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Abstract
We study the heavy-tailed stochastic bandit prob-
lem in the cooperative multi-agent setting, where
a group of agents interact with a common ban-
dit problem, while communicating on a network
with delays. Existing algorithms for the stochastic
bandit in this setting utilize confidence intervals
arising from an averaging-based communication
protocol known as running consensus, that does
not lend itself to robust estimation for heavy-tailed
settings. We propose MP-UCB, a decentralized
multi-agent algorithm for the cooperative stochas-
tic bandit that incorporates robust estimation with
a message-passing protocol. We prove optimal
regret bounds for MP-UCB for several problem
settings, and also demonstrate its superiority to
existing methods. Furthermore, we establish the
first lower bounds for the cooperative bandit prob-
lem, in addition to providing efficient algorithms
for robust bandit estimation of location.

1. Introduction
The multi-agent cooperative bandit is an increasingly rel-
evant decision-making problem in the era of large-scale
and distributed inference. In this setting, a group of agents,
v ∈ V , are each faced with a decision-making problem (e.g.,
a multi-armed bandit), while simultaneously communicat-
ing with other agents over a network. The motivation for
studying this problem stems from the rise in decentralized
computing systems, and technical interest arises from de-
signing algorithms to leverage cooperation and accelerate
collective decision-making (Landgren et al., 2016a; 2018).

Consider the case when the agents interact with the classi-
cal multi-armed stochastic bandit. For each agent v ∈ V ,
the problem proceeds in a series of synchronous rounds
t = 1, 2, ..., T . In each round, each agent selects an action

1Media Lab and Institute for Data, Systems and Society, Mas-
sachusetts Institute of Technology. Correspondence to: Abhi-
manyu Dubey <dubeya@mit.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Av,t ∈ A, where the space of actions A is assumed to be
finite and countable (|A| = K). It then obtains an i.i.d.
reward xv,t, with mean µAv,t , Av,t ∈ A. The overall objec-
tive of the agents is to minimize the group regret RG(T ).

RG(T ) =
∑
v∈G

Rv(T ) = µ∗T |V | −
∑
v∈V

T∑
t=1

µAv,t
. (1)

Here, µ∗ = maxa∈A µa denotes the mean of the optimal
arm, and ∆a = µ∗ − µa is the suboptimality of arm a from
the optimal arm A∗ = arg maxa∈A µa. In the coopera-
tive bandit, each agent faces the same problem (i.e., A is
the same for each agent). In addition to the exploration-
exploitation tradeoff succintly captured by the conventional
bandit problem, each agent faces the additional complexity
of leveraging feedback from its neighbors. This feedback
is typically available to the agent after a (variable) delay,
based on the communication network between the agents.
This communication network is conveniently determined
by a graph G = (V,E), where V denotes the set of agents,
and E is the set of edges, where edge (i, j) ∈ E if agents i
and j are neighbors. Messages are sent between trials of the
bandit problem, and take d(v, v′) trials to be communicated
from agent v to v′ (where d(v, v′) is the distance between
the agents v and v′ in G).

Research on this problem has exclusively been on re-
ward distributions that are sub-Gaussian (Landgren et al.,
2016a;b; Martı́nez-Rubio et al., 2019). While this is cer-
tainly applicable in several domains, increasing evidence
suggests that assumptions of sub-Gaussianity may not hold
for numerous applications specific to distributed decision-
making, in problems such as distributed load estimation of
internet traffic (Crovella et al., 1998; Hernandez-Campos
et al., 2004), multi-agent modeling of supply chain net-
works (Thadakamaila et al., 2004), modeling information
cascades in economic multi-agent models (De Vany et al.,
1999; Konovalov, 2010) and, among others, numerous prob-
lems in distributed modeling for social science (Barabasi,
2005; Eom & Jo, 2015). Moreover, in sub-Gaussian envi-
ronments, if the multi-agent communication is noisy with
a (small) non-zero bias, this can lead to model misspecifi-
cation equivalent to the communicated variable exhibiting
heavy tails (McCulloch & Neuhaus, 2011). It is therefore
prudent to devise methods that are robust to such heavy-
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tailed effects, which is the central theme of this paper. We
define heavy-tailed random variables as follows.

Definition 1 (Heavy-Tailed Random Variables). A random
variable X is heavy-tailed if it does not admit a finite mo-
ment generating function, i.e., there is no u0 > 0 such that,

∀|u| ≤ u0, MX(u) , E[exp(uX)] <∞.

