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Abstract
We study the iteration complexity of stochastic
gradient descent (SGD) for minimizing the gra-
dient norm of smooth, possibly nonconvex func-
tions. We provide several results, implying that
the classical O(ε−4) upper bound (for making
the average gradient norm less than ε) cannot be
improved upon, unless a combination of addi-
tional assumptions is made. Notably, this holds
even if we limit ourselves to convex quadratic
functions. We also show that for nonconvex
functions, the feasibility of minimizing gradients
with SGD is surprisingly sensitive to the choice
of optimality criteria.

1. Introduction
Stochastic gradient descent (SGD) is today one of the main
workhorses for solving large-scale supervised learning and
optimization problems. Much of its popularity is due to
its extreme simplicity: Given a function f and an initial-
ization point x, we perform iterations of the form xt+1 =
xt − ηtgt, where ηt > 0 is a step-size parameter and gt is
a stochastic vector which satisfies E[gt|xt] = ∇f(xt). For
example, in the context of machine learning, f(x) might
be the expected loss of some predictor parameterized by x
(over some underlying data distribution) and gt is the gradi-
ent of the loss w.r.t. a single data sample. For convex prob-
lems, the convergence rate of SGD to a global minimum
of f has been very well studied (for example, (Kushner
& Yin, 2003; Nemirovski et al., 2009; Moulines & Bach,
2011; Bertsekas, 2011; Rakhlin et al., 2012; Bottou et al.,
2018)), however, for nonconvex problems, convergence to
a global minimum cannot in general be guaranteed. A rea-
sonable substitute is to study the convergence to local min-
ima, or at the very least, to stationary points. This can also
be quantified as an optimization problem where the goal
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is not to minimize f(x) over x, but rather ‖∇f(x)‖. This
question of finding stationary points has gained more atten-
tion in recent years, with the rise of deep learning and other
large-scale nonconvex optimization methods.

Compared to optimizing function values, the convergence
of SGD in terms of minimizing the gradient norm is rel-
atively less well-understood. A folklore result (see e.g.,
(Ghadimi & Lan, 2013), which we repeat in Appendix B
for completeness, as well as (Allen-Zhu, 2018)) states that
for smooth (Lipschitz gradient) functions, O(ε−4) itera-
tions are sufficient to make the average expected gradient
E[ 1

T

∑T
t=1 ‖∇f(xt)‖] less than ε, and it was widely con-

jectured that this is the best complexity achievable with
SGD. However, this bound was recently improved in Fang
et al. (Fang et al., 2019), which showed a complexity bound
of O(ε−3.5) for SGD, under the following additional as-
sumptions/algorithmic modifications:

1. (Complex) aggregation. Rather than considering the
average or minimal gradient norm of the iterates, the
algorithm considers the norm of a certain adaptive av-
erage of a suffix of the iterates (those which do not
deviate too much from the final iterate).

2. Lipschitz Hessian. The function is twice differen-
tiable, with a Lipschitz Hessian as well as a Lipschitz
gradient.

3. “Dispersive” noise. The stochastic noise satisfies a
“dispersive” property, which intuitively implies that it
is well-spread (it is satisfied, for example, for Gaus-
sian or uniform noise in some ball).

4. Bounded dimension. The dimension is bounded, in
the sense that there is an explicit logarithmic depen-
dence on it in the iteration complexity bound (in con-
trast, the folklore O(ε−4) result is dimension-free).

The result of Fang et al. is even stronger, as it shows conver-
gence to a second-order stationary point (where the Hes-
sian is nearly positive definite), however, this will not be
our focus here. Note that in this setting it is known that
some dimension dependence is difficult to avoid (see (Sim-
chowitz et al., 2017))
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In this paper, we study the performance limits of SGD
for minimizing gradients through several variants of lower
bounds under different assumptions. In particular, we
wish to understand which of the assumptions/modifica-
tions above are necessary to break the ε−4 barrier. Our
main take-home message is that most of these appear to
be needed in order to attain an iteration complexity better
than O(ε−4), in some cases even if we limit ourselves just
to convex quadratic functions. In a bit more detail:

• If we drop Assumption 4 (bounded dimension), and
consider the norm of the gradient at the output of some
fixed, deterministic aggregation scheme (as opposed
to returning, for example, an iterate with a minimal
gradient norm), then perhaps surprisingly, we show
that it is impossible to provide any finite complex-
ity bound. This holds under mild algorithmic con-
ditions, which extend far beyond SGD. This implies
that for dimension-free bounds, we must either con-
sider rather complicated aggregation schemes, apply
randomization, or use optimality criteria which do not
depend on a single point (e.g., consider the average
gradient 1

T

∑T
t=1 ‖∇f(xt)‖ or mint ‖∇f(xt)‖, as is

often done in the literature). This result is formalized
as Thm. 1 in Subsection 3.1.

• Without Assumption 2 (Lipschitz Hessian) and As-
sumption 3 (dispersive noise), then even with rather
arbitrary aggregation schemes, the iteration complex-
ity of SGD is Ω(ε−4). This result is formalized as
Thm. 2 in Subsection 3.2.

