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Abstract
We compare the model-free reinforcement learn-
ing with the model-based approaches through
the lens of the expressive power of neural net-
works for policies, Q-functions, and dynamics.
We show, theoretically and empirically, that even
for one-dimensional continuous state space, there
are many MDPs whose optimal Q-functions and
policies are much more complex than the dynam-
ics. For these MDPs, model-based planning is a
favorable algorithm, because the resulting poli-
cies can approximate the optimal policy signifi-
cantly better than a neural network parameteriza-
tion can, and model-free or model-based policy
optimization rely on policy parameterization. Mo-
tivated by the theory, we apply a simple multi-step
model-based bootstrapping planner (BOOTS) to
bootstrap a weak Q-function into a stronger pol-
icy. Empirical results show that applying BOOTS
on top of model-based or model-free policy opti-
mization algorithms at the test time improves the
performance on benchmark tasks.

1. Introduction
Model-based deep reinforcement learning (RL) algorithms
offer a lot of potentials in achieving significantly better sam-
ple efficiency than the model-free algorithms for continuous
control tasks. We can largely categorize the model-based
deep RL algorithms into two types: 1. model-based policy
optimization algorithms which learn policies orQ-functions,
parameterized by neural networks, on the estimated dynam-
ics, using off-the-shelf model-free algorithms or their vari-
ants (Luo et al., 2019; Janner et al., 2019; Kaiser et al., 2019;
Kurutach et al., 2018; Feinberg et al., 2018; Buckman et al.,
2018), and 2. model-based planning algorithms, which plan
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with the estimated dynamics (Nagabandi et al., 2018; Chua
et al., 2018; Wang & Ba, 2019).

A deeper theoretical understanding of the pros and cons of
model-based and the model-free algorithms in the contin-
uous state space case will provide guiding principles for
designing and applying new sample-efficient methods. The
prior work on the comparisons of model-based and model-
free algorithms mostly focuses on their sample efficiency
gap, in the case of tabular MDPs (Zanette & Brunskill,
2019; Jin et al., 2018), linear quadratic regulator (Tu &
Recht, 2018), and contextual decision process with sparse
reward (Sun et al., 2019).

In this paper, we theoretically compare model-based RL
and model-free RL in the continuous state space through
the lens of approximability by neural networks. What is the
representation power of neural networks for expressing the
Q-function, the policy, and the dynamics?

Our main finding is that even for the case of one-dimensional
continuous state space, there can be a massive gap between
the approximability of Q-function and the policy and that
of the dynamics. The optimal Q-function and policy can re-
quire exponentially more neurons to approximate by neural
networks than the dynamics.

We construct environments where the dynamics are sim-
ply piecewise linear functions with constant pieces, but
the optimal Q-functions and the optimal policy require an
exponential (in the horizon) number of linear pieces, or ex-
ponentially wide neural networks, to approximate.1 The
approximability gap can also be observed empirically on
(semi-) randomly generated piecewise linear dynamics with
a decent chance. (See Figure 1 for two examples.) This
indicates that the such MDPs are common in the sense that
they do not form a degenerate set of measure zero.

We note that for tabular MDPs, it has long been known that
for factored MDPs, the dynamics can be simple whereas the
value function is not (Koller & Parr, 1999). This is to our
knowledge the first theoretical study of the expressivity of

1In turn, the dynamics can also be much more complex than
the Q-function. Consider the following situation: a subset of the
coordinates of the state space can be arbitrarily difficult to express
by neural networks, but the reward function can only depend on
the rest of the coordinates and remain simple.
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Figure 1. Left: the dynamics of two randomly generated MDPs
(from the RAND, and SEMI-RAND methods outlined in Sec-
tion 5.1 and detailed in Appendix D.1). Right: The corresponding
Q-functions which are more complex than the dynamics. (More
details in Section 5.1.).

neural networks in the contexts of deep reinforcement learn-
ing. Moreover, it’s perhaps somewhat surprising that an ap-
proximation power gap can occur even for one-dimensional
state space with continuous dynamics.

