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1. BMM for a general SAT instance
In this section, we derive the posterior distribution for an arbitrary clause in a SAT instance and give the pseudocode for
BMM on SAT.

Consider an arbitrary clause C, which is a disjunction of a set of literals L. We use m to denote the total number of literals
in C, i.e., |L| = m. Without loss of generality, we assume that all positive literals appear before negative literals in C, and
there are h (0 ≤ h ≤ m) positive literals.

Based on this, we can express C as follows:

C = (
∨

0≤i<h

li) ∨ (
∨

h≤j<m

¬lj).

We use the random vector Θ to represent the probabilities of each literal being true:

Θ = {θk : 0 ≤ k < m, θk = P (lk = T )}.

We assign a product of beta distributions as our prior for Θ:

P (Θ) =
∏

0≤k<m

Beta(θk;αk, βk)

The posterior after observing clause C is:

P (Θ|C) =
1

P (C)
(P (Θ)P (C|Θ))

=
1

P (C)
[
∏

0≤k<m

Beta(θk;αk, βk)(1−
∏

0≤i<h

(1− θi)
∏

h≤j<m

θj)]

=
1

P (C)
[
∏

0≤k<m

Beta(θk;αk, βk)−
∏

0≤i<h

Beta(θi;αi, βi)
∏

0≤i<h

(1− θi)
∏

h≤j<m

Beta(θj ;αj , βj)
∏

h≤j<m

θj ]

=
1

P (C)
[
∏

0≤k<m

Beta(θk;αk, βk)−
∏

0≤i<h

Beta(θi;αi, βi)(1− θi)
∏

h≤j<m

Beta(θj ;αj , βj)θj ]

=
1

P (C)
[
∏

0≤k<m

Beta(θk;αk, βk)−
∏

0≤i<h

1

B(αi, βi)
θαi−1i (1− θi)βi

∏
h≤j<m

1

B(αj , βj)
θ
αj
j (1− θj)βj−1]

=
1

P (C)
[
∏

0≤k<m

Beta(θk;αk, βk)−
∏

0≤i<h

B(αi, βi + 1)

B(αi, βi)
Beta(θi;αi, βi + 1)

∏
h≤j<m

B(αj + 1, βj)

B(αj , βj)
Beta(θj ;αj + 1, βj)]
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=
1

P (C)
[
∏

0≤k<m

Beta(θk;αk, βk)−
∏

0≤i<h

βi
αi + βi

Beta(θi;αi, βi + 1)
∏

h≤j<m

αj
αj + βj

Beta(θj ;αj + 1, βj)]

=
1

P (C)
[
∏

0≤k<m

Beta(θk;αk, βk)−
∏

0≤i<h

βi
αi + βi

∏
h≤j<m

αj
αj + βj

∏
0≤i<h

Beta(θi;αi, βi + 1)
∏

h≤j<m

Beta(θj ;αj + 1, βj)],

where

P (C) =

∫
(0,1)m

P (Θ)P (C|Θ)dΘ

=

∫
(0,1)m

∏
0≤k<m

Beta(θk;αk, βk)−
∏

0≤i<h

βi
αi + βi

∏
h≤j<m

αj
αj + βj

∏
0≤i<h

Beta(θi;αi, βi + 1)
∏

h≤j<m

Beta(θj ;αj + 1, βj)dΘ

=

∫
(0,1)m

∏
0≤k<m

Beta(θk;αk, βk)dΘ

−
∏

0≤i<h

βi
αi + βi

∏
h≤j<m

αj
αj + βj

∫
(0,1)m

∏
0≤i<h

Beta(θi;αi, βi + 1)
∏

h≤j<m

Beta(θj ;αj + 1, βj)dΘ

= 1−
∏

0≤i<h

βi
αi + βi

∏
h≤j<m

αj
αj + βj

.

We can thus write
P (C) = 1− p, where p =

∏
0≤i<h

βi
αi + βi

∏
h≤j<m

αj
αj + βj

.

Note that the likelihood P (C|Θ) can also be calculated as sums of 2m − 1 joint probabilities. We observe that the posterior
is a mixture P (Θ|C) of products of Beta distributions. The number of mixtures grows exponentially as more clauses
are encountered. To address this, we use BMM to approximate the true mixture P (Θ|C) by a single product of Beta
distributions:

P̃ (Θ̃) =
∏

0≤k<m

Beta(θ̃k; α̃k, β̃k).

The parameters α̃k, β̃k for literal lk are then computed by matching the first and second moments of the marginal distribution
of θk (we proceed similarly for other literals):{

Eθ̃k∼Beta(θ̃k;α̃k,β̃k)[θ̃k] = Eθk∼Pθk (θk|C)[θk]

Eθ̃k∼Beta(θ̃k;α̃k,β̃k)[θ̃
2
k] = Eθk∼Pθk (θk|C)[θ

2
k]

⇐⇒

{
α̃k

α̃k+β̃k
= Eθk∼Pθk (θk|C)[θk]

α̃k(α̃k+1)

(α̃k+β̃k)(α̃k+β̃k+1)
= Eθk∼Pθk (θk|C)[θ

2
k]

.