• Without Assumption 1 (aggregation) and Assump-
tion 3 (dispersive noise), the iteration complexity of
SGD required to satisfy E[mint ‖∇f(xt)‖] ≤ ε is
Ω(ε−3). This result is formalized as Thm. 3 in Sub-
section 3.2.

• Without aggregation, the iteration complexity
of SGD with “reasonable” step sizes to attain
E[mint ‖∇f(xt)‖] ≤ ε is Ω(ε−4), even for quadratic
convex functions in moderate dimension and Gaussian
noise (namely, all other assumptions are satisfied
as well as convexity). This result is formalized as
Thm. 4 in Section 4.

It is important to note that the SGD algorithm, which is the
main focus of this paper, is not necessarily an optimal al-
gorithm (in terms of iteration complexity) for minimizing
gradient norms in our stochastic optimization setting. For
example, for convex problems, it is known that it is pos-
sible to achieve an iteration complexity of Õ(ε−2), which
strictly smaller than our Ω(ε−4) lower bound (see (Foster
et al., 2019), and for a related result in the deterministic
setting see (Nesterov, 2012)). These algorithms are more

complicated and less natural than plain SGD, a price that
our results indicate might be necessary in order to achieve
optimal iteration complexity in some cases.

We conclude this section by noting that following the initial
dissemination of our paper, a recent arXiv preprint (Arje-
vani et al., 2019) studied a similar question of lower com-
plexity bounds for finding stationary points, focusing on
algorithm-independent Ω(ε−4) or Ω(ε−3) lower bounds for
functions with Lipschitz-continuous gradients. Their re-
sults are mostly incomparable to ours. In particular, our
Thm. 1 studies conditions under which no finite lower
bound is possible, Thm. 3 considers the case where the
Hessian (and not just the gradient) is Lipschitz-continuous,
and Thm. 4 shows an Ω(ε−4) lower bound for SGD, which
holds even if the functions are convex and the noise is
simply Gaussian (in contrast, the constructions in Arjevani
et al. (2019) crucially depend on intricate non-convex func-
tions and carefully tailored, location-dependent noise, us-
ing a considerably more involved proof). The result most
similar to those in Arjevani et al. (2019) is Thm. 2, which
is specific to SGD, but admits a simpler proof and signifi-
cantly better constants.

2. Setting and Notation
We let bold-face letters denote vectors, use ei to denote
the canonical unit vector, and use [T ] as shorthand for
{1, 2, . . . , T}.

We assume throughout that the objective f maps Rd to R,
and either has an L-Lipschitz gradient for some fixed pa-
rameter L > 0 or a ρ-Lipschitz Hessian for some ρ > 0.

We consider algorithms which use a standard stochastic
first-order oracle (Nemirovski & Yudin, 1983; Agarwal
et al., 2009) in order to minimize some optimality criteria:
This oracle, given a point xt, returns ∇f(xt) + ξt, where
ξt is a random variable satisfying

E[ξt|xt] = 0 and E[‖ξt‖2|xt] ≤ σ2

almost surely for some fixed σ2. In this paper, we fo-
cus on optimality criteria involving minimizing gradient
norms, using the Stochastic Gradient Descent (SGD) al-
gorithm. This algorithm, given a budget of T iterations
and an initialization point x1, produces T stochastic iter-
ates x1, . . . ,xT according to

xt+1 = xt − ηt · (∇f(xt) + ξt) , (1)

where ηt is a fixed step-size parameter. In some cases, we
will also allow the algorithm to perform an additional ag-
gregation step, generating a point xout which is some func-
tion of x1, . . . ,xT (for example, the average 1

T

∑T
t=1 xt).

Additionally, in some of our results, we will allow the step
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size to be adaptive, and depend on the previous iterates (un-
der appropriate assumptions), in which case we will use the
notation

xt+1 = xt − ηx1,...,xt · (∇f(xt) + ξt). (2)

Regarding the initial conditions, we make the standard as-
sumption1 that x1 has bounded suboptimality, i.e., f(x1)−
f(x∗) ≤ ∆ for some fixed ∆ > 0, where in the convex
case, we assume x∗ is some point x∗ ∈ arg minx f(x),
and in the non-convex case, we assume x∗ is a stationary
point with f(x∗) ≤ f(xt) for all t ∈ [T ]. We note that
some analyses (see for example (Allen-Zhu, 2018; Foster
et al., 2019)) replace the assumption f(x1) − f(x∗) ≤ ∆
with the assumption ‖x1 − x∗‖ ≤ R, but we do not con-
sider this variant in this paper (in fact, some of our con-
structions rely on the fact that even if f(x1) − f(x∗) is
small, ‖x1 − x∗‖ might be very large). It should also be
pointed out that in the non-convex setting, x∗ might not be
uniquely defined or even belong to a single connected set,
which makes ‖x1 − x∗‖ somewhat ambiguous.

