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A Missed proofs

A.1 Missed proofs from Section 3

A.1.1 Proof of Lemma 1

Proof. Let Im = {tmi }I
m

i=1 be the set of rounds in which the bidder m is not eliminated by a barrage
reserve pricing. Therefore, we have decomposition of the sequence of all rounds into the union of
these sets: {1, . . . , T} = ∪m∈MIm. Note that we also have a splitting in periods {1, . . . , T} = ∪Ii=1Ti
and the intersection Im ∩ Ti = {tmi } for m ∈M, i = 1, . . . , Im.

So, formally, we have

SReg(T,A,v,γ,β) = Reg
(
T,A,v, b̊1:T (T,A,v,γ,β)

)
=

T∑
t=1

(v−atpt)=
∑
m∈M

Im∑
i=1

(v−atmi ptmi ), (A.1)
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where the two first identities follow from definitions, while the latter one is just a change of the
order of summation (since {1, . . . , T} = ∪m∈MIm = ∪m∈M{tmi }I

m

i=1). The terms in the sum could
be decomposed in the following way: v− atmi ptmi = v− vm + vm− atmi ptmi . Also note, since, in each

round tmi , the bidders M−m are eliminated by a barrage reserve price, then the allocation indicator
atmi and the transferred payment ptmi depend only on the behavior of the bidder m in this round,
i.e., atmi = amtmi

, ptmi = pmtmi
, and, if amtmi

= 1, ptmi = pmtmi
= pmtmi

. So, we can continue Eq. (A.1):

SReg(T,A,v,γ,β) =
∑
m∈M

Im∑
i=1

(v − vm + vm − atmi ptmi )

=
M∑
m=1

Im∑
i=1

(v − vm) +
M∑
m=1

Im∑
i=1

(vm − amtmi p
m
tmi

)

=
M∑
m=1

Im(v − vm) +
M∑
m=1

Regm(Im,Am, vm, b̊m1:T ),

= SRegdev(T,A,v,γ,β) + SRegind(T,A,v,γ,β).

(A.2)

A.1.2 Proof of Proposition 1

Proof. The idea of the proof is close to the ones of propositions in [6, 2, 3, 4, 5, 8]. Let t be the
round in which the bidder m reaches the node n and rejects his reserve price pmt , which is equal
to pmt = p(n) by the construction of the algorithm divM (〈A1〉, sr). Note that, in the round t, all
other bidders M−m are eliminated by a barrage price and the reserve prices set by the div-algorithm
divM (〈A1〉, sr) depend only on a1:T (becauseA1 ∈ ARPPA and sr : M×T(A1)

M → bool). Therefore,
it is easy to see that, for any strategy σ, the expected future surplus Surt:T (A, γm, vm, hmt , βm, σ)
of the bidder m as a function of the bid bmt = σ(hmt ) in the round t depends, in fact, only on
the binary decision amt = I{bmt ≥pmt }: more formally, the expected surplus is constant when the bid
bmt is changed within {bmt ≥ pmt } and is constant when the bid bmt is changed within {bmt < pmt }.
Moreover, since the buyers are divided (in the whole game) and A1 ∈ ARPPA, if two strategies
σ′ and σ′′ ∈ ST do not differ in their binary output, i.e., I{σ′(h)≥pmt } = I{σ′′(h)≥pmt } ∀h ∈ H1:T ,
then they have the same future discounted surplus. Hence, any strategy can be treated as a map
to binary decisions {0, 1} (instead of R+). Let σ̂a denote an optimal strategy among all possible
strategies in which the binary decision amt in the round t is a ∈ {0, 1}, i.e., I{σ̂a(hmt )≥pmt } = a and
σ̂a maximizes

E[
T∑
s=t

γs−1m ams (vm − pms ) | hmt , amt = a, σ, βm].