X is (1 + ε)-heavy tailed if E[|X|t] =∞ for all t > 1 + ε.

Almost all aforementioned research on this problem pro-
poses algorithms that average opinions via a consensus pro-
tocol (Landgren et al., 2016a), and ensure a group regret
of O(lnT ) in sub-Gaussian settings. However, these al-
gorithms, as a consquence, employ the empirical mean,
which, as we demonstrate in this paper, leads to O(T 2/3) re-
gret under 2-heavy tails (i.e., finite variance, see Section 5).
Moreover, the group regret achieved has a O(log |V |) de-
pendence on |V | (i.e., the number of agents), which we
demonstrate to be suboptimal. To our knowledge, no prior
work addresses |V |-optimality for the stochastic problem1.

Contributions. Our first contribution is the first (problem-
dependent) asymptotic lower bound of Ω(K∆−1/ε lnT ) on
the group regret for the cooperative multi-armed stochastic
bandit. This result holds for any connected graph G and
arbitrary communication protocol (following mild condi-
tions). Note that this implies that agents on average can
achieve a maximum of O( 1

|V | ) reduction in regret when co-

operating, compared to the earlier benchmark of O( ln |V |
|V | )

(Landgren et al., 2016a; Martı́nez-Rubio et al., 2019). These
results generalize the lower bound for the stochastic ban-
dit with multiple pulls, obtained by Anantharam et al.
(1987), to the case when rewards are obtained after de-
lays. In the heavy-tailed case, this lower bound matches
the Ω(∆−1/ε lnT ) rate obtained by Bubeck et al. (2013),
and in the sub-Gaussian case, matches the Ω(∆−1 lnT )
problem-dependent rates (Agrawal & Goyal, 2012).

Next, we present an algorithm MP-UCB for the cooperative
multi-agent stochastic bandit under heavy-tailed densities.
The key concept utilized in the development of the algorithm
is to provide an alternate technique to control the variance
of the arm estimators across the network G when the con-
sensus protocol provides suboptimal guarantees. This is
done by utilizing an alternate communication protocol titled
LOCAL (Linial, 1992) to share information between agents,
and then incorporating robust mean estimators to achieve
optimal rates. In this process, we also outline a subroutine
to efficiently compute the univariate robust mean for the
bandit problem (i.e., when confidence δ changes with time).

1There is recent research on the adversarial cooperative
case (Cesa-Bianchi et al., 2019) with an Ω(

√
|V |T ) lower bound.

For the stochastic case, we propose algorithms that achieve lower
problem-dependent rates, matching our bound of Ω(K lnT ).

We demonstrate that MP-UCB achieves O (χ̄(Gγ)K lnT )
group regret when run in a completely decentralized
manner (i.e., agents select actions independently), and
O (α(Gγ)K lnT ) when run in a centralized manner (i.e.,
some agents mimic others), similar to the regret bounds
obtained by Cesa-Bianchi et al. (2019) for the adversarial
case. Here, γ ≤ diameter(G) is a parameter controlling
the density of communication, and Gγ is the γ graph power
of G. χ̄ denotes the clique covering number, and α ≤ χ̄
denotes the independence number of a graph. These results
are optimal, in the sense that when our algorithm is run
with γ = diameter(G), both variants obtain a group regret
of O(K lnT ), matching the lower bound. This O(ln |V |)
improvement is achieved since the LOCAL protocol allows
us to partition the power graph Gγ in a manner that induces a
constant regret overhead from the communication delay, in
contrast to the consensus protocol that diffuses information
slowly for sparse G. Furthermore, when we allow O(K)-
sized messages per round, we demonstrate that MP-UCB
obtains O(α(Gγ)K lnT ) regret without knowledge of G.

We evaluate our algorithms on a benchmark of real-world
and random graphs. While we consider heavy-tailed densi-
ties, it can be easily seen that MP-UCB can be applied to
sub-Gaussian densities with optimal rates as well.