3. Lower Bounds in the Non-Convex Case
In this section, we present several lower bounds relating
to first-order methods in the non-convex stochastic setting.
We start by considering a wide range of first-order meth-
ods, showing that if we consider any point which is a fixed
function of the iterates, then no meaningful, dimension-free
worst-case bound can be attained on its expected gradient
norm. We conclude that it is necessary for any useful op-
timality criterion to relate to more than one iterate in some
way, as is indeed the case with the standard optimality crite-
ria, which considers the average expected norm of the gra-
dients ( 1

T

∑
t E‖∇f(xt)‖) or the minimal expected norm

of the gradients (mint E‖∇f(xt)‖).

We then turn our focus to the SGD method under the stan-
dard set of assumptions (see Sec. 2), and show that it re-
quires Ω(ε−4) iterations (or Ω(ε−3) with Lipschitz Hes-
sians) to attain a value of ε for any of the standard opti-
mality criteria mentioned above.

3.1. Impossibility of minimizing the gradient at any
fixed point

In this subsection, we show that in the nonconvex set-
ting, perhaps surprisingly, no meaningful iteration com-
plexity bound can be provided on ‖∇f(xout)‖, where xout

is the point returned by any fixed, deterministic aggrega-
tion scheme which depends continuously on the iterates
and stochastic gradients (for example, some fixed weighted
combination of the iterates).

To state the result, recall that SGD can be phrased in an

1See e.g. (Nesterov, 2004) and references mentioned earlier.

oracle-based setting, where we model an optimization al-
gorithm as interacting with a stochastic first-order oracle:
Given an initial point x1, at every iteration t = 2, . . . , T ,
the algorithm chooses a point xt, and the oracle returns
a stochastic gradient estimate gt := ∇f(xt) + ξt, where
E[ξt|xt] = 0 and E[‖ξt‖2|xt] ≤ σ2 for some known σ2.
The algorithm then uses gt (as well as g1, . . . ,gt−1 and
x1, . . . ,xt) to select a new point xt+1. After T iterations,
the algorithm returns a final point xout, which depends on
g1, . . . ,gT and x1, . . . ,xT .

Theorem 1. Consider any deterministic algorithm as
above, which satisfies the following:

• There exists a finite CT (dependent only on T ) such
that for any initialization x1 and any t ∈ [T ], if g1 =
. . . = gt = 0, then ‖xt+1 − x1‖ ≤ CT . Moreover, if
this holds for t = T , then ‖xout − x1‖ ≤ CT .

• For any t ∈ [T ], xt+1 is a fixed continuous function
of x1,g1, . . . ,xt,gt, and xout is a fixed continuous
function of x1,g1, . . . ,xT ,gT .

Then for any δ ∈ (0, 1), and any choice of random vari-
ables ξt satisfying the assumptions above, there exists a di-
mension d, a twice-differentiable function f : Rd 7→ R with
2-Lipschitz gradients and 4-Lipschitz Hessians, and an ini-
tialization point x1 satisfying f(x1)− infx f(x) ≤ 1, such
that ‖∇f(xout)‖ ≥ 1

2 holds with probability at least 1− δ.
Moreover, if there is no stochastic noise (ξt ≡ 0), then the
result holds for d = 1.

Intuitively, the first condition in the theorem requires that
the algorithm does not “move” too much from the initial-
ization point x1 if all stochastic gradients are zero (this is
trivially satisfied for SGD, and any other reasonable al-
gorithm we are aware of), while the second condition re-
quires the iterates produced by the algorithm to depend
continuously on the previous iterates and stochastic gra-
dients (again, this is satisfied by SGD). By constructing a
one-dimensional function whose gradient is zero over two
disjoint regions, these two conditions allow the application
of the intermediate value theorem to find an initialization
point such that function value at xout attains any value in
between the function values at the regions.

The theorem suggests that to get non-trivial results, we
must either use a dimension-dependent analysis, use a non-
continuous/adaptive/randomized scheme to compute xout,
or measure the performance of the generated sequence
using an optimality criterion that does not depend on a
fixed point (e.g., the average gradient 1

T

∑T
t=1 ‖∇f(xt)‖

or mint ‖∇f(xt)‖). We note that the positive result of
(Fang et al., 2019) assumes both finite dimension, and com-
putes xout according to an adaptive non-continuous deci-
sion rule (involving branching depending on how far the
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Figure 1. The function s(x).

iterates have moved), hence there is no contradiction to the
alluded theorem.

Proof of Thm. 1. We will first prove the result in the case
where there is no noise, i.e. gt = ∇f(xt) deterministi-
cally, in which case x2, . . . ,xT and xout are deterministic
functions of x1. To that end, let d = 1 and let f(x) = s(x),
where s is the sigmoid-like function (see Fig. 1)

s(x) =



− 1
2 x ≤ −1,

2
3 (x+ 1)3 − 1

2 x ∈ [−1,− 1
2 ],

− 2
3x

3 + x x ∈ [− 1
2 ,

1
2 ],

2
3 (x− 1)3 + 1

2 x ∈ [ 1
2 , 1],

1
2 x ≥ 1.