Given a strategy σ ∈ ST , let us denote the future expected surplus when following this strategy
by Smt (σ) := Surt:T (A, γm, vm, hmt , βm, σ). When the optimal strategy σ̊m (used by the buyer) is
pure, we directly have Smt (σ̂1) ≤ Smt (̊σm) = Smt (σ̂0), since the price pmt is rejected (amt = 0) by
our strategic buyer. In the general case, when the buyer’s optimal strategy σ̊m is mixed, let α0 be
the probability of a reject (amt = 0) and, thus, 1−α0 be the probability of an acceptance (amt = 1)
in this strategy. Since the strategy is optimal, its surplus Smt (̊σm) = α0S

m
t (σ̂0) + (1 − α0)S

m
t (σ̂1)

must be no lower than the surplus Smt (σ̂1) of the strategy σ̂1:

α0S
m
t (σ̂0) + (1− α0)S

m
t (σ̂1) ≥ Smt (σ̂1).
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Since the price pmt is rejected, the probability α0 > 0 and, thus, α0S
m
t (σ̂0) ≥ α0S

m
t (σ̂1). In any

way, we obtain:
Smt (σ̂1) ≤ Smt (σ̂0). (A.3)

Let us bound each side of this inequality:

Smt (σ̂1) = E[
T∑
s=t

γs−1m ams (vm − pms ) | hmt , amt = 1, σ̂1, β
m] =

= γt−1m (vm − p(n)) + E[
T∑

s=t+1

γs−1m ams (vm − pms ) | hmt , amt = 1, σ̂1, β
m] ≥

≥ γt−1m (vm − p(n)),

(A.4)

where, in the second identity, we used the fact that if the bidder accepts the price p(n), then he
necessarily gets the good since all other bidders M−m are eliminated by a barrage price in this
round t (it is the key point of the proof!). In the last inequality, we used that the expected
surplus in rounds s ≥ t + 1 is at least non-negative, because the subalgorithm A1 ∈ CR is right
consistent and accepting of the offered price p(m) in some reached node m ∈ T(A1) s.t. p(m) > vm

will thus result in reserve prices for him higher than his valuation vm in all subsequent rounds as
well (so, the buyer has no incentive to get a local negative surplus in a round, because it will result
in non-positive surplus in all subsequent rounds).

Smt (σ̂0) = E[
T∑
s=t

γs−1m ams (vm − pms ) | hmt , amt = 0, σ̂0, β
m] =

= E[

T∑
s=tmi+r

γs−1m ams (vm − pms ) | hmt , amt = 0, σ̂0, β
m] ≤

≤
T∑

s=t+r

γs−1m (vm − p(n) + δln) <
γt+r−1m

1− γm
(vm − p(n) + δln),

(A.5)

where i is the current period of the div-algorithm divM (〈A1〉, sr), i.e., the round t = tmi ∈ Ti is such
that the buyer m is the non-eliminated participant in this round (see Sec.3). In the second identity,
we used the fact that if the bidder rejects the price pmt , then the future rounds {tmi+j}

r−1
j=1 (in which

the bidder will be non-eliminated) will be reinforced penalization rounds (and the strategic bidder
will reject prices in all of them as well). In the first inequality, we just upper bounded surplus
by assuming that only this bidder left among the suspected bidders Sj , j > i, and he receives the
lowest possible reserve price from the left subtree L(n) of the node n. The latter inequality is just
a simple arithmetic upper bound for the sum of discounts

∑T
s=t+r γ

s−1
m .

We unite these bounds on Smt (σ̂0) and Smt (σ̂1) (i.e., Eq. (A.3), (A.4), and (A.5)), divide by
γt−1m , and get

(vm − p(n))

(
1− γrm

1− γm

)
<

γrm
1− γm

δln, (A.6)

that implies the inequality claimed by the proposition, since r > logγm(1− γm).

3



A.2 Missed proofs from Section 4

A.2.1 Proof of Lemma 2

Proof. The idea of the proof is close to the ones of lemmas in [2, 3, 4]. The game has been played
and b̊1:T = b̊1:T (T, divM (〈A1〉, sr),v,γ,β) are the resulted optimal bids of the strategic buyers
M. So, let Lm := lmIm be the number of phases conducted by the algorithm during the rounds
Im = {tmi }I

m

i=1 against the strategic buyer m. Then we decompose the total individual regret over
these rounds into the sum of the phases’ regrets: Regm(Im, 〈A1〉, vm, b̊m1:T ) =

