) is always made up of two different values, while p ∈ {1, . . . , bk} and q ∈ {1, . . . , bl}. It follows

ΛwEσ
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∑
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∣∣∣∣∣∣
∣∣∣∣∣∣

∑
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∣∣∣∣∣∣
 . (16)

Consequently, to complete the derivation of the bound, it suffices to find a uniform upper bound on the expressions of the
form

Eσ

∣∣∣∣∣
∣∣∣∣∣∑
i∈IN

σiκ(xi, ·)

∣∣∣∣∣
∣∣∣∣∣ , (17)

where IN is a subset of {1, . . . , N}. By applying Jensen’s inequality and using the fact that κ(xi,xi) ≥ 0, a uniform
upper bound of the above expression can be shown to be equal to

Eσ

∣∣∣∣∣
∣∣∣∣∣∑
i∈IN

σiκ(xi, ·)

∣∣∣∣∣
∣∣∣∣∣ ≤ ΛΦ(RD)

√
N. (18)

By substitution in the right-hand side of (16), and then in the right-hand side of (15), we get

∀zN ∈ (RD × Y)N ,
1

2
Eσ

[
sup
f∈F
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N∑
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(
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]
≤ KΛwΛΦ(RD)

√
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where K =
M∑
i=1

bi
M∑
j 6=i

bj , which implies that
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[
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N
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(
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)∣∣∣∣∣
]
≤
KΛwΛΦ(RD)√

N
. (20)

In the case of MM, it is easy to see that KF = 1 + ΛwΛΦ(RD). Also, due to the assumptions of the Theorem, we can set
ΛΦ(RD) = 1 and Λw = ‖W‖. Finally, combining inequalities (11), (12), (13), and (20) produces the bound (9), which
concludes the proof.

As a concluding remark, we note that the main difference between proofs of Theorem 6 from (Guermeur, 2010) and the
proof of Theorem 4 is in the definition of cat mapping. Unlike in (Guermeur, 2010), where the image of cat mapping is
of cardinality M · (M − 1), the image of cat mapping for MM is of cardinality K, due to a larger number of weights per
class.
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