This function smoothly and monotonically interpolates be-
tween −1/2 at x = −1 at 1/2 at x = 1. It can be easily
verified to have 2-Lipschitz gradients and 4-Lipschitz Hes-
sians, and for any x, satisfies f(x)− infx f(x) ≤ 1.

Let us consider the iterates generated by the algorithm,
x1, . . . , xT and xout, as we make x1 → ∞. Our function
is such that ∇f(x) = 0 for all x ≥ 1, so at every iteration,
the algorithm gets gt = 0 as long as xt ≥ 1. Moreover, by
the assumptions, as long as the gradients are zero, |xt−x1|
is bounded. As a result, by induction and our assumption
that |xout−x1| is bounded, we get that xout →∞. A sim-
ilar argument shows that when x1 → −∞, we also have
xout → −∞.

Next, we argue that xout is a continuous function of x1. In-
deed, x2 is a continuous function of x1, since it is a contin-
uous function of g1 = ∇f(x1) by assumption, and∇f(x1)
is Lipschitz (hence continuous) in x1, and compositions of
continuous functions is continuous. By induction, a similar
argument holds for xt for any t, and hence also to xout.

Overall, we showed that xout is a continuous function of
x1, that xout → ∞ when x1 → ∞, and that xout → −∞

when x1 → −∞. Therefore, by the mean value theorem,
there exists some x1 for which xout is precisely zero, in
which case |f ′(xout)| = |f ′(0)| = |s′(0)| = 1, satisfying
the Theorem statement.

It remains to prove the theorem in the noisy case, where
ξi are non-zero random variables. In that case, instead of
choosing f(x) = s(x), we let f(x) = s(〈x, er〉), where
the coordinate r is defined as

r := arg min
j∈[d]

max
t∈[T ]

E[〈ξt, ej〉2].

Since maxt E[‖ξt‖2] = maxt
∑d
j=1 E[〈ξt, ej〉2] is

bounded by σ2 independently of d, it follows that the vari-
ance of ξ1, . . . , ξt along coordinate r goes to zero as d →
∞. Therefore, by making d large enough and using Cheby-
shev’s inequality, we can ensure that maxt |〈ξt, ej〉| is ar-
bitrarily small with arbitrarily high probability. Since the
gradients of f are Lipschitz, and we assume each xt+1 is a
continuous function of the noisy gradients g1,g2, . . . ,gt,
it follows that the trajectory of x1,x2, . . . ,xT and xout

on the j-th coordinate can be made arbitrarily close to the
noiseless case analyzed earlier (where ξt ≡ 0), with arbi-
trarily high probability. In particular, we can find an ini-
tialization point x1 such that the j-th coordinate of xout is
arbitrarily close to 0, hence the gradient is arbitrarily close
to 1 (and in particular, larger than 1/2).

Remark 1 (Randomized Algorithms). The theorem con-
siders deterministic algorithms for simplicity, but the same
proof idea holds for larger families of randomized algo-
rithms, where the randomness is used “obliviously”. For
example, consider the popular technique of adding random
perturbations to the iterates: If the perturbations have a
fixed distribution with finite variance, then we can always
embed our construction in a high enough dimension, so
that the effective variance of the perturbations is arbitrar-
ily small, and we are back to the deterministic setting.

3.2. Lower bounds on SGD

In this subsection, we focus on the analysis of SGD in the
nonconvex setting. We present two main results: A lower
bound on the performance of SGD with an aggregation
step for objectives with L-Lipschitz gradient, followed by a
lower bound in the case where the objective has ρ-Lipschitz
Hessian that applies to “plain” SGD methods that do not
perform an aggregation step. In both cases, the step sizes
chosen by the method are allowed to be adaptive, in the
sense that they are allowed to depend on past iterates and
gradients. This dependence is not allowed to be completely
general, but rather we assume that the dependence on the
past iterates and gradients is done through a function of
their norm and the dot-products between them (in the Lip-
schitz Hessian case, we also allow the step size to depend
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on the Hessians). Note, that all commonly used adaptive
schemes (including Adagrad (Duchi et al., 2011), normal-
ized gradient (Nesterov, 1984; Kiwiel, 2001), among oth-
ers) follow this type of adaptive scheme.

We start the analysis with a technical lemma.

Lemma 1. Let f : Rd 7→ R be a function
with L-Lipschitz gradient, and assume that the vectors
y1, . . . ,ym, z1, . . . , zn,γ ∈ Rd (n,m ∈ N) are such that

1. ∇f(y1) = · · · = ∇f(ym) = ∇f(z1) = · · · =
∇f(zn) = γ,

2. f(y1) = · · · = f(ym), and

3. 〈γ,y1〉 = · · · = 〈γ,ym〉.