∑Lm

l=0R
m
l . For the

regret Rl at each phase except the last one, the following identity holds:

Rml =

Km
l∑

k=1

(vm − pml,k) + rvm + g(l)(vm − pml,Km
l

), l = 0, . . . , Lm − 1, (A.7)

where the first, second, and third terms correspond to the exploration rounds with acceptance,
the reject-penalization rounds, and the exploitation rounds1, respectively. Since the basis of the
subalgorithm PRRFES A1 ∈ CR is right-consistent [2], as discussed in the proof of Proposition 1
(see Appendix A.1.2), the optimal strategy of the bidder m is non-losing [2]: the buyer has no
incentive to get a local negative surplus in a round, because it will result in non-positive surplus in
all subsequent rounds.

Hence, since the price pml,Km
l

is 0 or has been accepted, we have pml,Km
l
≤ vm. Second, since the

price pml,Km
l +1 is rejected, we have vm − pml,Km

l +1 < (pml,Km
l +1 − pml,Km

l
) = εl (by Proposition 1 since

ζr,γm ≤ 1 for r ≥ rγ0 and γm ≤ γ0). Hence, the valuation vm ∈
[
pml,Km

l
, pml,Km

l
+ 2εl

)
and all accepted

prices pml+1,k, ∀k ≤ Km
l+1, from the next phase l + 1 satisfy:

pml+1,k ∈ [qml+1, v
m) ⊆

[
pml,Km

l
, pml,Km

l
+ 2εl

)
∀k ≤ Km

l+1,

because any accepted price has to be lower than the valuation vm for the strategic buyer (whose
optimal strategy is locally non-losing one, as we stated above). This infers Km

l+1 < 2εl/εl+1 = 2Nl+1,

where Nl := εl−1/εl = ε−1l−1 = 22
l−1

. Therefore, for the phases l = 1, . . . , Lm, we have:

vm − pml,Km
l
< 2εl; vm − pml,k < εl

(
2Nl − k

)
∀k ∈ Z2Nl

;

and
Km

l∑
k=1

(vm − pml,k) < εl

2Nl−1∑
k=1

(
2Nl − k

)
= εl

2Nl − 1

2

(
2 · 2Nl − 2Nl

)
≤ 2Nl ·Nlεl = 2Nl · εl−1 = 2,

where we used the definitions of Nl and εl. For the zeroth phase l = 0, one has trivial bound∑Km
0

k=1(v − p
m
0,k) ≤ 1/2. Hence, by definition of the exploitation rate g(l), we have g(l) = ε−1l and,

thus,
Rml ≤ 2 + rvm + g(l) · 2εl ≤ rvm + 4, l = 0, . . . , L− 1. (A.8)

Moreover, this inequality holds for the Lm-th phase, since it differs from the other ones only in
possible absence of some rounds (reject-penalization or exploitation ones). Namely, for the Lm-th
phase, we have:

RmL =

Km
L∑

k=1

(vm − pmLm,k) + rLmvm + gLm(Lm)(vm − pmLm,Km
Lm

), (A.9)

1Note that the prices at the exploitation rounds pml,Km
l

are equal to either 0 or an earlier accepted price, and are

thus accepted by the strategic buyer (since the buyer’s decisions at these rounds do not affect further pricing of the
algorithm divPRRFES).
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where rLm is the actual number of reject-penalization rounds and gLm(Lm) is the actual number
of exploitation ones in the last phase. Since rLm ≤ r and gLm(Lm) ≤ g(Lm), the right-hand side
of Eq. (A.9) is upper-bounded by the right-hand side of Eq. (A.7) with l = Lm, which is in turn
upper-bounded by the right-hand side of Eq. (A.8). Finally, one has

Regm(Im, divM (〈A1〉, sr), vm, b̊m1:T ) =
Lm∑
l=0

Rml ≤ (rvm + 4) (Lm + 1).

