Optimal Non-parametric Learning in Repeated Contextual Auctions with Strategic Buyer: SUPPLEMENTARY MATERIALS*

Alexey Drutsa ${ }^{\dagger}$

12 July 2020

Contents

A Missed proofs 1
A. 1 Proof of Proposition 1 1
A. 2 Proof of Proposition 2 2
A. 3 Proof of Lemma 2 2
A. 4 Proof of Theorem 1 3
B The pseudo-code of the PELS algorithm 4
C Auxiliary statements 5
C. 1 Statement on linear programming 5
C. 2 Remarks 5
D The game's workflow and structure of the knowledge 6
E Examples for the notion of a start of r-length penalization 6

A Missed proofs

A. 1 Proof of Proposition 1

Here we present some details for the proof of Proposition 1. Some ideas used here are similar to the ones used in [7, 2, 4, 5].
I. Let

$$
\begin{equation*}
S_{X}(\sigma)=\mathbb{E}\left[\sum_{s=t}^{T} \gamma^{s-1} a_{s}\left(v\left(x_{s}\right)-p_{s}\right) \mid x_{s} \in X, \sigma\right] \tag{A.1}
\end{equation*}
$$

be the future expected surplus of the buyer over those rounds $s \geq t$ whose feature vector x_{s} belongs to a set $X \subseteq \mathbb{X}$ when he follows a strategy o ${ }^{1}$. It is easy to see that the full future surplus will be

[^0]$S_{\mathbb{X}}(\sigma)$ and, for any $X \subseteq \mathbb{X}$ and any strategy σ, it can be decomposed as follows:
\[

$$
\begin{equation*}
S_{\mathbb{X}}(\sigma)=S_{X}(\sigma)+S_{\mathbb{X} \backslash X}(\sigma) \tag{A.2}
\end{equation*}
$$

\]

The considered set \tilde{X} is isolated (from $\mathbb{X} \backslash \tilde{X}$) after the current round t (as in Definition 3). Let two strategies σ_{1} and σ_{2} are s.t. buyer decisions coincide (between the strategies) in all rounds where x_{s} belongs to a set $\mathbb{X} \backslash X$ (outside of \tilde{X}), i.e., formally, in all the states $\mathfrak{L}(\tilde{\mathfrak{s}}, \mathbb{X} \backslash X) \cup \mathfrak{R}(\tilde{\mathfrak{s}}, \mathbb{X} \backslash X)$. Then $S_{\mathbb{X} \backslash \tilde{X}}\left(\sigma_{1}\right)=S_{\mathbb{X} \backslash \tilde{X}}\left(\sigma_{2}\right)$.

Therefore, when we compare strategies that differ in decisions within \tilde{X} only, it is enough to investigate $S_{\tilde{X}}(\sigma)$ with strategies σ that are equal outside of \tilde{X}.
II. In our case (see the proof of Proposition 1 in the main text), we have two strategies: the optimal one $\sigma^{\text {Opt }}$ and the strategy σ^{\prime} that coincides with $\sigma^{\text {Opt }}$ in all states outside \tilde{X}. So, applying the arguments above, we have (due to optimality):

$$
\begin{align*}
& S_{\mathbb{X}}\left(\sigma^{\mathrm{Opt}}\right) \geq S_{\mathbb{X}}\left(\sigma^{\prime}\right) \Rightarrow S_{\tilde{X}}\left(\sigma^{\mathrm{Opt}}\right)+S_{\mathbb{X} \backslash \tilde{X}}\left(\sigma^{\mathrm{Opt}}\right) \geq S_{\tilde{X}}\left(\sigma^{\prime}\right)+S_{\mathbb{X} \backslash \tilde{X}}\left(\sigma^{\prime}\right) \tag{A.3}\\
\Rightarrow & S_{\tilde{X}}\left(\sigma^{\mathrm{Opt}}\right)+S_{\mathbb{X} \backslash \tilde{X}}\left(\sigma^{\mathrm{Opt}}\right) \geq S_{\tilde{X}}\left(\sigma^{\prime}\right)+S_{\mathbb{X} \backslash \tilde{X}}\left(\sigma^{\mathrm{Opt}}\right) \Rightarrow S_{\tilde{X}}\left(\sigma^{\mathrm{Opt}}\right) \geq S_{\tilde{X}}\left(\sigma^{\prime}\right) . \tag{A.4}
\end{align*}
$$

