
Towards Adaptive Residual Network Training: A Neural-ODE Perspective

A. Correlation between Lipschitz and growing risk
Our adaptive growing strategy relies on the Lipschitz dynamics to guide the grow, since it can be shown that the growing
risks can be theoretically controlled by the Lipschitz constant. We have proposed two types of risks, the performance
degeneration right after grow, i.e.,

��"(F (2N!N)) � "(F (N))
��, and the performance gap between networks trained with

varied depth and with static depth, i.e.,
��"(F (2N!N)) � "(F (2N))

��. Hereby we shall refer to the former as temporal risk
and the latter as final risk. Based on Theorem 3, assuming the Lipschitz constant is relatively small, the temporal error is
e(N,2N) . exp

⇥
L(f (N)(te � ts))

⇤
� 1 ⇡ L(f (N))(te � ts)), which reveals a linear correlation approximately. And since

the aforementioned two risks can both be bounded by the temporal error, the linear correlation should be observed as well.

Extensive experiments show empirically that the growing risks are high correlated to the Lipschitz constant. To reduce the
influence of varied learning rate and better comply with the theory, we adopt constant learning rate (0.1) and pre-activation
architecture to train a ResNet-38 on CIFAR-10 with static training and adaptive training starting from ResNet-20, where
the one-time grow is scheduled at different epochs. Figure 6 shows the training error rate with respect to the epoch for
different training schedules. The Lipschitz constant of ResNet-20 during training is presented jointly. One can find that as
the Lipschitz constant increases during training, the temporal risk increases accordingly. To further verify it, we measure
the correlation magnitude by r2, i.e., the coefficient of determination, between the scaled Lipschitz constant we used in
LipGrow, and the temporal risk captured in each experiment. As shown in Figure 6, the correlation is statistically significant.

To fairly measure the final risk, we continue the training of ResNet-38 for additional 50 epochs after grow, and compare
the yielded performance with the performance of ResNet-38 trained without grow at corresponding epochs. As shown in
Figure 6, the final risk is highly correlated with the Lipschitz constant as well. The statistical significance is not as high
as the temporal risk because now the term C(N,2N) in Theorem 3 is not negligible, whereas for temporal risk this term is
rigorously zero, as the block functions are copied identically.

Figure 6: The Correlations between Growing Risks and Lipschitz Constant. " here refers to the training error rate.���"(F (2N!N))� "(F (N))
��� and

���"(F (2N!N))� "(F (2N))
��� refer to the temporal risk and final risk, respectively. Details can be

found in the text.

B. Deficiency of Network Morphism
In Section 3.2, we present a favored initialization scheme based on the performance measure proposed in Theorem 2.
Under the same framework, we can also analyze the deficiencies of other initialization methods. For example, network
morphism essentially ensures the new blocks are inserted such that the input-output function is preserved. For residual
network particularly, a simple solution will be initializing all new blocks to be 0.

Nonetheless, this operation first implicitly involves cloning since part of the residual functions are inherited. Thus besides
the similar functional error due to the misalignment between time points as introduced in3.2, newly inserted blocks may
introduce additional error since they are far away from the optimal ODE and thus demand extra optimization. Moreover, the
regularity condition is broken after the grow since the adjacent functional difference with respect to the new blocks can
not be bounded, which implies that the performance retained by the morphism may only be impermanent, and may pose
difficulty to the subsequent optimization.

In previous work, network morphism is reported to be less effective in a continual growing setting (Wen et al., 2019).
Note that for shallow grow, such initialization (including random) may be favoured, as C⇤

t may not be smaller than

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

supt kf
⇤(t) � frk1, where fr is some manually retrieved residual function.