Thus, one needs only to estimate the number of phases Lm by the subhorizon Im. So, for 2 ≤ Im ≤
2 + r + g(0), we have Lm = 0 or 1 and thus Lm + 1 ≤ 2 ≤ log2 log2 I

m + 2. For Im ≥ 2 + r + g(0),
we have Im =

∑Lm−1
l=0 (Km

l + r + g(l)) +Km
Lm + rLm + gLm(Lm) ≥ g(Lm − 1) with Lm > 0. Hence,

g(Lm − 1) = 22
Lm−1 ≤ Im, which is equivalent to Lm ≤ log2 log2 I

m + 1. Summarizing, we get the
claimed upper bound of the lemma.

A.2.2 Proof of Lemma 3

Proof. Let m ∈M be one of the bidders M = {m∈M | vm=v} that have the maximal valuation v.
Then, the stopping rule srA1 (which is based on the rule ρ(m, l,q) := ∃m̂ ∈ M−m : qm + 2εlm−1 <
qm̂ ∀l ∈ ZM+ , ∀q ∈ RM+ ) is executed no later than the period i′ where the upper bound qmlm

i′
+ 2εlm

i′ −1

of the bidder m’s valuation becomes lower than the lower bound qm
lm
i′

of the bidder m’s valuation2.

Moreover, since vm ∈ [qmlmj
, qmlmj

+ 2εlmj −1] and vm ∈ [qm
lmj
, qm
lmj

+ 2εlmj −1
] for any period j, the

stopping rule is executed no later than the period i where both the phase iteration parameter εlmi
of the bidder m and the phase iteration parameter εlmi

of the bidder m become smaller than one

quarter of the difference between the valuations of these bidders, i.e., εlmi and εlmi
< v−vm

4 (because,

in this case, the segments [qmlmi
, qmlmi

+ 2εlmi −1] and [qm
lmi
, qm
lmi

+ 2εlmi −1
] do not intersect at all, what

implies qmlmi
+ 2εlmi −1 < qm

lmi
).

Therefore, in the periods i ≤ Im, it is not possible to have simultaneously εlmi < v−vm
4 and

εlmi
< v−vm

4 . So, in the period i = Im, either εlmIm ≥
v−vm

4 , or (not exclusively) εlmIm
≥ v−vm

4 holds.

In particular, from the definition of the phase iteration parameter εl = 2−2
l
, we have: if εl ≥ δ for

some l ∈ Z+ and δ ∈ (0, 1/2), then

εl = 2−2
l ≥ δ ⇔ −2l ≥ log2 δ ⇔ 2l ≤ log2

1

δ
⇔ l ≤ log2 log2

1

δ
.

Hence, in the period Im, the following holds:

lmIm ≤ log2 log2
4

v − vm
or (not exclusively) lmIm ≤ log2 log2

4

v − vm
,

and, thus,

min{lmIm , lmIm} ≤ log2 log2
4

v − vm
. (A.10)

Finally, we bound Im. Let, Lm
′;m := lm

′
Im be the phase of a buyer m′ ∈ {m,m} in the period

Im. As in the proof of Lemma 2 (see Appendix A.2.1) we decompose Im into the numbers of

2Note that it is correct to consider lmi in any period i even though the buyer m is not suspected in this period,
i.e., m /∈ Si. This is because the algorithm stops change the tracking node nmi in the subalgorithm tree T(〈A1〉) after
the period Im, but lmi just remains the same in all subsequent periods, i.e., we formally set lmi = lmIm for all i > Im.
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exploration, reject-penalization, and exploitation rounds in each phase l = 0, . . . , Lm
′;m passed by

the buyer m′. Namely,

Im =
Lm′;m−1∑
l=0

(Km′
l + r + g(l)) +Km′

Lm′;m + rm
′

Lm′;m + gm
′

Lm′;m , (A.11)

where rm
′

l and gm
′

l are the numbers of penalization rounds and exploitation rounds, resp., passed
by the buyer m′ in the last phase l = Lm

′;m before reaching the period Im. Let us trivially bound
rm
′

Lm′;m ≤ r and gm
′

Lm′;m ≤ g(Lm
′;m). We also know that, for any l ∈ Z+, Km′

l ≤ 2 · 22l−1
(see the

proof of Lemma 2 in Appendix A.2.1). Therefore, Eq. A.11 implies

Im ≤
Lm′;m∑
l=0

(2 · 22l−1
+ r + 22

l
) ≤

Lm′;m∑
l=0

(3 · 22l + r) ≤ (Lm
′;m + 1)r + 2 · 3 · 22L

m′;m
, (A.12)

Taking m′ = m and m′ = m, we get the following from Eq. (A.12):

Im ≤ (min{lmIm , lmIm}+ 1)r + 6 · 22
min{lmIm,lmIm} ≤ r(log2 log2

4

v − vm
+ 1) + 6 · 4

v − vm
, (A.13)

where we used the definition of Lm
′;m := lm

′
Im and the upper bound for the phases lmIm and lmIm in

Eq. (A.10). So, Eq. (A.13) implies the claim of the lemma.