Then there exists a function f̂ with L-Lipschitz gradient
that has the same first-order information as f at {zi}i∈[n],
i.e., for all i ∈ [n]

f̂(zi) = f(zi),

∇f̂(zi) = ∇f(zi) = γ,

has the same gradient as f at {yi}i∈[n], i.e., for all j ∈ [m]

∇f̂(yj) = ∇f(yj) = γ,

and is bounded from below:

inf
x∈Rd

f̂(x) ≥ min
k∈[n]

f(zk)− 3

2L
‖γ‖2.

We postpone the proof of this lemma to the appendix and
turn to present the first main result of this subsection.

Theorem 2. Consider a first-order method that given a
function f : Rd → R and an initial point x1 ∈ Rd gen-
erates a sequence of T ∈ N points {xi} satisfying

xt+1 = xt + ηx1,...,xt · (∇f(xt) + ξt), t ∈ [T − 1],

where ξi are some random noise vectors, and returns a
point xout ∈ Rd as a non-negative linear combination of
the iterates:

xout =

T∑
t=1

ζ(t)
x1,...,xT xt.

We further assume that the step sizes ηx1,...,xt and ag-
gregation coefficients ζ(t)

x1,...,xT are deterministic functions
of the norms and inner products between the vectors
x1, . . . ,xt,∇f(x1) + ξ1, . . . ,∇f(xt) + ξt. Then for any
L,∆, σ ∈ R++ there exists a function f : RT 7→ R with
L-Lipschitz gradient, a point x1 ∈ RT and independent

random variables ξt with E[ξt] = 0 and E[‖ξt‖2] = σ2

such that

f(x1)− inf
x
f(x)

a.s.
≤ ∆,

∇f(xt)
a.s.
= γ, ∀t ∈ [T ],

∇f(xout)
a.s.
= γ,

where γ ∈ RT is a vector such that

‖γ‖2 =
σ

16(T − 1)

(√
64L∆(T − 1) + 9σ2 − 3σ

)
≈
T�1

σ

2

√
L∆

T − 1
.

Proof. We will assume that the algorithm performs gra-
dient steps with fixed step-size ηt and aggregation coeffi-
cients ζi, i.e., the algorithm is defined by the rule

xt+1 = xt − ηt(∇f(xt) + ξt), t ∈ [T − 1],

xout =

T∑
t=1

ζixi.

The analysis of the general case appears in the appendix.

Under this assumption, the proof proceeds by 1. defining
an adversarial objective and noise distribution, 2. showing
that the gradients of the objective at the iterates posses the
claimed properties, then 3. using Lemma 1, modifying the
objective so that the claimed lower bound on the function is
attained, while keeping the behavior of the function at the
iterates unaffected.

We start by defining an adversarial example, choosing the
noise vectors {ξt} to be independent random variables dis-
tributed such that

P (ξt = ±σet+1) =
1

2
, t ∈ [T − 1],

where ei stands for the canonical unit vector, and defining
the objective f := f{ηt},{ζt} : RT 7→ R by

f{ηt},{ζt}(x) := G · 〈x, e1〉+

T−1∑
t=1

ht(〈x, et+1〉),

where G ≥ 0 is a number chosen such that

G2 =
σ

16(T − 1)

(√
64L∆(T − 1) + 9σ2 − 3σ

)
,

and the functions ht are defined as follows: First denote by
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(1,1)
1,+ .

h
(1,L)
b,− (x) and h(1,L)

b,+ (x) the functions (see Fig. 2)

h
(1,L)
b,+ (x) :=


L
2 x

2 |x| ≤ b/4,
L
16b

2 − L
2 (|x| − b/2)2 b/4 < |x| < b/2,

L
16b

2 |x| ≥ b/2,

h
(1,L)
b,− (x) :=


0 |x| ≤ b/2,
L
2 (|x| − b

2 )2 b
2 ≤ |x| ≤

3b
4 ,

L
16b

2 − L
2 (|x| − b)2 3b

4 < |x| < b,
L
16b

2 |x| ≥ b,

then at indices t where the aggregation coefficient |ζt+1| ≤
1
2 , take ht to be ht = h

(1,L)
|ηt|σ,−(x), and otherwise take ht =

h
(1,L)
|ηt|σ,+. Note that for all t ∈ [T − 1],

ht(0) = 0,

ht(x) = ht(−x), ∀x ∈ R,

ht(±ηtσ) =
L

16
η2
t σ

2,

h′t(0) = h′t(±ηtσ) = h′t(±ζt+1ηtσ) = 0,

and that ht has L-Lipschitz gradient. The purpose of the
functions ht is to increase the value of f(xi) without af-
fecting the gradient information available to the algorithm.

From the definition of f we conclude that f also shares the
L-Lipschitz gradient of the functions ht (being a separable
sum of functions with L-Lipschitz gradient).

We now turn to analyze the dynamics of SGD when applied
on the function f defined above. Given the objective f and
the starting point

x1 = 0,

the algorithm at the first iteration sets

x2 = x1−η1(∇f(x1) +ξ1) = (−η1G,±η1σ, 0, . . . , 0)>,

hence, from the properties of h1, we get

f(x2) = −G2η1 + h1(ηtσ),

∇f(x2) = Ge1 + h′1(±η1σ)e2 = Ge1.