C. Continuous Transformation
The residual connection is a discrete transformation, i.e.

z(N)
n+1 = z(N)

n + h(N)f (N)
n (z(N)

n), (7)

where the blocks functions are only defined at specific time points t(N)
n = ts + (te � ts)(n/N). One can intentionally

extend the definition to be continuous on t using Dirac measure (Thorpe & van Gennip, 2018), such as

f (N)(t, z) = h(N)
X

n

f (N)
n (z)1

t(N)
n

(t), n 2 {0, ..., N � 1}

where 1 is the indicator function defined as

1
t(N)
n

(t) :=

(
1 if t = t(N)

n ,

0 o.w.

The associated ODE, i.e.,
dz(N)(t)

dt
= f (N)(t, z(N)(t)),

now gives a solution of feature maps defined continuously on t

z(N)(t) = z(N)(ts) + h(N)
X

n

f (N)
n (z(N)(t(N)

n))H
t(N)
n

(t), (8)

where H is the step function

H
t(N)
n

(t) :=

(
1 if t > t(N)

n ,

0 o.w.

Alternatively, (8) can be viewed as an interpolation of the discrete feature maps.

D. Additional proofs
Proof. (Theorem 1) This theorem is a rephrased proposition derived in Thorpe & van Gennip (2018).

Proof. (Theorem 2)

A network of depth N follows a residual connection as

z(N)
n+1 = z(N)

n + h(N)f (N)
n (z(N)

n).

Compared to the Taylor expansion of the continuous solution at the corresponding time points

z⇤
⇣
t(N)
n+1

⌘
= z⇤

⇣
t(N)
n

⌘
+ h(N)f⇤

⇣
t(N)
n , z⇤

⇣
t(N)
n

⌘⌘
+

h(N)2

2
z⇤00(t⌘),

where t(N)
n = ts + (te � ts)(n/N) and t(N)

n < t⌘ < t(N)
n+1, we will have

z⇤
⇣
t(N)
n+1

⌘
� z(N)

n+1

=
h
z⇤

⇣
t(N)
n

⌘
� z(N)

n

i
+ h(N)

h
f⇤

⇣
t(N)
n , z⇤

⇣
t(N)
n

⌘⌘
� f (N)

n (z(N)
n))

i
+

h(N)2

2
z⇤00(t⌘)

=
h
z⇤

⇣
t(N)
n

⌘
� z(N)

n

i

+ h(N)
h
f⇤

⇣
t(N)
n , z⇤

⇣
t(N)
n

⌘⌘
� f⇤

⇣
t(N)
n , z(N)

n

⌘
+ f⇤

⇣
t(N)
n , z(N)

n

⌘
� f (N)

n (z(N)
n))

i
+

h(N)2

2
z⇤00(t⌘).

(9)

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

The deviation of the discrete feature map z⇤
⇣
t(N)
n

⌘
� z(N)

n can also be viewed as the local truncation error.

We assume the l1 distance between f (N) and f⇤ is bounded, i.e.,

sup
n,z

���f⇤(t(N)
n , z) � f (N)

n (z)
��� = C(N,⇤), (10)

and f⇤ is l-lipshitz, the curvature of continuous dynamics is bounded, i.e.,

L(f⇤) = sup
t,z1 6=z2

|f⇤(t, z1) � f⇤(t, z2)|

|z1 � z2|
,

M(z⇤) = Ex⇠D sup
t

|z⇤00(t)|.
(11)

Given the above three bounds, we now have
���z⇤

⇣
t(N)
n+1

⌘
� z(N)

n+1

���
h
1 + h(N)

L(f⇤)
i ���z⇤

⇣
t(N)
n

⌘
� z(N)

n

��� + h(N)

M(z⇤)

2
h(N) + C(N,⇤)

�
, (12)

Recursively apply this contraction relation yields

e(N) := Ex⇠D

���z⇤(te) � z(N)(te)
���

h
1 + h(N)

L(f⇤)
iN

Ex⇠D

���z⇤(ts) � z(N)
0

��� + h(N)

M(z⇤)

2
h(N) + C(N,⇤)

� NX

n=0

h
1 + h(N)