III. Note that, in the proof in the main text, we implicitly use that the strategy σ^{Opt} is pure (at least w.r.t. the decision in the round t). This is done for the sake of exposition, and the result holds for a mixed strategy as well. Indeed, let σ_{0} be an optimal strategy among all the strategies that have decision $a_{t}=0$ in the round t. Similarly, let σ_{1} be an optimal strategy among all the strategies that have decision $a_{t}=1$ in the round t. Then a mixed $\sigma^{\text {Opt }}$ is a linear combination of these strategies: $\sigma^{\mathrm{Opt}}=\alpha \sigma_{1}+(1-\alpha) \sigma_{0}, \alpha \in(0,1)$. Instead of σ^{\prime} consider $\sigma^{\prime \prime}=\alpha \sigma_{1}+(1-\alpha) \sigma_{0}^{\prime}$, where σ_{0}^{\prime} be the strategy, where the buyer accepts the good in the round t and rejects each future good from $\tilde{X}\left(\sigma_{0}^{\prime}\right.$ coincides with σ_{0} for goods in $\left.\mathbb{X} \backslash \tilde{X}\right)$.

Hence, due to linearity of surplus (since it is an expectation), we have:

$$
\begin{equation*}
S_{\mathbb{X}}\left(\sigma^{\mathrm{Opt}}\right) \geq S_{\mathbb{X}}\left(\sigma^{\prime \prime}\right) \Rightarrow \alpha S_{\mathbb{X}}\left(\sigma_{1}\right)+(1-\alpha) S_{\mathbb{X}}\left(\sigma_{0}\right) \geq \alpha S_{\mathbb{X}}\left(\sigma_{1}\right)+(1-\alpha) S_{\mathbb{X}}\left(\sigma_{0}^{\prime}\right) \Rightarrow S_{\mathbb{X}}\left(\sigma_{0}\right) \geq S_{\mathbb{X}}\left(\sigma_{0}^{\prime}\right) \tag{A.5}
\end{equation*}
$$

In further steps (e.g., in Eq. A.3), use σ_{0} instead of $\sigma^{\text {Opt }}$ and σ_{0}^{\prime} instead of σ^{\prime}.

A. 2 Proof of Proposition 2

Proof of Proposition 2. Similarly to the proof of Prop. 1 (see also details in App. A.1), we analyze buyer surplus $S_{\tilde{X}}(\sigma)$ calculated only over rounds from \tilde{X} (due to isolation of \tilde{X} from $\mathbb{X} \backslash \tilde{X}$). Let $\sigma^{\text {Opt }}$ be the optimal strategy of the buyer in the round t, what implies that $S_{\tilde{X}}\left(\sigma^{\mathrm{Opt}}\right) \geq 0$, because the buyer can reject all goods in \tilde{X} and get at least 0 . The left-hand side of the inequality can be upper bounded as follows

$$
\begin{align*}
S_{\tilde{X}}\left(\sigma^{\mathrm{Opt}}\right) & =\gamma^{t-1}\left(v\left(x_{t}\right)-p_{t}\right)+\mathbb{E}\left[\sum_{s=t}^{T} \gamma^{s-1} a_{s}\left(v\left(x_{s}\right)-p_{s}\right) \mid x_{s} \in \tilde{X}, \sigma^{\mathrm{Opt}}\right] \tag{A.6}\\
& \leq \gamma^{t-1}\left(v\left(x_{t}\right)-p(\mathfrak{s})\right)+\sum_{s=t+1}^{T} \gamma^{s-1} \sup _{x \in \tilde{X}}\left[v(x)-u_{\mathfrak{s}, 1}(x)\right],
\end{align*}
$$