In the above expression we have used the fact that the first moment (mean) of the beta distribution Beta(θ;α, β) is α
α+β ,

while its second moment is α(α+1)
(α+β)(α+β+1) (Johnson et al., 1995).

If the literal lk is positive in C, then:

Pθk(θk|C) =

∫
(0,1)m−1

P (Θ|C)dθ0...dθk−1dθk+1...dθm−1

=
1

1− p
[Beta(θk;αk, βk)− p ·Beta(θk;αk, βk + 1)].

If the literal lk is negative in C, then:

Pθk(θk|C) =

∫
(0,1)m−1

P (Θ|C)dθ0...dθk−1dθk+1...dθm−1

=
1

1− p
[Beta(θk;αk, βk)− p ·Beta(θk;αk + 1, βk)].

We thus get:

Eθk∼Pθk (θk|C)[θk] =

{
1

1−p ( αk
αk+βk

− p · αk
αk+βk+1 ), if lk is positive in C

1
1−p ( αk

αk+βk
− p · αk+1

αk+βk+1 ), if lk is negative in C.
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Algorithm 1 BMM for general SAT
Output: An assignment to all literals
initialize prior Beta(θk;αk, βk) for each literal lk; (we typically initialize αk and βk to 0.1)
for n = 1 to MaxEpochs do

for each clause C do
p := 1;
for each literal lk in C do

if lk is positive in C then
p := p · βk

αk+βk
;

else
p := p · αk

αk+βk
;

end if
end for
for each literal lk in C do

if lk is positive in C then
NewFirstMoment := 1

1−p ( αk
αk+βk

− p · αk
αk+βk+1 );

NewSecondMoment := 1
1−p ( αk(αk+1)

(αk+βk)(αk+βk+1) − p ·
αk(αk+1)

(αk+βk+1)(αk+βk+2) );
else
NewFirstMoment := 1

1−p ( αk
αk+βk

− p · αk+1
αk+βk+1 );

NewSecondMoment := 1
1−p ( αk(αk+1)

(αk+βk)(αk+βk+1) − p ·
(αk+1)(αk+2)

(αk+βk+1)(αk+βk+2) );
end if
Solve the following system of equations to compute the new αk, βk :

αk
αk + βk

= NewFirstMoment;

αk(αk + 1)

(αk + βk)(αk + βk + 1)
= NewSecondMoment;

end for
end for

end for
for each literal lk do

if αk > βk then
lk := T ;

else
lk := F ;

end if
end for

Similarly, we get:

Eθk∼Pθk (θk|C)[θ
2
k] =

{
1

1−p ( αk(αk+1)
(αk+βk)(αk+βk+1) − p ·

αk(αk+1)
(αk+βk+1)(αk+βk+2) ), if lk is positive in C

1
1−p ( αk(αk+1)

(αk+βk)(αk+βk+1) − p ·
(αk+1)(αk+2)

(αk+βk+1)(αk+βk+2) ), if lk is negative in C.

Based on the above discussion, the pseudocode of BMM for SAT is given in Algorithm 1. The variable MaxEpochs
denotes the number of epochs. During one epoch, we visit each clause exactly once. As explained in the main document, we
find empirically that as few as 10 epochs suffice for a good initialization.
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Table 1. Number of solved instances (out of 200) and average runtime (in seconds) of MapleCOMSPS and MapleLCMDistChronoBT and
their variations on SAT race 2019 benchmark. SAT column shows how many of the solved instances were satisfiable.

Initialization Total SAT Avg. time Best config.

M
ap

le
C

O
M

SP
S Default 120 89 696.310 default

Random 119 88 732.489 Activity-Polarity
Survey Propagation 115 84 813.637 Polarity
Jeroslow-Wang 123 92 712.904 Activity
BMM 125 94 841.985 Polarity

M
ap

le
L

C
M

D
is

t Default 120 88 604.368 default
Random 119 89 685.499 Polarity
Survey Propagation 115 83 946.500 Polarity
Jeroslow-Wang 120 88 830.279 Activity-Polarity
BMM 122 92 665.060 Activity

2. Evaluation over SAT Race 2019 Application Instances
2.1. Experimental Setup

All jobs were run on Intel(R) Xeon(R) Gold 6148 CPU at 2.40GHz. We used the main track of the SAT race 2019, which
contains instances encoding problems from real-world applications, like verification, graph problems and combinatorics.
The SAT race benchmark is partitioned into “new” and “old” subsets, marking newly submitted instances to the competition
and re-used instances from the past competitions. We used the “new” subset of the instances containing 200 instances. Time
limit for solving each instance was 5000 seconds (the same as SAT competitions) and memory limit was 8GB.

2.2. Solver Descriptions

The solvers that we used to incorporate BMM were MapleCOMSPS (gold/silver medalist of SAT competition 2016/2017)
(Liang et al., 2017) and MapleLCMDistChronoBT (winner of SAT competition 2018) (Ryvchin & Nadel, 2018). We used
10 epochs to compute the posterior in the pre-processing phase and 1 epoch for each learned unary and binary clause.
MapleLCMDistChronoBT switches between Distance, VSIDS and LRB branching heuristics. We initialized activity scores
of all of these heuristics. Similarly we initialized both VSIDS and LRB in MapleCOMSPS.