L(f⇤)
in

=

M(z⇤)

2
h(N) + C(N,⇤)

�
[1 + h(N)

L(f⇤)]N � 1

L(f⇤)

M(z⇤)

2
h(N) + C(N,⇤)

�
exp

⇥
h(N)

L(f⇤)N
⇤
� 1

L(f⇤)

=

M(z⇤)

2
h(N) + C(N,⇤)

�
exp [L(f⇤)(te � ts)] � 1

L(f⇤)

(13)

Proof. (Theorem 3)

Special case:

Suppose we now have two networks of depth N and 2N . The residual architectures are respectively

z(N)
n+1 = z(N)

n + h(N)f (N)
n (z(N)

n),

z(2N)
2(n+1) = z(2N)

2n + h(2N)f (2N)
2n (z(2N)

2n) + h(2N)f (2N)
2n+1(z

(2N)
2n+1).

(14)

Assume the L1 distance of their block functions at corresponding time points is bounded by

sup
t,z

���f (N)(t, z) � f (2N)(t, z)
��� = C(N,2N), (15)

the block functions are l-Lipschitz, as

sup
n,z1 6=z2

���f (N)
n (z1) � f (N)

n (z2)
���

|z1 � z2|
= L(f (N)), (16)

and the residuals are bounded by
M(f (N)) = Ex⇠D sup

n

���f (N)
n (z(N)

n)
��� . (17)

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

By bound (17) we have ���z(2N)
2n+1 � z(N)

n

���
���z(2N)

2n+1 � z(2N)
2n

��� +
���z(2N)

2n � z(N)
n

���

= h(2N)
���f (2N)

2n (z(2N)
2n)

��� +
���z(2N)

2n � z(N)
n

���

 h(2N)M(f (2N)) +
���z(2N)

2n � z(N)
n

��� .

(18)

The error propagation between their feature maps can be formulated as

z(2N)
2(n+1) � z(N)

(n+1) =
h
z(2N)
2n � z(N)

n

i
+

h(N)

2

h
f (2N)
2n (z(2N)

2n) + f (2N)
2n+1(z

(2N)
2n+1) � 2f (N)

n (z(N)
n)

i

=
h
z(2N)
2n � z(N)

n

i
+

h(N)

2

h
f (2N)
2n (z(2N)

2n) � f (N)
n (z(2N)

2n) + f (N)
n (z(2N)

2n) � f (N)
n (z(N)

n)
i

+
h(N)

2

h
f (2N)
2n+1(z

(2N)
2n+1) � f (N)

n (z(2N)
2n+1) + f (N)

n (z(2N)
2n+1) � f (N)

n (z(N)
n)

i

(19)

Given the bounds given by (15), (16) and (18), we wil have
���z(2N)

2(n+1) � z(N)
(n+1)

���
���z(2N)

2n � z(N)
n

��� + h(N)C(N,2N) +
h(N)

2
L(f (N))

h���z(2N)
2n � z(N)

n

��� +
���z(2N)

2n+1 � z(N)
n

���
i

���z(2N)
2n � z(N)

n

��� + h(N)C(N,2N)) + h(N)
L(f (N))

���z(2N)
2n � z(N)

n

��� + 0.25h(N)2
L(f (N))M(f (2N))

= (1 + h(N)
L(f (N)))

���z(2N)
2n � z(N)

n

��� + h(N)
h
C(N,2N)) + 0.25L(f (N))M(f (2N))h(N)

i

(20)

Recursively apply this relation we will have
���z(2N)

2N � z(N)
N

���
h
1 + h(N)

L(f (N))
iN ���z(2N)

0 � z(N)
0

���

+ h(N)
h
C(N,2N)) + 0.25L(f (N))M(f (2N))h(N)

i NX

n=0

h
1 + h(N)

L(f (N))
in

.
(21)

Since
���z(2N)