The theoretical construction shows a dichotomy between
model-based planning algorithms vs (model-based or model-
free) policy optimization algorithms. When the approx-
imability gap occurs, any deep RL algorithms with poli-
cies parameterized by neural networks will suffer from a
sub-optimal performance. These algorithms include both
model-free algorithms such as DQN (Mnih et al., 2015) and
SAC (Haarnoja et al., 2018), and model-based policy opti-
mization algorithms such as SLBO (Luo et al., 2019) and
MBPO (Janner et al., 2019). To validate the intuition, we
empirically apply these algorithms to the constructed or the
randomly generated MDPs. Indeed, they fail to converge
to the optimal rewards even with sufficient samples, which
suggests that they suffer from the lack of expressivity.

On the other hand, model-based planning algorithms should
not suffer from the lack of expressivity, because they only
use the learned, parameterized dynamics, which are easy to
express. In fact, even a partial planner can help improve the
expressivity of the policy. If we plan for k steps and then
resort to some Q-function for estimating the total reward of
the remaining steps, we can obtain a policy with 2k more
pieces than what Q-function has. (Theorem 4.5)

In summary, our contributions are:

1. We construct continuous state space MDPs whose Q-
functions and policies are proved to be more complex
than the dynamics (Sections 4.1 and 4.2.)

2. We empirically show that with a decent chance, (semi-)

randomly generated piecewise linear MDPs also have
complex Q-functions (Section 5.1.)

3. We show theoretically and empirically that the model-
free RL or model-based policy optimization algorithms
suffer from the lack of expressivity for the constructed
MDPs (Sections 5.1), whereas model-based planning
solve the problem efficiently (Section 5.2.)

4. Inspired by the theory, we propose a simple model-
based bootstrapping planner (BOOTS), which can be
applied on top of any model-free or model-based Q-
learning algorithms at the test time. Empirical results
show that BOOTS improves the performance on Mu-
JoCo benchmark tasks, and outperforms previous state-
of-the-art on MuJoCo Humanoid environment. (Sec-
tion 5.3)

2. Related Work
Comparisons with Prior Theoretical Work. Model-
based RL has been extensively studied in the tabular case
(see Zanette & Brunskill (2019); Azar et al. (2017) and
the references therein), but much less so in the context of
deep neural networks approximators and continuous state
space. Luo et al. (2019) give sample complexity and con-
vergence guarantees suing principle of optimism in the face
of uncertainty for non-linear dynamics.

Below we review several prior results regarding model-
based versus model-free dichotomy in various settings. We
note that our work focuses on the angle of expressivity,
whereas the work below focuses on the sample efficiency.

Tabular MDPs. The extensive study in tabular MDP setting
leaves little gap in their sample complexity of model-based
and model-free algorithms, whereas the space complexity
seems to be the main difference (Strehl et al., 2006). The
best sample complexity bounds for model-based tabular
RL (Azar et al., 2017; Zanette & Brunskill, 2019) and model-
free tabular RL (Jin et al., 2018) only differ by a poly(H)
multiplicative factor (where H is the horizon.)

Linear Quadratic Regulator. Dean et al. (2018) and Dean
et al. (2017) provided sample complexity bound for model-
based LQR. Recently, Tu & Recht (2018) analyzed sample
efficiency of the model-based and model-free problem in
the setting of Linear Quadratic Regulator, and proved a
O(d) gap in sample complexity, where d is the dimension of
state space. Unlike tabular MDP case, the space complexity
of model-based and model-free algorithms has little differ-
ence. The sample-efficiency gap mostly comes from that
dynamics learning has d-dimensional supervisions, whereas
Q-learning has only one-dimensional supervision.

Contextual Decision Process (with function approxima-
tor). Sun et al. (2019) prove an exponential information-
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theoretical gap between mode-based and model-free algo-
rithms in the factored MDP setting. Their definition of
model-free algorithms requires an exact parameterization:
the value-function hypothesis class should be exactly the
family of optimal value-functions induced by the MDP
family. This limits the application to deep reinforcement
learning where over-parameterized neural networks are fre-
quently used. Moreover, a crucial reason for the failure of
the model-free algorithms is that the reward is designed to
be sparse.