A.2.3 Proof of Theorem 1

Proof. From Lemma 1, we have:

SReg(T,A,v,γ,β) =
M∑
m=1

Regm(Im,Am, vm, b̊m1:T ) +
M∑
m=1

Im(v − vm). (A.14)

From Lemma 2, if Im ≥ 2, one can upper bound the first term in right-hand side of Eq. (A.14)
since Am = 〈A1〉:

Regm(Im,Am, vm, b̊m1:T ) ≤ (rvm + 4)(log2 log2 I
m + 2) ≤ (rv + 4)(log2 log2 T + 2), (A.15)

where we bounded the subhorizon Im of each bidder m ∈ M by the time horizon T (i.e., Im ≤ T )
and the valuation vm of each bidder m ∈ M by the maximal valuation (i.e., vm ≤ v). Note that
the latter bound of Eq. (A.15) holds for Regm(Im,Am, vm, b̊m1:T ) in the case of Im = 1 as well (this
case has not been provided by Lemma 2).

From Lemma 3, one can upper bound the second term in right-hand side of Eq. (A.14):

M∑
m=1

Im(v − vm) ≤
∑

{m∈M|vm 6=v}

24 + 5r

v − vm
(v − vm) ≤ (24 + 5r)(M − 1), (A.16)

where we used that at least one bidder m ∈M has vm = v and, hence, |{m ∈M | vm 6= v}| ≤M−1.
Thus, plugging Eq. (A.15) and Eq. (A.16) into Eq. (A.14), we obtain the claimed bound for the

strategic regret of divPRRFES.
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B The pseudo-codes

B.1 The pseudo-code of div-transformation

Algorithm B.1 Pseudo-code of a div-transformation divM (A1, sr) of a RPPA algorithm A1 ∈
ARPPA.
1: Input: M ∈ N, A1 ∈ ARPPA, sr : M× T(A1)M → bool

2: Initialize: t := 1, S := M, n[ ] := {e(T(A1))}Mm=1

3: while t ≤ T do
4: for all m ∈ S do
5: Set the price p(n[m]) as reserve to the buyer m
6: Set the price pbar as reserve to the buyers from M−m
7: b[ ]← get bids from the buyers M
8: if b[m] ≥ p(n[m]) then
9: Allocate t-th good to the buyer m for the price p(n[m])

10: n[m] := r(n[m])
11: else
12: n[m] := l(n[m])
13: end if
14: t := t+ 1
15: if t > T then
16: break
17: end if
18: end for
19: Sold := S
20: for all m ∈ Sold do
21: if sr(m, n[ ]) then
22: S := S \ {m}
23: end if
24: end for
25: end while
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B.2 The pseudo-code of divPRRFES

Algorithm B.2 Pseudo-code of the algorithm divPRRFES.
1: Input: M ∈ N, r ∈ N, and g : Z+ → Z+

2: Initialize: t := 1, S := M, q[ ] := {0}Mm=1, l[ ] := {0}Mm=1, x[ ] := {0}Mm=1, state[ ] := {”explore”}Mm=1

3: while t ≤ T do
4: for all m ∈ S do
5: if state[m] = ”penalize” then
6: p := 1 // a reinforced penalization round for the buyer m
7: x[m] := x[m]− 1
8: end if
9: if state[m] = ”explore” then

10: p := q[m] + 2−2
l[m]