2. Related Work
Cooperative Decision-Making. Cooperative decision-
making for the stochastic multi-armed bandit has recently
seen a lot of research interest. Decentralized cooperative
estimation has been explored for sub-Gaussian stochastic
bandits using a running consensus protocol in (Landgren
et al., 2016a;b; Martı́nez-Rubio et al., 2019) and for ad-
versarial bandits (Bar-On & Mansour, 2019; Cesa-Bianchi
et al., 2019) using a message-passing protocol. Localized
decision-making for sub-Gaussian rewards has also been
explored in the work of (Landgren et al., 2018), and a fully-
centralized algorithm in (Shahrampour et al., 2017), where
all agents select the same action via voting.The stochastic
bandit with multiple pulls (Anantharam et al., 1987; Xia
et al.) is equivalent to the cooperative multi-armed bandit
on a complete G with a centralized actor (since there are no
delays and all agents have the same information ∀t ∈ [T ]).

Contrasted to cooperative settings, there is extensive re-
search in competitive settings, where multiple agents com-
pete for arms (Bistritz & Leshem, 2018; Bubeck et al.,
2019; Liu & Zhao, 2010a;b;c). For strategic experimenta-
tion, Brânzei & Peres (2019) provide an interesting compar-
ison of exploration in cooperative and competitive agents.

A closely-related problem setting is the single-agent social
network bandit, where a user is picked at random every
trial, and the algorithm must infer its contextual mean re-
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ward (Cesa-Bianchi et al., 2013; Gentile et al., 2014; 2017;
Li et al., 2016), while assuming an underlying clustering
over the users. This problem setting, while relevant, cru-
cially differs from the one considered herein, since (a) this is
a single-agent setting (only one action is taken every round),
and (b) there are no delays in the rewards obtained. While a
multi-agent variant has been considered (Korda et al., 2016),
this work also assumes no delays in communication.

Heavy-Tailed Bandits. Bubeck et al. (2013) first discuss
the problem of stochastic bandits with heavy-tailed rewards,
and propose the ROBUST-UCB algorithm that uses robust
mean estimators to obtain logarithmic regret. Vakili et al.
(2013) introduce DSEE, an algorithm that sequences phases
of exploration and exploitation to obtain sublinear regret.
Thompson Sampling (Thompson, 1933) has been analysed
for exponential family bandits (that include Pareto and
Weibull heavy-tailed distributions) in the work of Korda
et al. (2013), however, these distributions have “lighter” tails
owing to the existence of higher order moments. Dubey &
Pentland (2019) provide an algorithm for Thompson Sam-
pling for α-stable densities (Borak et al., 2005), at family
of heavy-tailed densities typically with infinite variance. Yu
et al. (2018) provide a purely exploratory algorithm for best-
arm identification for ε-heavy tailed rewards. For the linear
bandit, (Medina & Yang, 2016; Shao et al., 2018) provide
nearly-optimal algorithms under heavy tails. To our knowl-
edge, this paper is the first to study robust bandit learning in
the context of decentralized multi-agent estimation.

3. Preliminaries
Finite-Armed Stochastic Bandit. We consider the family
of bandit problems E for a finite, countable set of actions A,
such that |A| = K. E is considered to be unstructured, i.e.
the rewards from each arm are independent of the others.

Definition 2 (Unstructured Bandit Problem). An environ-
ment class of bandit problems E is unstructured if its action
space A is finite, and there exists a set of distributionsMa

for each a ∈ A such that

E = {ν = (Pa : a ∈ A) : Pa ∈Ma∀a ∈ A}.

Agents face a common stochastic bandit with K arms. Re-
wards from arm k ∈ [K] are drawn from an ε-heavy tailed
distribution νk with mean µk, and known bounds on the
(1 + ε) moments E[|X − µk|1+ε] ≤ ρ and E[|X|1+ε] ≤ u.
The optimal arm is given by k∗ = arg maxk∈[K] µk.

Cooperative Problem Setting. We consider M agents
communicating via a connected, undirected graph G =
(V,E). Communication is bidirectional, and any message
sent from agent v is obtained by agent v′ after d(v, v′)− 1
rounds of the bandit problem, where d(v, v′) denotes the
length of the shortest path between the agents. Let L andA