2.3. Results

Table 1 shows the number of solved instances out of 200 instances by the two solvers described above, comparing
BMM with other methods. Unlike the SAT 2018 benchmark, the best performing configuration was different among the
initialization methods, which is listed in Table 1. For MapleCOMSPS BMM-polarity was the best configuration, and
for MapleLCMDistChronoBT BMM-activity was the best performing configuration. In both of the solvers, BMM-based
initializations are the best version of their respective solvers, beating the default version by 5 instances in MapleCOMSPS
and 2 instances in MapleLCMDistChronoBT. It should be noted that BMM-based versions solves 5 more satisfiable instances
compared to default MapleCOMSPS and 4 more satisfiable instances compared to default MapleLCMDistChronoBT.

3. Consistency proof of BMM for the naïve Bayes model
For convenience, we repeat (from Section 2) the update equation of BMM for µn+1 in the naïve Bayes model and the
theorem asserting the consistency of the BMM update. The equation for τn+1 is similar but more complex; see Eq. (8).

µn+1 = µn +
1

τn + 1

[
(

c1αn
c1αn + c2βn

− µn)(1− In+1) + (
(1− c1)αn

(1− c1)αn + (1− c2)βn
− µn)In+1

]
. (1)

Theorem 1 When performing BMM with the first and second moment in the naïve Bayes model, the update in Eq. (1) for
the first moment converges almost surely to the true underlying θ:

Pr( lim
n→∞

µn = θ) = 1 (2)
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3.1. Proof Overview

We interpret BMM for the naïve Bayes model (from Section 2) as a stochastic approximation (SA) problem and use the
convergence theorem of the general stochastic approximation (SA) (Chen & Ryzhov, 2020) to derive the consistency result.

The general SA structure is of the form (Chen & Ryzhov, 2020):

xn+1 = xn − ψn(Qn(Wn+1, xn) + ζn(Wn+1, xn, ψn)) (3)

where (xn)∞n=0 ∈ Rm, (ψn)∞n=0 is the step size (deterministic or stochastic), (Wn)∞n=0 is a sequence of random variables,
(Qn)∞n=0 and (ζn)∞n=0 are two sequences of real measurable functions. The function ζn corresponds to the bias.

Based on the above notation, the following 2 terms are defined:

Fn = B(W1, ...,Wn, x1, ..., xn, ψ1, ..., ψn)

Rn(x) = E[Qn(Wn+1, x)|Fn]

where B denotes the Borel sigma-algebra.

Chen and Ryzhov prove that xn → θ almost surely if the following 4 assumptions are met (Chen & Ryzhov, 2020):

1. For any n, the system of equations Rn(x) has a unique root θ, which doesn’t depend on n.

2. For n = 1, 2, ... and any ε > 0,
inf

‖x−θ‖22>ε,n∈N
(x− θ)TRn(x) > 0.

3. There exists positive constants C1 and C2 such that:

• sup
n∈N

E[‖Qn(Wn+1, x)‖22|Fn] ≤ C1(1 + ‖x− θ‖22)

• sup
n∈N

E[‖ζn(Wn+1, x, ψn)‖22|Fn]/ψ2
n ≤ C2(1 + ‖x− θ‖22)

for all x.

4.
∑∞
n=0 ψn =∞,

∑∞
n=0 ψ

2
n <∞.

The above result is also true if we use an explicit projection operator as follows:

xn+1 = ΠH [xn − ψn(Qn(Wn+1, xn) + ζn(Wn+1, xn, ψn))], (4)

whereH = [Mlow,Mhigh]m a closed interval such that x0, θ ∈ H . ΠH is a projection operator that ensures the boundedness
of the iterates, a widely-used approach in SA convergence theory (Kushner & Yin, 2013). Hence, provided that the 4 above
assumptions are met, update Equations (3) or (4) both have the consistency property xn → θ.

In the following sections, we’ll rewrite the problem in the form of Equation (3) and verify that the 4 assumptions given
above hold.

3.2. SA formulation

In our setting, Z represents the binary hidden variable and I the binary observable variable. Let θ represent the unknown
probability of the hidden variable P (Z = 0), the unknown quantity we wish to infer from {I1, I2, . . . } in an online fashion.
On the other hand, the conditional distribution of I|Z is fully known, as below:

P (I = 0|Z = 0) = c1, P (I = 0|Z = 1) = c2

P (I = 1|Z = 0) = d1 = 1− c1, P (I = 1|Z = 1) = d2 = 1− c2.