Related Empirical Work. A large family of model-based
RL algorithms uses existing model-free algorithms of its
variant on the learned dynamics. MBPO (Janner et al.,
2019), STEVE (Buckman et al., 2018), and MVE (Fein-
berg et al., 2018) are model-based Q-learning-based policy
optimization algorithms, which can be viewed as modern
extensions and improvements of the early model-based Q-
learning framework, Dyna (Sutton, 1990). SLBO (Luo et al.,
2019) is a model-based policy optimization algorithm using
TRPO as the algorithm in the learned environment.

Another way to exploit the dynamics is to use it to perform
model-based planning. Racanière et al. (2017) and Du &
Narasimhan (2019) use the model to generated additional
extra data to do planning implicitly. Chua et al. (2018) study
how to combine an ensemble of probabilistic models and
planning, which is followed by Wang & Ba (2019), which
introduces a policy network to distill knowledge from a plan-
ner and provides a prior for the planner. Piché et al. (2018)
uses methods in Sequential Monte Carlo in the context of
control as inference. Oh et al. (2017) trains aQ-function and
then perform lookahead planning. Nagabandi et al. (2018)
uses random shooting as the planning algorithm.

Heess et al. (2015) backprops through a stochastic com-
putation graph with a stochastic gradient to optimize the
policy under the learned dynamics. Levine & Koltun (2013)
distills a policy from trajectory optimization. Rajeswaran
et al. (2016) trains a policy adversarially robust to the worst
dynamics in the ensemble. Clavera et al. (2018) reformu-
lates the problem as a meta-learning problem and using
meta-learning algorithms. Predictron (Silver et al., 2017)
learns a dynamics and value function and then use them to
predict the future reward sequences.

Another line of work focus on how to improve the learned
dynamics model. Many of them use an ensemble of models
(Kurutach et al., 2018; Rajeswaran et al., 2016; Clavera
et al., 2018), which are further extended to an ensemble
of probabilistic models (Chua et al., 2018; Wang & Ba,
2019). Luo et al. (2019) designs a discrepancy bound for
learning the dynamics model. Talvitie (2014) augments the
data for model training in a way that the model can output
a real observation from its own prediction. Malik et al.
(2019) calibrates the model’s uncertainty so that the model’s

output distribution should match the frequency of predicted
states. Oh et al. (2017) learns a representation of states by
predicting rewards and future returns using representation.

3. Preliminaries
Markov Decision Process. A Markov Decision Process
(MDP) is a tuple 〈S,A, f, r, γ〉, where S is the state space,
A the action space, f : S×A → ∆(S) the transition dynam-
ics that maps a state action pair to a probability distribution
of the next state, γ the discount factor, and r ∈ RS×A the
reward function. Throughout this paper, we will consider
deterministic dynamics, which, with slight abuse of notation,
will be denoted by f : S ×A → S.

A deterministic policy π : S → A maps a state to an action.
The value function for the policy is defined as is defined
V π(s)

def
=
∑∞
h=1 γ

h−1r(sh, ah). where ah = π(sh), s1 =
s and sh+1 = f(sh, ah).

An RL agent aims to find a policy π that maximizes the
expected total reward defined as

η(π)
def
= Es1∼µ [V π(s1)] ,

where µ is the distribution of the initial state.

Bellman Equation. Let π? be the optimal policy, and V ?

the optimal value function (that is, the value function for
policy π?). The value function V π for policy π and optimal
value function V ? satisfy the Bellman equation and Bellman
optimality equation, respectively. Let Qπ and Q? defines
the state-action value function for policy π and optimal state-
action value function. Then, for a deterministic dynamics f ,
we have {

V π(s) = Qπ(s, π(s)),

Qπ(s, a) = r(s, a) + γV π(f(s, a)),{
V ?(s) = maxa∈AQ

?(s, a),

Q?(s, a) = r(s, a) + γV ?(f(s, a)).

(1)

Denote the Bellman operator for dynamics f by Bf :
(Bf [Q]) (s, a) = r(s, a) + maxa′ Q(f(s, a), a′).

Neural Networks. We focus on fully-connected neural nets
with ReLU function as activations. A one-dimensional input
and one-dimensional output ReLU neural net represents a
piecewise linear function. A two-layer ReLU neural net with
d hidden neurons represents a piecewise linear function with
at most (d+ 1) pieces. Similarly, a H-layer neural net with
d hidden neurons in each layer represents a piecewise linear
function with at most (d+1)H pieces (Pascanu et al., 2013).