0 � z(N)
0

��� = |x� x| = 0, we have

e(N,2N) := Ex⇠D

���F (2N)(x) � F
(N)(x)

���

⌘ Ex⇠D

���z(2N)
2N � z(N)

N

���

 h(N)
h
0.25L(f (N))M(f (2N)))h(N) + C(N,2N))

i NX

n=0

h
1 + h(N)

L(f (N))
in

=
h
0.25L(f (N))M(f (2N)))h(N) + C(N,2N))

i [1 + h(N)
L(f (N))]N � 1

L(f (N))

h
0.25L(f (N))M(f (2N)))h(N) + C(N,2N))

i exp
⇥
L(f (N))(te � ts)

⇤
� 1

L(f (N))
.

(22)

One can easily prove that the last term preserves monotonicity with respect to L(f (N)).

General case:

Now let us extend the above theorem to general cases, i.e., the comparison between networks of depth N and N+. The
residual architectures are

z(N)(t(N)
n+1) = z(N)(t(N)

n) + h(N)f (N)
n (z(N)

n),

z(N+)
⇣
t(N

+)
n+1

⌘
= z(N+)

⇣
t(N

+)
n

⌘
+ h(N+)

nX

n=n

f (N+)
n+

⇣
z(N+)

n+

⌘
,

(23)

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

where for each n+
2 {n, ..., n}, b(t(N

+)
n+ � ts)/h(N) + 1/2c = n. In other words, n is associated with the block in network

f (N) that is the nearest neighbour of block n+ in network f (N+).

Now we can align f (N+)
n+ and f (N)

n to derive the functional difference, as we did above. Note that
Pn

n=n h(N+) is generally
not exactly equal to h(N), but the discrepancy should be bounded by the maximum residual, i.e., M(f (N+)). Therefore, the
bound of the temporal error in general case differs from (22) up to a scaling factor related to N and N+.

E. Adaptive Cosine Annealing Learning Rate Scheduler
Our adaptive growing strategy prevents the determination of grow epochs prior to the training, calling for a consistent
learning rate scheduler that can adjust its configuration in situ. Adaptive Cosine Annealing Learning Rate Scheduler, as
a variant of Cosine Annealing Learning Rate Scheduler, is thus proposed. Figure 7 shows the difference of our proposed
learning rate scheduler, where the annealing period is reduced every time a grow takes place.

We demonstrate that the proposed learning rate scheduler yields comparable performance. Since the performance of vanilla
model in our experiment is the baseline to align with, it is sufficient to demonstrate our proposed learning rate scheduler
works for vanilla training, i.e., training of the deep network from scratch. On the same Nvidia GeForce GTX 1080 Ti
GPU, we use our proposed scheduler and the regular Cosine Learning Rate Scheduler to train ResNet-74 on CIFAR-10,
CIFAR-100 for 164 epochs, and ResNet-66 on Tiny Imagenet for 90 epochs, where the milestones are fixed to 60, 110 and
30, 60 respectively. Each run will be repeated for 3 times. Table 4 presents the average validation and test accuracy. One
may find our proposed learning rate scheduler is generally better than regular one, which can be attributed to larger weight
space searched given higher learning rates at the beginning of the training.

Figure 7: Training and Validation Error Rates of ResNet-74 trained on the CIFAR-10, using adaptive and regular Cosine Annealing
Learning rate scheduler, respectively

Table 4: Performance comparison between adaptive and regular Cosine Annealing Learning rate scheduler

Scheduler
CIFAR-10

(ResNet-74)
CIFAR-100
(ResNet-74)

Tiny ImageNet
(ResNet-66)

Val Test Val Test Val Test

Cosine 92.95± 0.22 93.07± 0.38 71.42± 0.75 71.67± 0.28 49.02± 0.98 47.64± 0.46
Adaptive cosine 93.09± 0.36 93.32± 0.67 72.61± 0.38 73.13± 0.44 50.13± 0.77 48.18± 0.21

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

F. Universality and Sensitivity of Lipschitz Tolerance
The Lipschitz tolerance is a tunable hyper-parameter in our growing strategy. It is necessary to check if the performance of
the grow is sensitive to the specific choice of this hyper-parameter. Here we sample the tolerance within a wide range from
1.2 to 1.5, and test the performance of LipGrow on different dataset (CIFAR-10, CIFAR-100, Tiny ImageNet), different
models (ResNet-74, ResNet-66), and different epochs (60, 90).