where we upper bounded instant surpluses in all future rounds as maximal possible ones by $\sup _{x \in \tilde{X}}\left(v(x)-u_{\mathfrak{s}, 1}(x)\right)$. The latter expression can be trivially bounded by $v\left(x_{t}\right)+L \operatorname{diam}(\tilde{X})-$ $\inf _{x \in \tilde{X}} u_{\mathfrak{s}, 1}(x)$ (see Def. 1 for $\left.u_{\mathfrak{s}, 1}(\cdot)\right)$. Combining all inequalities and dividing by γ^{t-1}, one gets:

$$
\begin{equation*}
v\left(x_{t}\right)-p(\mathfrak{s})+\frac{\gamma}{1-\gamma}\left(v\left(x_{t}\right)+L \operatorname{diam}(\tilde{X})-\inf _{x \in \tilde{X}} u_{\mathfrak{s}, 1}(x)\right) \geq 0 \tag{A.7}
\end{equation*}
$$

what implies the proposition after using the condition on $p(\mathfrak{s})-\inf _{x \in \tilde{X}} u_{\mathfrak{s}, 1}(x)$ and term rearrangement.

A. 3 Proof of Lemma 2

Proof of Lemma 2. First, we prove (a) under the assumption: let in an exploration round t, the current u^{X} and w^{X} are s.t. $(2 \eta+3) L \operatorname{diam}(X) \leq w^{X}-u^{X}$. This implies $w^{X}:\left(w^{X}-u^{X}\right)-2(\eta+$ 1) $L \operatorname{diam}(X) \geq L \operatorname{diam}(X)$. Since the gap $w^{X}-u^{X}$ reduces exactly by $L \operatorname{diam}(X)$ after an acceptance and exactly by $w^{X}:\left(w^{X}-u^{X}\right)-2(\eta+1) L \operatorname{diam}(X)$ after a rejection, we get the statement (a) for this round.

The proof of (b) is done by induction on the depth m^{X} of a current box X (s.t. $x_{t} \in X \in \mathcal{X}$). When $m^{X}=0$: at the start of the game, the bounds hold by the construction of the initial partition \mathcal{X} of $\mathbb{X}: 1 / \operatorname{diam}(X)=\lceil(4 \eta+6) L\rceil \in[(2 \eta+3) L,\lceil(4 \eta+6) L\rceil)$ and $w^{X}-u^{X}=1$. Hence, in all exploration rounds within this box with $m^{X}=0$, we will have $(2 \eta+3) L \operatorname{diam}(X) \leq w^{X}-u^{X}$, because violation of this condition will result in a bisection of X. Assume (a) and (b) hold for boxes of depth $m-1 \in \mathbb{Z}_{+}$. Let t be the first exploration round in a box X of depth $m>0$. This box is a result of the bisection of a box X_{1} of depth $m-1$ in a exploration round t_{1}, what implies that $w^{X}-u^{X}<(2 \eta+3) L \operatorname{diam}\left(X_{1}\right)=2(2 \eta+3) L \operatorname{diam}(X)$. The values of the function $u(\cdot)$ and $w(\cdot)$ in the round t_{1} are denoted by u_{1} and w_{1}. So, by induction for (a), we know that $\left(w_{1}-u_{1}\right)-\left(w^{X}-u^{X}\right) \leq\left(w_{1}-u_{1}\right)-2(\eta+1) L \operatorname{diam}\left(X_{1}\right)$. Hence,

$$
w^{X}-u^{X} \geq 2(\eta+1) L \operatorname{diam}\left(X_{1}\right)=4(\eta+1) L \operatorname{diam}(X) \geq(2 \eta+3) L \operatorname{diam}(X) .
$$

Again, in all exploration rounds within this box with $m^{X}=m$, we will have $(2 \eta+3) L \operatorname{diam}(X) \leq$ $w^{X}-u^{X}$, because violation of this condition will result in a bisection of X.

A. 4 Proof of Theorem 1

We add the following remark to the proof of Theorem 1 (in the main text).
In the proof of Theorem 1, we used the following inequality

$$
\begin{equation*}
T \geq \sum_{m=1}^{M-1} g(m-1) N_{m} \tag{A.8}
\end{equation*}
$$

to upper bound 2^{M} via a function of T. However, this inequality from Eq. A.8 is useful only for $M>1$. Indeed, note that, when $M=1$, this inequality becomes $T \geq 0$ and cannot be used to upper bound M.