Problem Setting and Notations. In this paper, we focus
on continuous state space, discrete action space MDPs with
S ⊂ R. We assume the dynamics is deterministic (that is,
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st+1 = f(st, at)), and the reward is known to the agent.
Let bxc denote the floor function of x, that is, the greatest
integer less than or equal to x. We use I[·] to denote the
indicator function.

4. Approximability of Q-functions and
Dynamics

We show that there exist MDPs in one-dimensional contin-
uous state space that have simple dynamics but complex
Q-functions and policies. Moreover, any polynomial-size
neural networks function approximator of the Q-function
or policy will result in a sub-optimal expected total reward,
and learning Q-functions parameterized by neural networks
requires fundamentally an exponential number of samples
(Section 4.2). In Section 4.3, we show that the expressivity
issue can be alleviated by model-based planning in the test
time.

4.1. A provable construction of MDPs with complex Q

Recall that we consider the infinite horizon case and 0 <
γ < 1 is the discount factor. Let H = (1 − γ)−1 be the
“effective horizon” — the rewards after� H steps becomes
negligible due to the discount factor. For simplicity, we
assume that H > 3 and it is an integer. (Otherwise we take
just take H = b(1 − γ)−1c.) Throughout this section, we
assume that the state space S = [0, 1) and the action space
A = {0, 1}.
Definition 4.1. Given the effective horizon H = (1− γ)−1,
we define an MDP MH as follows. Let κ = 2−H . The
dynamics f by the following piecewise linear functions with
at most three pieces.

f(s, 0) =

{
2s if s < 1/2

2s− 1 if s ≥ 1/2

f(s, 1) =

 2s+ κ if s < 1−κ
2

2s+ κ− 1 if 1−κ
2 ≤ s ≤ 2−κ

2
2s+ κ− 2 otherwise.

The reward function is defined as

r(s, 0) = I[1/2 ≤ s < 1]

r(s, 1) = I[1/2 ≤ s < 1]− 2(γH−1 − γH)

The initial state distribution µ is uniform distribution over
the state space [0, 1).

The dynamics and the reward function for H = 4 are vi-
sualized in Figures 2a, 2b. Note that by the definition, the
transition function for a fixed action a is a piecewise linear
function with at most 3 pieces. Our construction can be
modified so that the dynamics is Lipschitz and the same
conclusion holds (see Appendix C).

Attentive readers may also realize that the dynamics can
be also be written succinctly as f(s, 0) = 2s mod 1 and
f(s, 1) = 2s + κ mod 12, which are key properties that
we use in the proof of Theorem 4.2 below.

Optimal Q-function Q? and the optimal policy π?.
Even though the dynamics of the MDP constructed in Def-
inition 4.1 has only a constant number of pieces, the Q-
function and policy are very complex: (1) the policy is
a piecewise linear function with exponentially number of
pieces, (2) the optimal Q-function Q? and the optimal value
function V ? are actually fractals that are not differentiable
anywhere. These are formalized in the theorem below.

Theorem 4.2. For s ∈ [0, 1), let s(k) denotes the k-th bit
of s in the binary representation.3 The optimal policy π?

for the MDP defined in Definition 4.1 has 2H+1 number of
pieces. In particular,

π?(s) = I[s(H+1) = 0]. (2)

And the optimal value function is a fractal with the expres-
sion:

V ?(s) =

H∑
h=1

γh−1s(h) + γH−1
(

2s(H+1) − 2
)

+

∞∑
h=H+1

γh−1
(

1 + 2(s(h+1) − s(h))
)
. (3)

The close-form expression of Q? can be computed by
Q?(s, a) = r(s, a) + V ?(f(s, a)), which is also a fractal.

We approximate the optimal Q-function by truncating the
infinite sum to 2H terms, and visualize it in Figure 2c. We
discuss the main intuitions behind the construction in the
following proof sketch of the Theorem. A rigorous proof of
Theorem 4.2) is deferred to Appendix B.1.