To avoid degenerate edge cases, we assume that θ ∈ (0, 1) and c1 6= c2. Furthermore, we consider that c1, c2 ∈ (0, 1),
which trivially implies that d1, d2 ∈ (0, 1). We choose a beta distribution Beta(θ0;α0, β0) as the initial prior over θ.
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After observing n binary i.i.d. observations {I1, . . . , In} and performing BMM, we will have an estimate θn for θ which is
distributed as a Beta distribution Beta(θn;αn, βn). The posterior after observing the (n+ 1)th point In+1 is:

P (θn+1|In+1 = 0) =
P (θn)P (In+1 = 0|θn)

P (In+1 = 0)

=
1

P (In+1 = 0)

θαn−1n (1− θn)βn−1

B(αn, βn)
(θnc1 + (1− θn)c2)

=
1

P (In+1 = 0)
(c1

θαnn (1− θn)βn−1

B(αn, βn)
+ c2

θαn−1n (1− θn)βn

B(αn, βn)
)

= an,0
θαnn (1− θn)βn−1

B(αn + 1, βn)
+ bn,0

θαn−1n (1− θn)βn

B(αn, βn + 1)

P (θn+1|In+1 = 1) = an,1
θαnn (1− θn)βn−1

B(αn + 1, βn)
+ bn,1

θαn−1n (1− θn)βn

B(αn, βn + 1)
,

where

1

P (In+1 = 0)
=

1∫ 1

0
1

B(αn,βn)
θαn−1n (1− θn)βn−1(θnc1 + (1− θn)c2)dθn

=
αn + βn

c1αn + c2βn

an,0 =
c1

P (In+1 = 0)

B(αn + 1, βn)

B(αn, βn)
=

c1αn
c1αn + c2βn

∈ (0, 1), since c1, c2 ∈ (0, 1) ∧ αn, βn > 0

bn,0 =
c2βn

c1αn + c2βn
∈ (0, 1)

an,1 =
d1αn

d1αn + d2βn
∈ (0, 1)

bn,1 =
d2βn

d1αn + d2βn
∈ (0, 1).

(5)

Let θn be a function that is distributed according to the Beta distribution Beta(θn;αn, βn). We use µn = to denote the
mean of θn, σ2

n to denote the variance of θn = αn + βn, τn to denote the precision of θn, and λn to denote 1
τ2
nσ

2
n

. In
particular, the following equations hold (note the first two are standard identities for the Beta distribution):

µn =
αn

αn + βn
∈ (0, 1) (since αn, βn > 0)

σn =
αnβn

(αn + βn)2(αn + βn + 1)
> 0

τn = αn + βn > 0

λn =
1

τ2nσ
2
n

> 0.

BMM approximates the mixture posterior P (θn+1|In+1) by a simpler Beta distribution Beta(θn+1;αn+1, βn+1) by
matching the first and second moments. The first moment of this beta distribution is αn+1

αn+1+βn+1
= µn+1 while its second

moment is αn+1(αn+1+1)
(αn+1+βn+1)(αn+1+βn+1+1) . By matching the first moments, we get the update equation of µn+1 as follows. The
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equation incorporates the two cases that the observed instance In+1 is 0 or 1.

µn+1 = (an,0
αn + 1

αn + βn + 1
+ bn,0

αn
αn + βn + 1

)(1− In+1) + (an,1
αn + 1

αn + βn + 1
+ bn,1

αn
αn + βn + 1

)In+1

=
1

τn + 1
[(an,0(αn + 1) + bn,0αn)(1− In+1) + (an,1(αn + 1) + bn,1αn)In+1]

=
1

τn + 1
[(αn + an,0)(1− In+1) + (an,1 + αn)In+1]

= µn +
1

τn + 1
[(αn + an,0)(1− In+1) + (an,1 + αn)In+1]− µn

= µn +
1

τn + 1
[(αn + an,0)(1− In+1) + (an,1 + αn)In+1 − µn(τn + 1)]

= µn +
1

τn + 1
[an,0(1− In+1) + an,1In+1 + αnµn(τn + 1)]

= µn +
1

τn + 1
[(an,0 − µn)(1− In+1) + (an,1 − µn)In+1]

= µn + λn[
σ2
nτ

2
n

τn + 1
(an,0 − µn)(1− In+1) +

σ2
nτ

2
n

τn + 1
(an,1 − µn)In+1].

(6)

It is straightforward to show that 0 < µn+1 < 1, given αn, βn > 0,∀n.

By matching the second moments we similarly get the update equation for the second moment:

Mn+1,2 =
(µnτn + 1)(µnτn + an,0)

(τn + 1)(τn + 2)
(1− In+1) +

(µnτn + 1)(µnτn + an,0)

(τn + 1)(τn + 2)
(In+1) (7)

But in this setting it is more convenient to use instead the first moment and the precision (τn+1 := αn+1 + βn+1) (see also
(Chen & Ryzhov, 2020)). The update equation for precision is obtained by first solving Eq. (6) and Eq. (7) in terms of αn+1

and βn+1 using the fact that µn+1 = αn+1

αn+1+βn+1
and Mn+1,2 = αn+1(αn+1+1)

(αn+1+βn+1)(αn+1+βn+1+1) :

τn+1 = τn +
An,0(τn + 1)− τn(µnτn + an,0)Bn,0

Bn,0(µnτn + an,0)
(1− In+1) +

An,1(τn + 1)− τn(µnτn + an,1)Bn,1
Bn,1(µnτn + an,1)

(In+1), (8)

where we have defined:

An,0 = (µnτn + an,0)2(τn + 2)− (µnτn + an,0)(µnτn + 1)(µnτn + 2an,0)

Bn,0 = (µnτn + 1)(µnτn + 2an,0)(τn + 1)− (τn + 2)(µnτn + an,0)2

An,1 = (µnτn + an,1)2(τn + 2)− (µnτn + an,1)(µnτn + 1)(µnτn + 2an,1)

Bn,1 = (µnτn + 1)(µnτn + 2an,1)(τn + 1)− (τn + 2)(µnτn + an,1)2.