// an exploration round for the buyer m
11: else
12: p := q[m] // an exploitation round for the buyer m
13: x[m] := x[m]− 1
14: end if
15: Set the price p as reserve to the buyer m
16: Set the price pbar as reserve to the buyers from M−m
17: b[ ]← get bids from the buyers M
18: if b[m] ≥ p then
19: Allocate t-th good to the buyer m for the price p
20: q[m] := p
21: if state[m] = ”penalize” then
22: x[m] := −1 // a reinforced penalization price is accepted; set 1 to the buyer m all his rounds
23: end if
24: else
25: if state[m] = ”explore” then
26: state[m] := ”penalize”
27: x[m] := r // an exploration price is rejected; move the buyer m to penalization
28: end if
29: end if
30: if state[m] = ”penalize” and x[m] = 0 then
31: state[m] := ”exploit”
32: x[m] := g(l[m]) // penalization rounds are ended; move the buyer m to exploitation
33: end if
34: if state[m] = ”exploit” and x[m] = 0 then
35: state[m] := ”explore”
36: l[m] := l[m] + 1 // exploitation rounds are ended; move the buyer m to the next phase
37: end if
38: t := t+ 1
39: if t > T then
40: break
41: end if
42: end for
43: Sold := S
44: qmax := maxm∈M(q[m])
45: for all m ∈ Sold do
46: if q[m] + 2 ∗ 2−2

l[m]−1

< qmax then
47: S := S \ {m} // remove the buyer m from suspected ones if the stopping rule is satisfied
48: end if
49: end for
50: end while

8



C Summary on used notations

Note that we use several mnemonic notations:

• upper index for a value of a particular buyer (e.g., vm, amt , pmt , etc.);

• boldface for a vector of values for all bidders (e.g., v, at, pt, etc.);

• bar (overline) for terms associated with best value / winning (e.g., the winner mt, the highest
valuation v, etc.); etc.

The full list of used notations is summarized below in the following tables.
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C.1 General notations

Table C.1: General notations: part I.
Notation Expression Description

E[·] expectation

IB the indicator: IB = 1, when B holds, and 0, otherwise.

T the [time] horizon, the number of rounds in the repeated
game

t a round in the repeated game, t ∈ {1, . . . , T}
vm the valuation of a buyer m

v = maxm∈M v
m the highest valuation among the buyers

v = maxm∈M\M v
m the maximal valuation among non-highest valuations ot the

buyers (if exists)

m a buyer that has the highest valuation v

mt = argmaxm∈Mt
bmt the winning bidder in a round t for a given play of the game

(if exists)

bmt the bid of a buyer m in a round t for a given play of the
game

pmt the reserve price set to a buyer m in a round t for a given
play of the game

amt = Ibmt ≥pmt indicator of bidding higher than the reserve price by a buyer
m in a round t for a given play of the game

amt = I{Mt 6=∅&m=mt} the allocation outcome of a round t for a bidder m for a
given play of the game

at = I{Mt 6=∅} the allocation outcome of a round t over all bidders for a
given play of the game

pmt = amt pt the payment outcome of a round t for a bidder m for a given
play of the game

pt = max{pmt
t ,max

m∈M−mt
t

bmt } the payment outcome of a round t over all bidders for a given
play of the game

x = {xm}Mm=1 the vector of buyer values of some notion x (e.g., valuations
v, bids bt, reserve prices pt, payments pt, allocations at and
at etc)

xt1:t2 = {xt}t2t=t1 the subseries of some time series {xt}Tt=1 (e.g., bids b1:T ,
reserve prices p1:T , payments p1:T , allocations a1:T and a1:T
etc)

AM the set of pricing algorithms of the seller against M buyers

ARPPA ⊂ A1 the subclass of 1-buyer pricing algorithms for repeating
posted-price auctions

A a pricing algorithm (generally, from the set AM )

M the number of buyers in the repeated game

M = {1, . . . ,M} the set of buyers (bidders)

M = {m ∈M | vm = v} the set of buyers whose valuation is the highest one v

M−m = M \ {m} the set of buyers (bidders) without the buyer m

Mt = {m ∈M | bmt ≥ pmt } the set of actual buyers in a round t (they bid higher than
reserve prices)
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Table C.2: General notations: part II.
Notation Expression Description