Figure 8 and 9 shows the best accuracy and PPE achieved given sampled tolerance values. One can find that despite the
variation of the tolerance, the performance is generally stable, with the accuracy and efficiency indicators only fluctuating
within a small range, which demonstrates that the specific choice of the tolerance is not sensitive. Moreover, despite the
variation of the model and dataset, the overall performance, in consideration of the accuracy and efficiency at the same time,
generally reaches optimal at tolerance around 1.4, which demonstrates that the reference value is roughly universal.

(a) ResNet-74 on CIFAR-10 (b) ResNet-74 on CIFAR-100 (c) ResNet-66 on Tiny-ImageNet
Figure 8: Validation Accuracy and PPE of LipGrow, based on Different Choices of the Tolerance. Error bar shows the mean and standard
deviation of 3 repeated runs.

(a) ResNet-74 on CIFAR-10 (b) ResNet-74 on CIFAR-100 (c) ResNet-66 on Tiny-ImageNet
Figure 9: Test Accuracy and PPE of LipGrow, based on Different Choices of the Tolerance. Error bar shows the mean and standard
deviation of 3 repeated runs.

G. Effectiveness of LipGrow
To further explore the effectiveness of LipGrow, we conduct a grid search on possible growing schedulers, for the training
of ResNet-74 on CIFAR-10 and CIFAR-100, and ResNet-66 on Tiny-ImageNet. Specifically, We attempt a grow on every
epoch that is a multiple of ten, which adds up to 105 trials for a total of 164 epochs, and 28 trials for a total of 90 epochs.
Hand-Tuned grow epochs are fixed to 60 and 110 for 164 epochs, and 30 and 60 for 90 epochs, while LipGrow is repeated
for 3 times each since it is not deterministic. The Lipschitz tolerance is fixed to 1.4 for all runs. It is worth mentioning that,
the Pareto-optimal performances of the grid-search result are not directly comparable to the performance of LipGrow and
should be viewed as an “upper-bound" or oracle schedulers.

The results are visualized in Figure 10 and Fig 11. Without requiring any trial-and-error adjustments, LipGrow successfully
balances the training cost and the final model performance. Specifically, it achieves or is closer to Pareto-optimal performance,
and is generally superior in terms of both test accuracy and training efficiency on each dataset, compared to the hand-tuned
scheduler. Besides better model performance, our algorithm does not require a foresight from experts and can better fit the
real-world applications. Note that for the Tiny-ImageNet dataset, training with low PPE instead gives higher accuracy. We
attribute this to the sparsity of the dataset. Nevertheless, LipGrow still approaches the Pareto-optimal in such an abnormal
situation.

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

(a) ResNet-74 on CIFAR-10 (b) ResNet-74 on CIFAR-100 (c) ResNet-66 on Tiny-ImageNet
Figure 10: Validation Accuracy vs. PPE based on Different Choices of the Growing Epochs. Pareto-optimals are highlighted as stars.
Since the adaptive method is not deterministic in terms of grow epoch, LipGrow is repeated for 3 times. The tolerance is fixed to 1.4 for
all runs.

(a) ResNet-74 on CIFAR-10 (b) ResNet-74 on CIFAR-100 (c) ResNet-66 on Tiny-ImageNet
Figure 11: Test Accuracy vs. PPE based on Different Choices of the Growing Epochs. Specifications are aligned with Figure 10.