(9)

We finally derive the update equation for the variance below, using the standard formula σ2
n+1 = Mn+1,2 − µ2

n+1 together
with Eq. (6) and Eq. (7). We will need this in Section 3.6.

σ2
n+1 =σ2

n +
(τn + 1)(µnτn + 1)(µnτn + 2an,0)− (µnτn + an,0)2(τn + 2)− µn(1− µn)(τn + 1)(τn + 2)

(τn + 1)2(τn + 2)
(1− In+1)

+
(τn + 1)(µnτn + 1)(µnτn + 2an,1)− (µnτn + an,1)2(τn + 2)− µn(1− µn)(τn + 1)(τn + 2)

(τn + 1)2(τn + 2)
(In+1).

(10)
We next define:

En :=
σ2
nτ

2
n

τn + 1
> 0,

Qn(In+1, En, an,0, an,1, µn) := −[En(an,0 − µn)(1− In+1) + En(an,1 − µn)In+1].
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Then, the update rule in Equation (6) can be rewritten as:

µn+1 = µn − λn ·Qn(In+1, En, an,0, an,1, µn),

which has the general SA structure (3) with no bias term (ζn := 0) and λn as the step size (ψn := λn).

We further define:

Fn := B(I1, ..., In, µ1, ..., µn, λ1, ..., λn)

Rn(x) := E[Qn(In+1, En, an,0, an,1, x)|Fn]

Also, we assume that the sequences (αn)∞n=0 and (βn)∞n=0 have positive lower bounds, which is standard in many SA
convergence proofs and also consistent with empirical evidence. Then we can show that µn → θ almost surely by verifying
the 4 assumptions proposed by (Chen & Ryzhov, 2020). The proof for our setting shares elements with Proposition EC.1 for
the setting described in Section 4.5.1 of (Chen & Ryzhov, 2020).

3.3. Proof of Assumption 1

In our formulation
Rn(x) =E[Qn(In+1, En, an,0, an,1, x)|Fn]

=− En
(

c1x

c1x+ c2(1− x)
− x
)

(1− (θd1 + (1− θ)d2))

− En
(

d1x

d1x+ d2(1− x)
− x
)

(θd1 + (1− θ)d2))

it is easy to see that Rn(θ) = 0 for any n. We now show that θ is additionally the unique root for x ∈ (0, 1). Given that
En > 0, this is equivalent to showing:(

c1
c1x+ c2(1− x)

− 1

)
(1− (θd1 + (1− θ)d2)) +

(
d1

d1x+ d2(1− x)
− 1

)
(θd1 + (1− θ)d2) = 0

Indeed, we have:(
c1

c1x+ c2(1− x)
− 1

)
(1− (θd1 + (1− θ)d2)) +

(
d1

d1x+ d2(1− x)
− 1

)
(θd1 + (1− θ)d2) = 0

⇒ c1 − c1x− c2(1− x)

c1x+ c2(1− x)
(1− (θd1 + (1− θ)d2)) +

d1 − d1x− d2(1− x)

d1x+ d2(1− x)
(θd1 + (1− θ)d2) = 0

⇒ (c1 − c2)(1− x)

c1x+ c2(1− x)
(1− (θd1 + (1− θ)d2)) +

(d1 − d2)(1− x)

d1x+ d2(1− x)
(θd1 + (1− θ)d2) = 0

Given c1 − c2 = −(d1 − d2) and x ∈ (0, 1), the last equation can be written as:

1

c1x+ c2(1− x)
(1− (θd1 + (1− θ)d2))− 1

d1x+ d2(1− x)
(θd1 + (1− θ)d2) = 0

⇒ 1− (θd1 + (1− θ)d2)

c1x+ c2(1− x)
=
θd1 + (1− θ)d2
d1x+ d2(1− x)

⇒ (1− (θd1 + (1− θ)d2))(d1x+ d2(1− x)) = (θd1 + (1− θ)d2)(c1x+ c2(1− x))

⇒ (1− (θd1 + (1− θ)d2))(d1 − d2)x+ (1− (θd1 + (1− θ)d2))d2

= (θd1 + (1− θ)d2)(c1 − c2)x+ (θd1 + (1− θ)d2)c2

⇒ (1− (θd1 + (1− θ)d2))d2 − (θd1 + (1− θ)d2)c2 = (c1 − c2)x

⇒ d2 − (θd1 + (1− θ)d2)d2 − (θd1 + (1− θ)d2)c2 = −(d1 − d2)x

⇒ d2 − (θd1 + (1− θ)d2) = (d2 − d1)x

⇒ (d2 − d1)θ = (d2 − d1)x

⇒ x = θ.
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Note that the last step in the above derivation is valid since we have assumed c1 6= c2, or equivalently, d1 6= d2.