Proof Sketch. The key observation is that the dynamics f
essentially shift the binary representation of the states with
some addition. We can verify that the dynamics satisfies
f(s, 0) = 2s mod 1 and f(s, 1) = 2s+ κ mod 1 where
κ = 2−H . In other words, suppose s = 0.s(1)s(2) · · ·
is the binary representation of s, and let left-shift(s) =
0.s(2)s(3) · · · .

f(s, 0) = left-shift(s)

f(s, 1) = (left-shift(s) + 2−H) mod 1

Moreover, the reward function is approximately equal to the
first bit of the binary representation

r(s, 0) = s(1), r(s, 1) ≈ s(1)

2The mod function is defined as x mod 1
def
= x− bxc.

3Or more precisely, we define s(h) , b2hsc mod 2
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(a) Visualization of dynamics for action
a = 0, 1.

(b) The reward function r(s, 0) and
r(s, 1).

(c) Approximation of optimal Q-function
Q?(s, a)

Figure 2. A visualization of the dynamics, the reward function, and the approximatedQ-function of the MDP defined in Definition 4.1, and
the approximation of its optimal Q-function for the effective horizon H = 4. We can also construct slightly more involved construction
with Lipschitz dynamics and very similar properties. Please see Appendix C.

(Here the small negative drift of reward for action a = 1,
−2(γH−1 − γH), is only mostly designed for the conve-
nience of the proof, and casual readers can ignore it for
simplicity.) Ignoring carries, the policy pretty much can
only affect the H-th bit of the next state s′ = f(s, a): the
H-th bit of s′ is either equal to (H + 1)-th bit of s when
action is 0, or equal its flip when action is 1. Because the
bits will eventually be shifted left and the reward is higher
if the first bit of a future state is 1, towards getting higher
future reward, the policy should aim to create more 1’s.
Therefore, the optimal policy should choose action 0 if the
(H + 1)-th bit of s is already 1, and otherwise choose to flip
the (H + 1)-th bit by taking action 1.

A more delicate calculation that addresses the carries prop-
erly would lead us to the form of the optimal policy (Equa-
tion (2).) Computing the total reward by executing the
optimal policy will lead us to the form of the optimal value
function (equation (3).) (This step does require some ele-
mentary but sophisticated algebraic manipulation.)

With the form of the V ?, a shortcut to a formal, rigorous
proof would be to verify that it satisfies the Bellman equa-
tion, and verify π? is consistent with it. We follow this route
in the formal proof of Theorem 4.2) in Appendix B.1.

4.2. The Approximability of Q-function

A priori, the complexity of Q? or π? does not rule out
the possibility that there exists an approximation of them
that do an equally good job in terms of maximizing the
rewards. However, we show that in this section, indeed,
there is no neural network approximation ofQ? or π? with a
polynomial width. We prove this by showing any piecewise
linear function with a sub-exponential number of pieces
cannot approximate either Q? or π? with a near-optimal
total reward.

Theorem 4.3. Let MH be the MDP constructed in Defini-

tion 4.1. Suppose a piecewise linear policy π has a near
optimal reward in the sense that η(π) ≥ 0.92 ·η(π?), then it
has to have at least Ω (exp(cH)/H) pieces for some univer-
sal constant c > 0. As a corollary, no constant depth neural
networks with polynomial width (in H) can approximate the
optimal policy with near optimal rewards.

Consider a policy π induced by a value function Q, that
is, π(s) = arg maxa∈AQ(s, a). Then,when there are two
actions, the number of pieces of the policy is bounded by
twice the number of pieces of Q. This observation and
the theorem above implies the following inapproximability
result of Q?.

Corollary 4.4. In the setting of Theorem 4.3, let π be
the policy induced by some Q. If π is near-optimal in
a sense that η(π) ≥ 0.92 · η(π?), then Q has at least
Ω (exp(cH)/H) pieces for some universal constant c > 0.

The intuition behind the proof of Theorem 4.3 is as fol-
lows. Recall that the optimal policy has the form π?(s) =
I[s(H+1) = 0]. One can expect that any polynomial-pieces
policy π behaves suboptimally in most of the states, which
leads to the suboptimality of π. Detailed proof of Theo-
rem 4.3 is deferred to Appendix B.2.

Beyond the expressivity lower bound, we also provide an
exponential sample complexity lower bound for Q-learning
algorithms parameterized with neural networks (see Ap-
pendix B.4).