Similarly, at the t-th iteration, t ∈ [T − 1], the algorithm
sets

xt+1 = xt − ηt(∇f(xt) + ξt))

= (−
t∑

k=1

ηkG,±η1σ, . . . ,±ηtσ, 0, . . . , 0)>,
(3)

which leads to

f(xt) = −G2
t−1∑
k=1

ηk +

t−1∑
k=1

hk(ηkσ), (4)

∇f(xt) = Ge1. (5)

At the aggregation step, the algorithm sets

xout =

T∑
t=1

ζtxt

= (−
T∑
t=1

ζt

t−1∑
k=1

ηkG,±ζ2η1σ, . . . ,±ζT ηT−1σ)>,

(6)

then by the properties of ht, we get

f(xout) = −G2
T∑
t=1

ζt

t−1∑
k=1

ηk +

t−1∑
k=1

hk(ζk+1ηkσ), (7)

∇f(xout) = Ge1, (8)

where the first equality follows since ht is even, and second
equality follows from h′t(±ζt+1ηtσ) = 0.

To complete our treatment of the fixed-step case, we turn
to show that it is possible to make f bounded from be-
low without affecting the first-order information at the it-
erates and the gradient at xout. For this purpose, we con-
tinue to show that Lemma 1 can be applied when taking
for y1, . . . ,ym all the possible values the random variable
xout (6) can attain, and for z1, . . . , zn all possible values
the random variables {xt}t∈[T ] can attain (3).

Indeed, in view of (5) and (8), the first condition of
Lemma 1 holds with γ = Ge1, the second requirement
follows from (7), and the third requirement follows since

〈∇f(xout),xout〉 = −
T∑
t=1

ζt

t−1∑
k=1

ηkG
2

does not depend on the sign of the noise vectors ξt. As
all the requirements of Lemma 1 hold, we conclude that
there exists a function f̂ that shares the the same first-order
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information as f at {xt}t∈[T ], the same gradient at xout

and in addition

inf
x
f̂(x) ≥ min

t∈[T ]
f(xt)−

3

2L
G2.

We get

f̂(x1)− inf
x
f̂(x)

≤ 0− min
t∈[T ]

f(xt) +
3

2L
G2

= max
t∈[T ]

t−1∑
k=1

(
ηkG

2 − L

16
η2
kσ

2 +
3

2L(t− 1)
G2

)
≤ (T − 1)

G2

2L

(
8G2

σ2
+

3

T − 1

)
= ∆,

where the second inequality follows by maximizing the
concave quadratic form over ηk and the last inequality fol-
lows from the definition of G2 by basic algebra.

As SGD does not have access to the objective beyond the
first-order information at the iterates, we conclude that the
algorithm proceeds on f̂ in exactly the same dynamics as it
does on f , maintaining its behavior as derived above.

The example provided by Thm. 2 comes with a guarantee
that the gradient of the objective at all iterates is almost
surely a constant; as a result, the theorem is applicable for
forming lower bounds for all first-order optimality criteria
used in the literature, including the best expected gradient
norm mint E‖∇f(xt)‖, average expected gradient norm
1
T

∑
t E‖∇f(xt)‖, and expected norm of the average gra-

dient E‖ 1
T

∑
t∇f(xt)‖, both when taking the actual gra-

dient and when taking the noisy version of the gradient.

Note that although the theorem does not directly con-
sider randomized sampling schemes for computing xout,
the performance of any scheme that samples xout out of
{x1, . . . ,xT } is bounded from below by the optimality cri-
terion mint ‖∇f(xt)‖, making the guarantees by the theo-
rem applicable.

Remark 2 (Tightness results). Consider the upper bound
by Ghadimi and Lan (see Thm. 8 in the appendix) and set
the step size by ηt ≡ η :=

√
2∆

(T−1)Lσ2 , where ∆ is an

upper bound on f(x1)− f(x∗). We obtain

min
t∈[T ]

‖∇f(xt)‖2 ≤
2∆ + L(T − 1)η2σ2

(T − 1)η(2− Lη)

≈
T�1

2∆ + L(T − 1)η2σ2

2(T − 1)η
= σ

√
2L∆

T − 1
,

which establishes on one hand, that the lower bound ob-
tained in Thm. 2 on the iterates xt is tight up to the constant

factor 2
√

2, and on the other hand, establishes that the con-
stant step-size scheme defined above is optimal up to the
same constant.

The second main result of this subsection gives an Ω(ε−3)
lower bound on the performance of “plain” SGD methods
(i.e., methods that do not perform an aggregation step) act-
ing on objectives with Lipchitz Hessians.