Technically, note that there is also a root at x = 0, which is not in (0, 1). However, it is not hard to show that x ·Rn(x) < 0
in the neighborhood of x = 0 when θ ∈ (0, 1), which implies that Assumption 2 is violated at x = 0, and the SA algorithm
is repelled from x = 0, provided that the initial x0 ∈ (0, 1) (Borkar, 2008). Similar arguments hold for x = 1. Alternatively,
we can use the previously mentioned update form (4) with a projection operator ΠH that projects xn+1 into a suitable closed
interval [Mlow,Mhigh] ⊂ (0, 1), where 0 < Mlow,Mhigh < 1, so that x0, θ ∈ H (Kushner & Yin, 2013). In that case, the
equation Rn(x) = 0 has a sole root in the interval H . Finally, given that µn ∈ (0, 1)∀n, we safely assume everywhere in
the proof that x ∈ (0, 1).

To simplify the proof, from now on we can assume a projection operator ΠH that projects xn+1 into a suitable closed
interval [Mlow,Mhigh] ⊂ (0, 1), as explained above.

3.4. Proof of Assumption 2

To show that Assumption 2 holds, it is sufficient to show that when x > θ, Rn(x) > 0 and when x < θ, Rn(x) < 0 (for
x ∈ (0, 1)).

Given that En > 0, it suffices to show that the following expression satisfies the property above:

− 1

1− x
[(

c1
(c1x+ c2(1− x))

− 1)(1− (θd1 + (1− θ)d2)) + (
d1

(d1x+ d2(1− x))
− 1)(θd1 + (1− θ)d2)]

= − 1

1− x
[

(c1 − c2)(1− x)

(c1x+ c2(1− x))
)(1− (θd1 + (1− θ)d2)) + (

(d1 − d2)(1− x)

(d1x+ d2(1− x))
)(θd1 + (1− θ)d2)]

= −[
(c1 − c2)

(c1x+ c2(1− x))
)(1− (θd1 + (1− θ)d2)) + (

(d1 − d2)

(d1x+ d2(1− x))
)(θd1 + (1− θ)d2)]

= −(c1 − c2)[
(1− (θd1 + (1− θ)d2))

(c1x+ c2(1− x))
)− (

(θd1 + (1− θ)d2)

(d1x+ d2(1− x))
)]

= −(c1 − c2)[
(1− (θd1 + (1− θ)d2))

1− (d1x+ d2(1− x))
)− (

(θd1 + (1− θ)d2)

(d1x+ d2(1− x))
)]

= −(c1 − c2)
(x− θ)(d1 − d2)

(1− (d1x+ d2(1− x)))((d1x+ d2(1− x)))

=
(x− θ)(d1 − d2)2

(1− (d1x+ d2(1− x)))((d1x+ d2(1− x)))

Given our assumption that d1 6= d2, the last expression suggests that for x ∈ (0, 1) when x > θ, then Rn(x) > 0, and when
x < θ, then Rn(x) < 0.

3.5. Proof of Assumption 3

Since the bias term is identically 0, it is trivial to show the second inequality of Assumption 3. For the first one, we have:

Qn(In+1, En, an,0, an,1, x) = −[En(an,0 − x)(1− In+1) + En(an,1 − x)In+1].

We can show that En is upper bounded by 1
2 for any n as follows:

En =
σ2
nτ

2
n

τn + 1
=

αnβn
(αn + βn + 1)2

≤ αnβn
2αnβn

=
1

2
.

Furthermore, given x, an,0, an,1 ∈ (0, 1)∀n, it is easy to see that the terms sup
n∈N
|Qn(In+1, En, an,0, an,1, x)| and

sup
n∈N
{Q2

n(In+1, En, an,0, an,1, x)} are upper bounded.

Consequently, there exists a positive constant C1 such that:

sup
n∈N

E[Q2
n(In+1, En, an,0, an,1, x)|Fn] ≤ C1.
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3.6. Proof of Assumption 4

We only consider the case where the observed term is In+1 = 0. The expression when In+1 = 1 can be tackled in a similar
manner.

By using Eq. (8) and (10) to replace τn+1 and σ2
n+1, and doing the tedious calculations, we get the following:

1

λn+1
− 1

λn
=σ2

n+1τ
2
n+1 − σ2

nτ
2
n

=Sn,1 + Sn,2 + Sn,3

(11)

where

Sn,1 =
µn(1− µn)

τn + 1
(
An,0(τn + 1)− τn(µnτn + an,0)Bn,0

Bn,0(µnτn + an,0)
)2

Sn,2 = 2
µn(1− µn)

τn + 1
τn
An,0(τn + 1)− τn(µnτn + an,0)Bn,0

Bn,0(µnτn + an,0)

Sn,3 = [
(τn + 1)(µnτn + 1)(µnτn + 2an,0)− (µnτn + an,0)2(τn + 2)− µn(1− µn)(τn + 1)(τn + 2)

(τn + 2)
]

· ( An,0
Bn,0(µnτn + an,0)

)2.