4.3. Approximability of model-based planning

When the Q-function or the policy are too complex to be
approximated by a reasonable size neural network, both
model-free algorithms or model-based policy optimization
algorithms will suffer from the lack of expressivity, and as
a consequence, the sub-optimal rewards. However, model-
based planning algorithms will not suffer from the lack of
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expressivity because the final policy is not represented by a
neural network.

Given a function Q that are potentially not expressive
enough for approximating the optimal Q-function, we can
simply apply the Bellman operator with a learned dynamics
f̂ for k times to get a bootstrapped version of Q:

Bk
f̂
[Q](s, a) = max

a1,··· ,ak

(
k−1∑
h=0

r(sh, ah) +Q(sk, ak)

)

where s0 = s, a0 = a and sh+1 = f̂(sh, ah).

Given the bootstrapped Q, we can derive a greedy policy
w.r.t it:

πboots
k,Q,f̂

(s) = max
a
Bk
f̂
[Q](s, a) (4)

The following theorem shows that for the MDPs constructed
in Section 4.1, using Bk

f̂
[Q] to represent the optimal Q-

function requires fewer pieces in Q than representing the
optimal Q-function with Q directly.
Theorem 4.5. Consider the MDP MH defined in Defini-
tion 4.1. There exists a constant-piece piecewise linear
dynamics f̂ and 2H−k+1-piece piecewise linear function
Q, such that the bootstrapped policy πboots

k,Q,f̂
(s) achieves the

optimal total rewards.

By contrast, recall that in Theorem 4.3, we show that approx-
imating the optimal Q function directly with a piecewise
linear function, it requires ≈ 2H piecewise. Thus we have a
multiplicative factor of 2k gain in the expressivity by using
the k-step bootstrapped policy. Here the exponential gain is
only magnificent enough when k is close to H because the
gap of approximability is huge. However, in more realistic
settings — the randomly-generated MDPs and the MuJoCo
environment — the bootstrapping planner improve the per-
formance significantly. Proof of Theorem 4.5 is deferred to
Appendix B.6.

The model-based planning can also be viewed as an implicit
parameterization of Q-function. In the grid world environ-
ment, Tamar et al. (2016) parameterize the Q-function by
the dynamics. For environments with larger state space,
we can also use the dynamics in the parameterization of Q-
function by model-based planning. A naive implementation
of the bootstrapped policy (such as enumerating trajectories)
would require 2k-times running time. However we can use
approximate algorithms for the trajectory optimization step
in Eq. (4) such as Monte Carlo tree search (MCTS) and
cross entropy method (CEM).

5. Experiments
In this section we provide empirical results that supports
our theory. We validate our theory with randomly gener-

ated MDPs with one dimensional state space (Section 5.1).
Sections 5.2 and 5.3 shows that model-based planning in-
deed helps to improve the performance on both toy and real
environments.

5.1. The Approximability of Q-functions of randomly
generated MDPs

In this section, we show the phenomena that the Q-function
not only occurs in the crafted cases as in the previous sub-
section, but also occurs more robustly with a decent chance
for (semi-) randomly generated MDPs. (Mathematically,
this says that the family of MDPs with such a property is
not a degenerate measure-zero set.)

It is challenging and perhaps requires deep math to character-
ize the fractal structure ofQ-functions for random dynamics,
which is beyond the scope of this paper. Instead, we take an
empirical approach here. We generate random piecewise lin-
ear and Lipschitz dynamics, and compute their Q-functions
for the finite horizon, and then visualize the Q-functions or
count the number of pieces in the Q-functions. We also use
DQN algorithm (Mnih et al., 2015) with a finite-size neural
network to learn the Q-function.

We set horizon H = 10 for simplicity and computational
feasibility. The state and action space are [0, 1) and {0, 1}
respectively. We design two methods to generate random or
semi-random piecewise dynamics with at most four pieces.
First, we have a uniformly random method, called RAND,
where we independently generate two piecewise linear func-
tions for f(s, 0) and f(s, 1), by generating random positions
for the kinks, generating random outputs for the kinks, and
connecting the kinks by linear lines (See Appendix D.1 for
a detailed description.)