Theorem 3. Consider a method that given a function f :
Rd → R and an initial point x1 ∈ Rd generates a sequence
of T ∈ N points {xt} satisfying

xt+1 = xt + ηx1,...,xt · (∇f(xt) + ξt), t ∈ [T − 1],

where ξt are some random noise vectors. We fur-
ther assume that the step sizes ηx1,...,xt are determin-
istic functions of the norms and inner products be-
tween x1, . . . ,xt,∇f(x1) + ξ1, . . . ,∇f(xt) + ξt and
may also depend on the exact second-order information
∇2f(x1), . . . ,∇2f(xt). Then for any ρ,∆, σ ∈ R++

there exists a function f : RT 7→ R with ρ-Lipschitz Hes-
sian, x1 ∈ RT , and independent random variables ξt with
E[ξt] = 0 and E[‖ξt‖2] = σ2 such that ∀t ∈ [T ]

f(x1)− f(xt)
a.s.
≤ ∆, ‖∇f(xt)‖2

a.s.
= γ,

where γ ∈ RT is a vector that satisfies ‖γ‖2 =

σ
2

(
ρ∆2

(T−1)2

)1/3

.

Proof. We proceed as in the proof of Thm. 2, taking for G
the positive value that satisfies

G2 =
3σ

32

(
162ρ∆2

(T − 1)2

)1/3

≥ σ

2

(
ρ∆2

(T − 1)2

)1/3

,

and set ht := h
(2,ρ)
|ηt|σ , with h(2,ρ)

b defined by

h
(2,ρ)
b (x) :=
ρ
6 |x|

3 |x| ≤ b/4,
ρ
2

(
b3

96 −
b2

8 |x|+
b
2x

2 − 1
3 |x|

3
)

b
4 ≤ |x| <

3b
4 ,

ρ
32b

3 − ρ
6 (b− |x|)3 3b

4 ≤ |x| < b,
ρ
32b

3 |x| ≥ b.

It is straightforward to verify that ht has ρ-Lipschitz Hes-
sian, and as in the Lipschitz gradient case, we have

ht(0) = 0,

ht(x) = ht(−x), ∀x ∈ R,
and h′t(0) = h′t(ηtσ) = h′t(−ηtσ) = 0.
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Proceeding with the new values, we reach

f(x1)− f(xt) =

t−1∑
k=1

(
G2ηk − h(2)

|ηk|σ(|ηk|σ)
)

=

t−1∑
k=1

(
3σ

32

(
162ρ∆2

(T − 1)2

)1/3

ηk −
ρ

32
|ηk|3σ3

)

=
1

32

t−1∑
k=1

(
3

(
162∆2

(T − 1)2

)1/3

(ρ1/3σηk)− |ρ1/3ηkσ|3
)

≤ (t− 1)
∆

T − 1
≤ ∆,

where the one before last inequality follows from the in-
equality 3ax− |x|3 ≤ 2a

3
2 .

Finally, note that h′′t (ηtσ) = h′′t (−ηtσ) = 0, and as a
result, the second-order information of f at all iterates is
identically zero, thus the proof in the adaptive step-size
case can proceed without change.

Note that the main missing component needed for es-
tablishing a result bounding f(x1) − infx f(x) in the
Lipschitz-Hessian case is a set of necessary and suffi-
cient interpolation conditions for Lipschitz-Hessian func-
tions (as in the case of Lipschitz-gradient, Thm. 6 in the
appendix). The existence of such conditions remains an
open question.

4. Lower Bounds in the Convex Quadratic
Case

In this section, we continue our analysis of the SGD
method, showing that even for convex, quadratic functions
in moderate dimensions and a standard Gaussian noise,
SGD cannot achieve an iteration complexity better than
O(ε−4) in order for any of its iterates to have gradient norm
less than ε. Note that for quadratic functions, the Hessian is
constant, so the result still holds under additional Lipschitz
assumptions on the Hessian and higher-order derivatives.
We emphasize that the lower bounds only hold for the it-
erates themselves, without any aggregation step. Formally,
we have the following:

Theorem 4. Consider the SGD method defined by

xt+1 = xt + ηt · (∇f(xt) + ξt), t ∈ [T − 1],

for some T > 1 and suppose that the step sizes
η1, . . . , ηT−1 are non-negative and satisfy at least one of
the following conditions:

1. (Small step sizes) maxt∈[T−1] ηt ≤ 1/L, and∑T−1
t=1 ηt ≤ c

√
T/L for some constant c (indepen-

dent of the problem parameters).

2. (Fixed step sizes) ηt is the same for all t.

3. (Polynomial decay schedule) ηt = a
b+tθ

for some non-
negative constants a, b, θ (independent of the problem
parameters).

Then for any δ ∈ (0, 1), there exists a quadratic function f
on Rd (for any d ≥ d0 with d0 = O(log(T/δ)σ2T/(L2∆))
with L-Lipschitz gradients, and x1 for which f(x1) −
infx f(x) ≤ ∆, such that if ξt has a Gaussian distribu-
tion N (0, σ

2

d Id), with probability at least 1− δ

min
t∈[T−1]

‖∇f(xt)‖2 ≥ c0
min{L∆, σ2}√

T
,

where c0 is a positive constant depending only on the con-
stants in the conditions stated above.