To prove Assumption 4, it suffices to show that Equation 11 has a positive upper bound and positive lower bound. Indeed, if
there exist positive constants γ∗, γ∗ > 0 such that for all n

γ∗ ≤
1

λn+1
− 1

λn
≤ γ∗,

then we must have by (Chen & Ryzhov, 2020) that

1

λ0
+ nγ∗ ≤

1

λn
≤ 1

λ0
+ nγ∗.

The last inequality, in turn, implies that (Chen & Ryzhov, 2020)

∞∑
n=0

λn =∞,
∞∑
n=0

λ2n <∞,

which is what we want to show.

3.6.1. POSITIVE UPPER AND LOWER BOUND

If we add the three terms Sn,1, Sn,2, Sn,3 in Eq. (11), it is simple to see that the denominator is positive since τn ∈
(0,∞), µn ∈ (0, 1) ∧ an,0 ∈ (0, 1)∀n. Furthermore, if τn approaches 0, it is simple to show that the denominator is lower
bounded by a positive constant assuming µn is projected to a closed interval with a projection operator ΠH , as explained in
Assumption 1.

Next, we show that the following expression corresponding to the numerator of the sum is always positive:

µn(1− µn)(An,0(τn + 1)

− τn(µnτn + an,0)Bn,0)2(τn + 2) + 2µn(1− µn)τn(An,0(τn + 2)− τn(µnτn + an,0)Bn,0)(τn + 2)(µnτn + an,0)Bn,0)

+ [(3µ2
n − (2 + 2an,0)µn + 2an,0 − a2n,0)τn + (2µ2

n − 2µn − 2a2n,0 + 2an,0)]A2
n,0(τn + 1).

(12)

Equation (12) can be viewed as a function of 3 free variables: µn, an,0, τn. For simplicity, we let x := µn, y := an,0, z := τn.
Then it suffices to show that (12) is positive when x ∈ (0, 1), y ∈ (0, 1), z ∈ (0,∞). Note also that x 6= y, because we have
assumed that c1 6= c2.
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We can factorize (12) as follows:

z2 ∗ (x ∗ z + 1) ∗ (x ∗ z − z − 1)

∗ (x− y)2 ∗ (x2 ∗ z2 + 2 ∗ x ∗ y ∗ z − x ∗ z2 + y2 ∗ z − x ∗ z + 2 ∗ y2 − 2 ∗ y ∗ z − 2 ∗ y) ∗ (x ∗ z + y)2.

We can immediately see that the terms z2, (x ∗ z + 1), (x− y)2, (x ∗ z + y)2 are positive. Hence it remains to show that the
term (x ∗ z − z − 1)(x2 ∗ z2 + 2 ∗ x ∗ y ∗ z − x ∗ z2 + y2 ∗ z − x ∗ z + 2 ∗ y2 − 2 ∗ y ∗ z − 2 ∗ y) is also positive.

Given x ∈ (0, 1), z > 0, we have that
xz − z − 1 < z − z − 1 < 0.

It thus remains to show that (x2 ∗ z2 + 2 ∗ x ∗ y ∗ z − x ∗ z2 + y2 ∗ z − x ∗ z + 2 ∗ y2 − 2 ∗ y ∗ z − 2 ∗ y) is negative. Let’s
rewrite this expression in terms of z:

x2 ∗ z2 + 2 ∗ x ∗ y ∗ z − x ∗ z2 + y2 ∗ z − x ∗ z + 2 ∗ y2 − 2 ∗ y ∗ z − 2 ∗ y
= (x2 − x) ∗ z2 + (y2 + (2 ∗ x− 2) ∗ y − x) ∗ z + 2 ∗ y2 − 2 ∗ y.

This is a quadratic function of z, where z ∈ (0,∞). Because x, y ∈ (0, 1), it is easy to verify that the coefficients of degree
2 and degree 0 are negative. We can additionally show that the coefficient of degree 1 is negative as follows:

y2 + (2x− 2)y − x
< y + (2x− 2)y − x
= y + 2xy − 2y − x
= 2xy − (x+ y)

< 2xy − (x2 + y2)

= −(x− y)2

< 0.

We have thus established that the sum Sn,1 + Sn,2 + Sn,3 is always positive. Next, we discuss why it is also bounded above
and below by positive constants.

In this direction, we first notice that both the numerator and the denominator can be viewed as polynomials of τn (or, z),
with coefficients that are functions of µn (i.e., x) and an,0 (i.e., y). Furthermore, assuming we do BMM with a projection
operator ΠH that projects µn into a suitable closed interval [Mlow,Mhigh] ⊂ [0, 1], where 0 < Mlow,Mhigh < 1 and
θ ∈ H , we can see that the numerator can only be 0 if τn is 0. Since we showed that Eq. (11) is positive for τ ∈ (0,∞), in
order to show a lower and upper bound it suffices to investigate the cases where τn → 0 or τn →∞.