So, the case $M=1$ should be considered separately. In fact, this case is trivial. Namely, we can show that, if $M=1$, then the upper bound on the strategic regret holds even for $T=1$. From the proof (in the main text) we know that $R \leq \sum_{m=0}^{M} C(L, r, \eta) 2^{m d} N_{0}$; hence, for $M=1$, we have:

$$
\begin{align*}
R & \leq \sum_{m=0}^{1} C(L, r, \eta) 2^{m d} N_{0}=C(L, r, \eta) N_{0}\left(1+2^{d}\right) \leq C(L, r, \eta) N_{0} 2^{d+1} \leq \tag{A.9}\\
& \leq C(L, r, \eta) N_{0} 2^{d+1}\left(\frac{1}{N_{0}}+1\right)^{d /(d+1)}=2^{d+1} C(L, r, \eta) N_{0}^{1 /(d+1)}\left(1+N_{0}\right)^{d /(d+1)}
\end{align*}
$$

where the right-hand side of the latter identity is exactly Eq.(6) with $T=1$.

B The pseudo-code of the PELS algorithm

```
Algorithm B. 1 Pseudo-code of Penalized Exploiting Lipschitz Search (PELS).
    Input: \(L>0, \eta \in \mathbb{R}_{+}, r \in \mathbb{N}\), and \(g: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}\)
    Initialize: Split []\(:=\operatorname{partition}\) of \([0,1]^{d}\) into \(\lceil(6+4 \eta) L\rceil^{d}\) cubes with \(\operatorname{diam}(\cdot)=1 /\lceil(4 \eta+6) L\rceil\); Boxes []\(:=\varnothing\);
    for all Cube \(\in\) Split[] do
        Box \(:=\operatorname{NewStructure~}(X:=\) Cube, \(u:=0, w:=1, P:=0, E:=0, m:=0, l:=1 /\lceil(4 \eta+6) L\rceil)\);
        Boxes[]:= Boxes[] Box; // Add each cube with its associated data
    end for
    while the buyer plays do
        The seller receives a feature vector \(x \in[0,1]^{d}\) from the nature, the buyer observes this vector \(x\) as well;
        \(j:=\) find \(j\) such that \(x \in \operatorname{Boxes}[j] . X\);
        if Boxes \([j] . P>0\) then
            Offer the price \(p:=1\) to the buyer; // Penalization
            \(\operatorname{Boxes}[j] . P:=\operatorname{Boxes}[j] . P-1\);
            if this price is accepted then offer \(p:=1\) for all remaining rounds;
        else
            if Boxes \([j] . E>0\) then
                Offer the price \(p:=\operatorname{Boxes}[j] . u\) to the buyer; // Exploitation
                \(\operatorname{Boxes}[j] . E:=\operatorname{Boxes}[j] . E-1\);
                if Boxes \([j] . E==0\) then
                Split[]:= bisect each side of the cube Boxes \([j] . X\) to get \(2^{d}\) cubes;
                for all Cube \(\in \operatorname{Split}[]\) do
                    Box := CopyStructure (Boxes[j]); // Copy the associated data of the parent cube
                    Box. \(X\) := Cube; // Replace some associated for the new cube
                    Box. \(m:=\) Box. \(m+1\);
                    Box.l:=Box. \(l / 2\);
                    Boxes[]:= Boxes[] \(\cup\) Box; // Add each cube with its associated data
                    end for
                    Remove Boxes[j] from Boxes[]; // Remove \(j\)-th cube with its associated data
                end if
            else
                Offer the price \(p:=\operatorname{Boxes}[j] . u+\eta L \operatorname{Boxes}[j] . l\) to the buyer; // Exploration
                if the buyer accepts the price then
                    Boxes \([j] . u:=p-(\eta-1) L \operatorname{Boxes}[j] . l ;\)
                else
                    \(\operatorname{Boxes}[j] \cdot w:=p+(\eta+2) L \operatorname{Boxes}[j] . l ;\)
                    Boxes \([j] . P:=r\)
            end if
            if Boxes \([j] \cdot w-\operatorname{Boxes}[j] \cdot u<(2 \eta+3) L \operatorname{Boxes}[j] . l\) then
                \(\operatorname{Boxes}[j] . E:=g(\operatorname{Boxes}[j] . m)\);
                end if
            end if
        end if
    end while
```