Reg(. . .) regret of a pricing algorithm

SReg(. . .) strategic regret of a pricing algorithm

Sur(. . .) expected surplus of a buyer (bidder)

γm the discount rate of a buyer m ∈M
γ = {γm}Mm=1 the vector of the discount rates of the buyers

h a buyer history

hmt = (bm1:t−1, p
m
1:t, a

m
1:t−1, p

m
1:t−1) the history available to a buyer m in a round t for a given

play of the game

σ ∈ ST a buyer strategy

βm ∈ SM−1
T the beliefs of a buyer m on the strategies of the other bidders

β = {βm}Mm=1 the beliefs of all buyers

Ht the set of all possible histories in a round t

Ht1:t2 =tt2t=t1Ht the disjoint union of the sets of histories in rounds t1, . . . , t2
ST the set of all possible buyer strategies

σ̊m an optimal strategy of a buyer m in a round t

b̊mt the optimal bid of a buyer m in a round t for a given play
of the game

b̊t = {̊bmt }Mm=1 the optimal bids of all buyers in a round t for a given play
of the game

b̊1:T the optimal bids of all buyers in all rounds for a given play
of the game

Table C.3: General notations: part III (related to RPPA algorithms).
Notation Expression Description

T(A1) the complete binary tree associated with a RPPA algorithm
A1

n or m a node in the complete binary tree T(A1) of a RPPA algo-
rithm A1

r(n) the right child of a node n

l(n) the left child of a node n

R(n) the right subtree of a node n (its root is r(n))

L(n) the left subtree of a node n (its root is l(n))

e(T) the root of a tree T

p(n) the price in a node n (that is offered to a buyer when an
algorithm reaches this node)

T1
∼= T2 the trees T1 and T2 are price-equivalent

δln = p(n)− infm∈L(n) p(m) the left increment of a node n
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C.2 Notations related to dividing algorithms

Table C.4: Notations related to dividing algorithms.
Notation Expression Description

i a period of a dividing algorithm (do not confuse with (1)
a round of the game and (2) a phase of PRRFES algorithm!)

tmi the round in a period i in which the bidder m is not elimi-
nated by a barrage price (i.e., m is non-eliminated partici-
pant) of a dividing algorithm for a given play of the game

pm,bar or pbar a barrage reserve price

Si the set of bidders suspected by a dividing algorithm in a
period i for a given play of the game

Ti the rounds of a period i for a given play of the game

Im = {tmi }I
m

i=1 the rounds in which the bidder m is not eliminated by a bar-
rage price (i.e., m is non-eliminated participant) of dividing
algorithm for a given play of the game

Im = |Im| the subhorizon of a buyer m (the number of periods in which
he is suspected, i.e., m ∈ Si) for a given play of the game

Am the subalgorithm of a dividing algorithm that acts against
a buyer m

Regm(. . .) Regret of the subalgorithm of a dividing algorithm that acts
against a buyer m

divM (. . .) a div-transformation of 1-buyer pricing algorithm to the case
of M buyers

SRegind(. . .) individual strategic regret of a dividing algorithm

SRegdev(. . .) deviation strategic regret of a dividing algorithm

sr a stopping rule used in a divM -transformation of 1-buyer
pricing algorithm

〈A〉 a transformation of a RPPA algorithm A s.t. all penalization
sequences of nodes are replaced by reinforced penalization
ones

nmi the tracking node of a buyer m by divM -transformed RPPA
algorithm in a period i for a given play of the game
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C.3 Notations related to divPRRFES

Table C.5: Notations related to divPRRFES.
Notation Expression Description

r the number of penalization rounds (a parameter of PRRFES)

g(l) the exploitation rate (a parameter of PRRFES)

l a phase of PRRFES

εl = 2−2
l

the iteration parameter of a phase l

qml the last accepted price by a buyer m before a phase l for a given play of
the game

pml,k the k-th exploration price of a buyer m in a phase l for a given play of
the game

Km
l the last accepted exploration price of a buyer m in a phase l for a given

play of the game

lmi the current phase of a buyer m in a period i for a given play of the game

l(n) the phase of a node n from the tree of the algorithm PRRFES

q(n) the last accepted price before the current phase of a node n from the
tree of the algorithm PRRFES
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