In the second method, called SEMI-RAND, we introduce
a bit more structure in the generation process, towards in-
creasing the chance to see the phenomenon. The functions
f(s, 0) and f(s, 1) have 3 pieces with shared kinks. We also
design the generating process of the outputs at the kinks
so that the functions have more fluctuations. The reward
for both of the two methods is r(s, a) = s,∀a ∈ A. (See
Appendix D.1 for a detailed description.)

Figure 1 illustrates the dynamics of the generated MDPs
from SEMI-RAND. More details of empirical settings can
be found in Appendix D.1.

The optimal policy and Q can have a large number of
pieces. Because the state space has one dimension, and
the horizon is 10, we can compute the exact Q-functions
by recursively applying Bellman operators, and count the
number of pieces. We found that, 8.6% fraction of the 1000
MDPs independently generated from the RAND method has
policies with more than 100 pieces, much larger than the
number of pieces in the dynamics (which is 4). Using the
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Figure 3. The performance of DQN, SLBO, and MBPO on the
bottom dynamics in Figure 1. The number after the acronym is
the width of the neural network used in the parameterization of
Q. We see that even with sufficiently large neural networks and
sufficiently many steps, these algorithms still suffers from bad
approximability and cannot achieve optimal reward.

SEMI-RAND method, a 68.7% fraction of the MDPs has
polices with more than 103 pieces. In Section D.1, we plot
the histogram of the number of pieces of the Q-functions.
Figure 1 visualize the Q-functions and dynamics of two
MDPs generated from RAND and SEMI-RAND method.
These results suggest that the phenomenon that Q-function
is more complex than dynamics is degenerate phenomenon
and can occur with non-zero measure. For more empirical
results, see Appendix D.2.

Model-based policy optimization methods also suffer
from a lack of expressivity. As an implication of our
theory in the previous section, when the Q-function or the
policy are too complex to be approximated by a reasonable
size neural network, both model-free algorithms or model-
based policy optimization algorithms will suffer from the
lack of expressivity, and as a consequence, the sub-optimal
rewards. We verify this claim on the randomly generated
MDPs discussed in Section 5.1, by running DQN (Mnih
et al., 2015), SLBO (Luo et al., 2019), and MBPO (Janner
et al., 2019) with various architecture size.

For the ease of exposition, we use the MDP visualized in the
bottom half of Figure 1. The optimal policy for this specific
MDP has 765 pieces, and the optimal Q-function has about
4× 104 number of pieces, and we can compute the optimal
total rewards.

First, we apply DQN to this environment by using a two-
layer neural network with various widths to parameterize the
Q-function. The training curve is shown in Figure 3. Model-
free algorithms can not find near-optimal policy even with
214 hidden neurons and 1M trajectories, which suggests that
there is a fundamental approximation issue. This result is
consistent with Fu et al. (2019), in a sense that enlarging
Q-network improves the performance of DQN algorithm at
convergence.

Second, we apply SLBO and MBPO in the same environ-
ment. Because the policy network and Q-function in SLBO
and MBPO cannot approximate the optimal policy and value

Algorithm 1 Model-based Bootstrapping Planner (BOOTS)
+ RL Algorithm X

1: training: run Algorithm X, store the all samples in the
set R, store the learned Q-function Q, and the learned
dynamics f̂ if it is available in Algorithm X.

2: testing:
3: if f̂ is not available, learn f̂ from the data in R
4: execute the policy BOOTS(s) at every state s
1: function BOOTS(s)
2: Given: query oracle for function Q and f̂
3: Compute

πboots
k,Q,f̂

(s) = arg max
a

max
a1,··· ,ak

r(s, a)+

· · ·+ r(sk−1, ak−1) +Q(sk, ak) (5)

using a zero-th order optimization algorithm (which
only requires oracle query of the function value) such
as cross-entropy method or random shooting

function, we see that they fail to achieve near-optimal re-
wards, as shown in Figure 3.

5.2. Model-based planning on randomly generated
MDPs

We implement, that planning with the learned dynamics
(with an exponential-time algorithm which enumerates all
the possible future sequence of actions), as well as bootstrap-
ping with partial planner with varying planning horizon. A
simple k-step model-based bootstrapping planner is applied
on top of existing Q-functions (trained from either model-
based or model-free approach). The bootstrapping planner
is reminiscent of MCTS using in AlphaGo (Silver et al.,
2016; 2018). However, here, we use the learned dynamics
and deal with continuous state space. Algorithm 1, called
BOOTS, summarizes how to apply the planner on top of
any RL algorithm with a Q-function (straightforwardly).