C Auxiliary statements

C. 1 Statement on linear programming

Statement C.1. Consider the linear program:

$$
\begin{align*}
\operatorname{maximize} & R\left(z_{1}, . ., z_{\bar{M}}\right)=\sum_{m=1}^{\bar{M}} z_{m} \quad \text { s.t. } \\
& \bar{M} \tag{C.1}\\
& \sum_{m=1}^{\bar{M}} \beta_{m} z_{m} \leq C \quad \text { and } \\
& 0 \leq z_{m} \leq c_{m} \forall m
\end{align*}
$$

where $c_{m}>0 \forall m, 0<\beta_{1} \leq \ldots \leq \beta_{\bar{M}}$, and $C \leq \sum_{m=1}^{\bar{M}} \beta_{m} c_{m}$. Then the maximum of R is achieved at

$$
\begin{equation*}
\left(z_{1}, \ldots, z_{\bar{M}}\right)=\left(c_{1}, \ldots, c_{M-1}, \beta_{M}^{-1}\left(C-\sum_{m=1}^{M-1} \beta_{m} c_{m}\right), 0, \ldots, 0\right) \tag{C.2}
\end{equation*}
$$

where M is such that the following inequality hold: $\sum_{m=1}^{M-1} \beta_{m} c_{m}<C \leq \sum_{m=1}^{M} \beta_{m} c_{m}$.
Proof. The proof trivially follows from the theory of linear programs. In particular, note that the structure of the solution in Eq. (C.2) is as follows:

- all z_{i} have the maximal available value c_{i} for all consecutive $i=1, \ldots, M-1$;
- the next z_{M} has value s.t. it is maximal possible to fit the first condition in Eq. (C.1);
- all remaining z_{i} are 0 the maximal available value c_{i} for all consecutive $i=M+1, \ldots, \bar{M}$.

This is because of the following: if there is two consecutive z_{i} and z_{i+1} s.t. $z_{i}<c_{i}$ and $z_{i+1}>0$, then we can without change of R consider new vector $\left\{z_{j}^{\text {new }}\right\}_{j}: z_{i}^{\text {new }}:=z_{i}+\epsilon$ and $z_{i+1}^{\text {new }}:=z_{i+1}-\epsilon$, where $\epsilon>0$ is s.t. $z_{i}+\epsilon \leq c_{i}$ and $z_{i+1}-\epsilon \geq 0$. Then $R^{\text {new }}=R$, while the conditions are satisfied due to the properties ϵ and the monotonicity of $\left\{\beta_{j}\right\}_{j}$.

C. 2 Remarks

In the definition of PELS, we used $\{[0, l],(l, 2 l], \ldots,(1-l, 1]\}^{d}$ to denote all boxes that are obtained from the split of each side of the cube $[0,1]^{d}$ into $\lceil(4 \eta+6) L\rceil$ equal parts. This is done for sake of short notations. Formally, the set of all $\lceil(4 \eta+6) L\rceil^{d}$ boxes should be written as follows:

$$
\mathcal{X}=\left\{I_{1} \times I_{2} \times \ldots \times I_{d} \mid\left(I_{1}, I_{2}, \ldots, I_{d}\right) \in\{[0, l],(l, 2 l], \ldots,(1-l, 1]\}^{d}\right\}
$$

D The game's workflow and structure of the knowledge

Figure D.1: The game's workflow (an algorithm and the buyer exploit public knowledge available in the previous rounds).

E Examples for the notion of a start of r-length penalization

Note that the definition of a start of r-length penalization does not mean that all the next $r-1$ future rounds are penalizations: instead, penalization rounds will be those whose feature vectors belong to the penalization domain \tilde{X} (i.e., a round s is not a penalization if $x_{s} \notin \tilde{X}$).