We note that all standard analyses for (non-adaptive) SGD
methods rely on one of these step-size strategies. More-
over, the proof technique can plausibly be extended to other
step sizes. Thus, the theorem provides a strong indication
that SGD (without an aggregation step) cannot achieve a
better iteration complexity, at least when the optimality cri-
terion is mint ‖∇f(xt)‖, even for convex quadratic func-
tions.

The proof is based on the following two more technical
propositions, which provide lower bounds depending on
the step sizes and the problem parameters:

Proposition 1. For any L > 0,∆ > 0, T > 1 and
δ ∈ (0, 1), there exists a convex quadratic function f on
Rd (for any d ≥ d0 where d0 = O(log(T/δ)σ2T/(L2∆)))
with L-Lipschitz gradient, and an x1 such that f(x1) −
infx f(x) ≤ ∆, such that if we initialize SGD at
x1 with Gaussian noise N (0, σ

2

d Id) and use step sizes
η1, . . . , ηT−1 in [0, 1/L], then with probability at least
1− δ,

min
t∈[T ]

‖∇f(xt)‖2 ≥
∆

25 max
{

1/L,
∑T−1
t=1 ηt

} .
Proposition 2. For any L > 0,∆ > 0, T > 1 and δ ∈
(0, 1), there exists a convex quadratic function f on Rd (for
any d ≥ d0 where d0 = O(log(T/δ))) with L-Lipschitz
gradient, and a vector x1 such that f(x1)−infx f(x) ≤ ∆,
such that if we initialize SGD at x1 with Gaussian noise
N (0, σ

2

d Id), then the following holds with probability at
least 1− δ:

• If for all t, ηt = η with η ∈ [0, 1/L), then
mint∈[T ] ‖∇f(xt)‖2 ≥ L

2 min{∆, ησ2

2−Lη}.

• If for all t, ηt ≥ c/L for some constant c > 0 then
mint∈[T ] ‖∇f(xt)‖2 ≥ σ2c2

2 .
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• If ηt = a
L(b+tθ)

for some positive constants a > 0, b ≥
0 and θ ∈ (0, 1), then

min
t∈[T ]

‖∇f(xt)‖2 ≥ ca,b,θσ2 min{1, LηT },

where ca,b,θ is a constant dependent only on a, b, θ.

The proofs of these propositions appear in Appendix A.
Together, Propositions 1 and 2 imply the theorem:

Proof of Thm. 4. The theorem, under the first condition, is
an immediate corollary of Proposition 1. Indeed,

min
t∈[T ]

‖∇f(xt)‖2 ≥
∆

25 max
{

1/L,
∑T−1
t=1 ηt

}
≥ L∆

25 max
{

1, c
√
T
} ≥ min{L∆, σ2}

25 max{1, c}
√
T
.

As to the second condition, let us consider three cases.
First, if ηt = η is at most T−1/2/L, then

∑T−1
t=1 ηt <√

T/L and the result again follows from Proposition 1 as
in the previous case. Next, suppose T−1/2/L ≤ η < 1/L,
then the result follows from Proposition 2:

min
t∈[T ]

‖∇f(xt)‖2 ≥
L

2
min{∆, ησ2

2− Lη
}

≥ 1

2
min{L∆,

σ2T−1/2

2− T−1/2
} ≥ 1

2

min{L∆, σ2}
2
√
T − 1

.

The last case for this condition is 1/L ≤ η, which does not
converge due to the second case in Proposition 2.

As to the third condition (namely ηt = a
b+tθ

), we can as-
sume without loss of generality that a > 0 (otherwise we
are back to the first condition in the theorem, and nothing
is left to prove) and that θ ∈ (0, 1) (since if θ = 0, we are
back to the second condition in the theorem and if θ ≥ 1 we
are back to the first condition in the theorem). The result
then follows from the third case of Proposition 2.

5. Conclusion
In this paper, we studied the necessity of various assump-
tions that appear in classical and recent analyses of SGD.
Firstly, we focused on the criteria used to measure the per-
formance of the method, establishing that in order to ob-
tain meaningful bounds in dimension-free nonconvex set-
tings one must either utilize a criterion that incorporates
multiple iterates or employ a (deterministic or randomized)
aggregation scheme on the iterates. This is in contrast to
similar results in the convex setting, where bounds on the
last iterates are well-known. We then turned our attention
to the assumptions required in order to break the O(ε−4)

iteration complexity barrier. We demonstrated that to im-
prove upon this bound, additional assumptions are required
either on the objective (beyond the standard Lipschitz-
continuity of the gradient assumption) or on the noise (be-
yond independence and bounded variance), even when a
complex aggregation of the iterates is allowed. Similarly,
when the objective has Lipschitz-continuous Hessian, we
showed that an O(ε−3) bound cannot be improved with-
out further assumptions. Finally, in the apparently “easy”
convex quadratic case, we showed that when using “rea-
sonable” step sizes, iterate aggregation schemes (or other
modifications to SGD) are necessary for improving upon
the O(ε−4) bound.
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