Note that the planner is only used in the test time for a fair
comparison. The dynamics used by the planner is learned
using the data collected when training the Q-function. As
shown in Figure 5, the model-based planning algorithm
not only has the bests sample-efficiency, but also achieves
the optimal reward. In the meantime, even a partial plan-
ner helps to improve both the sample-efficiency and per-
formance. More details of this experiment are deferred to
Appendix D.3.

5.3. Model-based planning on MuJoCo environments

We work with the OpenAI Gym environments (Brockman
et al., 2016) based on the MuJoCo simulator (Todorov et al.,
2012). We apply BOOTS on top of three algorithms: (a)
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Figure 4. Left two: Comparison of BOOTS-MBSAC vs MBSAC and BOOTS-SAC vs SAC on Ant and Humanoid environments.
Particularly on the Humanoid environment, BOOTS improves the performance significantly. The test policy for MBSAC and SAC are the
deterministic policy that takes the mean of the output of the policy network. Right: BOOTS-MBSAC significantly outperforms previous
state-of-the-art algorithms on Humanoid.

Figure 5. Performance of BOOTS-DQN with various planning
steps. A near-optimal reward is achieved with even k = 3, indicat-
ing that the bootstrapping with the learned dynamics improves the
expressivity of the policy significantly.

SAC (Haarnoja et al., 2018), the state-of-the-art model-free
RL algorithm; (b) a computationally efficient variant of
MBPO (Janner et al., 2019) that we developed using ideas
from SLBO (Luo et al., 2019), which is called MBSAC,
see Appendix A for details; (c) MBPO (Janner et al., 2019),
the previous state-of-the-art model-based RL algorithm.

We use k = 4 steps of planning throughout the experiments
in this section. We mainly compare BOOTS-SAC with SAC,
and BOOTS-MBSAC with MBSAC, to demonstrate that
BOOTS can be used on top of existing strong baselines. See
Figure 4 for the comparison on Gym Ant and Humanoid
environments. We also found that BOOTS has little help
for other simpler environments as observed in Clavera et al.
(2020), and we suspect that those environments have much
less complex Q-functions so that our theory and intuitions
do not apply.

We also compare BOOTS-MBSAC with other other model-
based and model-free algorithms on the Humanoid environ-
ment (Figure 4). We see a strong performance surpassing
the previous state-of-the-art MBPO. For Ant environment,
because our implementation MBSAC is significantly weaker
than MBPO, even with the boost from BOOTS, still BOOTS-

MBSAC is far behind MBPO. 4

6. Conclusion
Our study suggests that there exists a significant representa-
tion power gap of neural networks between for expressing
Q-function, the policy, and the dynamics in both constructed
examples and empirical benchmarking environments. We
show that our model-based bootstrapping planner BOOTS
helps to overcome the approximation issue and improves
the performance in synthetic settings and in the difficult
MuJoCo environments. We raise some interesting open
questions.

• Can we theoretically generalize our results to high-
dimensional state space, or continuous actions space?
Can we theoretically analyze the number of pieces of
the optimal Q-function of a stochastic dynamics?

• In this paper, we measure the complexity by the size
of the neural networks. It’s conceivable that for real-
life problems, the complexity of a neural network can
be better measured by its weights norm. Could we
build a more realistic theory with another measure of
complexity?

• The BOOTS planner comes with a cost of longer test
time. How do we efficiently plan in high-dimensional
dynamics with a long planning horizon?

• The dynamics can also be more complex (perhaps in
another sense) than the Q-function in certain cases.
How do we efficiently identify the complexity of the
optimal Q-function, policy, and the dynamics, and how
do we deploy the best algorithms for problems with
different characteristics?

4For STEVE, we use the official code at https:
//github.com/tensorflow/models/tree/master/
research/steve

https://github.com/tensorflow/models/tree/master/research/steve
https://github.com/tensorflow/models/tree/master/research/steve
https://github.com/tensorflow/models/tree/master/research/steve
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