Also note that a start of r-length penalization in a round t does not mean that rounds after $t+r$ will not be penalizations (connected to this start): instead, the counter of penalization rounds is increased only when context of a future round belongs to the penalization domain \tilde{X}. For instance, if the contexts $x_{t+1}, \ldots, x_{t+r-1} \notin \tilde{X}$ in future rounds $t+1, \ldots, t+r-1$, but we have $x_{t+r} \in \tilde{X}$ in the round $t+r$, then this round $t+r$ will be the 1-st penalization round associated with the considered start (i.e., $r-2$ penalizations will remain after the round $t+r$). See also the work flow of penalization in the pseudo-code of PELS in Alg. B.1.

Let consider an example:

$$
d=1, \quad \tilde{X}=[0.5,1], \quad r=3
$$

Let $x_{1}=0.75$ be a start of 3-length penalization with domain $\tilde{X}=[0.5,1]$ and the buyer rejects the price in $t=1$.

Then, the penalization rounds (for this penalization start) will be those whose sequence of context $x_{1: s}$ is , e.g.,

- $(0.75,0.6)$, because $0.6 \in \tilde{X}$;
- $(0.75,0.2,0.9)$, because $0.9 \in \tilde{X}$;
- $(0.75,0.2,0.4,0.7)$, because $0.7 \in \tilde{X}$ and contexts of rounds $2,3,4$ do not belong to \tilde{X};
- $(0.75,0.2,0.4,0.7,0.8)$, because $0.8 \in \tilde{X}$ and only one context $\left(x_{4}=0.7\right)$ is in \tilde{X} among contexts of rounds $2,3,4$;
but the following sequences of context $x_{1: s}$ terminate with NON-penalization rounds (for the considered penalization start):
- $(0.75,0.2)$, because $0.2 \notin \tilde{X}$;
- $(0.75,0.2,0.4)$, because $0.4 \notin \tilde{X}$;
- $(0.75,0.2,0.9,0.3)$, because $0.3 \notin \tilde{X}$;
- ($0.75,0.2,0.4,0.7,0.8,0.9$), because, in previous rounds $(2,3,4,5)$, already 2 contexts (0.7 and $0.8)$ belonged to \tilde{X} and $r-1=2$.

References

[1] K. Amin, A. Rostamizadeh, and U. Syed. Learning prices for repeated auctions with strategic buyers. In NIPS'2013, pages 1169-1177, 2013.
[2] A. Drutsa. Horizon-independent optimal pricing in repeated auctions with truthful and strategic buyers. In $W W W^{\prime}$ '2017, pages 33-42, 2017.
[3] A. Drutsa. On consistency of optimal pricing algorithms in repeated posted-price auctions with strategic buyer. CoRR, abs/1707.05101, 2017.
[4] A. Drutsa. Weakly consistent optimal pricing algorithms in repeated posted-price auctions with strategic buyer. In ICML'2018, pages 1318-1327, 2018.
[5] A. Drutsa. Reserve pricing in repeated second-price auctions with strategic bidders. In ICML'2020, 2020.
[6] J. Mao, R. Leme, and J. Schneider. Contextual pricing for lipschitz buyers. In Advances in Neural Information Processing Systems, pages 5648-5656, 2018.
[7] M. Mohri and A. Munoz. Optimal regret minimization in posted-price auctions with strategic buyers. In NIPS'2014, pages 1871-1879, 2014.
[8] A. Vanunts and A. Drutsa. Optimal pricing in repeated posted-price auctions with different patience of the seller and the buyer. In Advances in Neural Information Processing Systems, pages 939-951, 2019.
[9] A. Zhiyanov and A. Drutsa. Bisection-based pricing for repeated contextual auctions against strategic buyer. In ICML'2020, 2020.

[^0]: ${ }^{*}$ This is the supplementary materials for the work published in Proceedings of the 37-th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020
 ${ }^{\dagger}$ Yandex, Moscow, Russia (www.yandex.com); Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; e-mail: adrutsa@yandex.ru.
 ${ }^{1}$ A buyer (pure) strategy is a map $\sigma: \sqcup_{t=1}^{T} \mathfrak{S}_{t} \rightarrow\{0,1\}$ that maps any state $\mathfrak{s} \in \mathfrak{S}_{t}$ in a round t to a decision $\sigma(\mathfrak{s}) \in\{0,1\}$. A mixed strategy is a probability distribution over pure strategies.