We first show that, with probability 1, we cannot have that that τn → 0. From Eq. (8) we get:

τn+1 =
An,0(τn + 1)

Bn,0(µnτn + an,0)
(1− In+1) +

An,1(τn + 1)

Bn,1(µnτn + an,1)
(In+1). (13)

Assuming that τn ≈ 0, we get the following approximation in the limit after we substitute An,0, An,1, Bn,0, Bn,1 by (9):

An,0(τn + 1)

Bn,0(µnτn + an,0)
→ 1

2
(
µn
an,0

+
1− µn

1− an,0
) · τn, (14)

An,1(τn + 1)

Bn,1(µnτn + an,1)
→ 1

2
(
µn
an,1

+
1− µn

1− an,1
) · τn. (15)

Based on (13), (14) and (15), we then get for τn ≈ 0:

E[τn+1|Fn] ≈ 1

2
·
(

(c1θ + c2(1− θ))( µn
an,0

+
1− µn

1− an,0
) + (d1θ + d2(1− θ))( µn

an,1
+

1− µn
1− an,1

)
)
· τn. (16)

It holds that d1θ + d2(1 − θ) = (1 − c1)θ + (1 − c2)(1 − θ) = 1 − (c1θ + c2(1 − θ)). Without loss of generality, let’s
assume that c1 < c2. Given θ ∈ (0, 1), we then trivially get for the terms r = c1θ+ c2(1− θ) and 1− r = d1θ+ d2(1− θ):

c1 < r < c2 ∧ 1− c2 < 1− r < 1− c1. (17)
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We then have for the term on the right hand side of Eq. (16):

1

2
·
(
r(
µn
an,0

+
1− µn

1− an,0
) + (1− r)( µn

an,1
+

1− µn
1− an,1

)
)

=
1

2
·
(
r
( 1

1+ν
1

1+
c2
c1
ν

+
ν

1+ν
ν

ν+
c1
c2

)
+ (1− r)

( 1
1+ν
1

1+
1−c2
1−c1

ν

+
ν

1+ν
ν

ν+
1−c1
1−c2

))

=
1

2
·
(
r
(1 + c2

c1
ν

1 + ν
+
ν + c1

c2

1 + ν

)
+ (1− r)

(1 + 1−c2
1−c1 ν

1 + ν
+
ν + 1−c1

1−c2
1 + ν

))
, where ν =

βn
αn
∈ (0,∞). (18)

We can now show that the term in (18) is greater than 1:

1

2
·
(
r
(1 + c2

c1
ν

1 + ν
+
ν + c1

c2

1 + ν

)
+ (1− r)

(1 + 1−c2
1−c1 ν

1 + ν
+
ν + 1−c1

1−c2
1 + ν

))
> 1⇔

r
(

1 +
c2
c1
ν + ν +

c1
c2

)
+ (1− r)

(
1 +

1− c2
1− c1

ν + ν +
1− c1
1− c2

)
> 2 · (1 + ν)⇔

r
(c2
c1
ν +

c1
c2

)
+ (1− r)

(1− c2
1− c1

ν +
1− c1
1− c2

)
> 1 + ν ⇔

r
c1
c2

+ (1− r)1− c1
1− c2

+
(
r
c2
c1

+ (1− r)1− c2
1− c1

)
· ν > 1 + ν.

But the last inequality is true, since r c1c2 + (1 − r) 1−c1
1−c2 > 1 and r c2c1 + (1 − r) 1−c2

1−c1 > 1; this is easy to show given
c1 < r < c2 from our original assumption. In fact, both terms can be bounded away from 1, given c1, c2, r are distinct (and
fixed). As a result of this, Eq. (16) gives for τn ≈ 0:

E[τn+1|Fn] > τn. (19)

The variance will also be finite, because if we assume that τn → 0, then τn must have an upper bound. Furthermore, τn → 0
implies that there exists a positive constant K such that |τn+1 − τn| ≤ K,∀n. However, with these assumptions standard
martingale theory suggests that, with probability 1, τn does not converge to a zero limit (Hall & Heyde, 1980), which is a
contradiction. Indeed, by Doob’s decomposition theorem, due to Eq. (19) τ can be decomposed into a martingale M and an
integrable predictable process A with A0 = 0 that is almost surely increasing (Hall & Heyde, 1980). Since M converges to
0 almost surely by the martingale central limit theorem and A is strictly increasing almost surely, it is straightforward to see
that, with probability 1, τn does not converge to a 0 limit.

Finally, we examine the case where τn → ∞. In this direction, we observe that in Eq. (11) if we expand the sum
Sn,1 + Sn,2 + Sn,3, both the numerator and the denominator have the same degree. Given the leading coefficients are
positive as well as lower and upper bounded since we use a projection operator ΠH , we conclude that the sum must also be
positive as well as upper and lower bounded as τn →∞.

This concludes our proof that µn → θ almost surely in the naïve Bayes setting for θ ∈ (0, 1).
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