denote the graph Laplacian and adjacency matrix of G, and
P = IM − κ · d−1

maxL is a row stochastic matrix, where IM
is the identity matrix of order M , κ > 0 is a constant and
dmax = maxm∈G degree(m). We assume that the eigenval-
ues λi of P are ordered such as λ1 = 1 ≥ ... ≥ λM > −1.
Let Amt denote the action taken by agent m at time t, and
Xmt denote the corresponding reward. nk(T ) denotes the
total number of times any arm k is pulled across all agents,
and nmk (T ) denotes the times agent m has pulled the arm.
Let the power graph of order γ of G be given by Gγ , i.e., Gγ
contains an edge (i, j) if there exists a path of length at most
γ in G between agents i and j. For any agent v ∈ V , let the
neighborhood of m in Gγ be given by Nγ(v). The policy
of agent v ∈ V is given by (πv,t)t∈[T ], and the collective
policy is given by Π = (πv,t)v∈V,t∈[T ].
Definition 3 (Consistent Bandit Policy). Let Π be any ban-
dit policy, potentially running over multiple agents. Π is
consistent if, for any suboptimal arm k ∈ [K], k 6= k∗,
horizon T > 0, one has E[Nk(T )] = o(T a) for any a > 0.

Univariate Robust Estimation. Optimal algorithms have
been proposed for robust estimation of location in the uni-
variate setting with polynomial running time. The simplest
of these is the trimmed mean, that rejects outlying samples
based on an upper bound on the moments. Its runtime for N
samples obtained sequentially (with changing confidence δ)
is O(N2), which we improve to O(N lnN) (Algorithm 3).
Definition 4 (Trimmed Mean). Consider n copies
X1, ..., Xn of a heavy-tailed random variable X such that
E[X] = µ,E[X1+ε] ≤ u for some ε ∈ (0, 1]. The online
trimmed mean, for some δ ∈ (0, 1) is defined as

µ̂O =
1

n

n∑
i=1

Xi1

{
|Xi| ≤

(
ui

log δ−1

) 1
1+ε

}
.

Several alternative robust mean estimators exist, such as the
median-of-means or Catoni’s estimator (Catoni, 2012). Un-
der stricter tail assumptions, they provide better estimates,
however, for simplicity, we continue with the trimmed mean.
In the analysis, we assume that a mean estimator exists that
achieves the following optimal rate (up to constants).
Assumption 1 (Rate Assumption). Let X1, ..., Xn be n
samples of an ε-heavy tailed random variable, where ε ∈
(0, 1], and E[X] = µ. For positive constants c, ρ suppose
that there exists a robust estimator µ̂(δ, n) such that, with
probability at least 1− δ,

|µ̂(δ, n)− µ| ≤ 2ρ
1

1+ε

(
c log(δ−1)

n

) ε
1+ε

.

Catoni (2012) provides this as the optimal achievable rate
under heavy tails, and Bubeck et al. (2013) demonstrate that
the trimmed mean achieves this rate (see appendix).
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4. Lower Bounds
We now present lower bounds on cooperative decision-
making. All full proofs are presented in the appendix for
brevity. We consider |V | = M agents communicating over
graph G, with diameter(G) = γ∗ � M . We first make
some (mild) assumptions on the communication protocol.

Assumption 2 (Communication Protocol). The communi-
cation protocol considered follows:

1. Any agent m is capable of sending a message qm(t) to
any other agent m′ ∈ [M ], which is earliest received
at time t+ min(0, d(m,m′)− 1).

2. qm(t) is a function of the action-reward pairs of agent
m, i.e. qm(t) = Ft(Am,1, Xm,1, ..., Am,t, Xm,t) for
any deterministic, bijective and differentiable set of
functions Ft = (fi,t)i∈[L], fi,t : R2t → R.

3. Ft satisfies |det (Jt) | = Λ(m, t). Here, Jt(·) is the
Jacobian of Ft, and Λ is only a function of m and t.

This assumption ensures that (a) information can flow be-
tween any two agents, and (b) that the messages are not
stochastic and are independent the bandit problem. We can
then derive a lower bound on the group regret.

Theorem 1 (Lower Bound). For any consistent cooperative
multi-agent policy Π = (Πt)t∈[T ] onM agents that satisfies
Assumption 2 the following is true.

lim inf
T→∞

RG(T )

lnT
≥

∑
k:∆k>0

∆k

Dinf
k

.

Here, Dinf
k = infν′∈Mk

{DKL(ν, ν′) : µ(ν′) > µ∗}, and
DKL(·, ·) denotes the Kullback-Leibler divergence.

Remark 1. Theorem 1 does not guarantee an overhead
from delayed communication, since it includes protocols
that allow information to flow completely through the (con-
nected) network G, albeit at a delay (which is independent of
T ). Making stronger assumptions about the connectivity of
G and communication protocol can lead to stronger bounds.

Remark 2. This result generalizes that obtained by Anan-
tharam et al. (1987) for a centralized agent with multiple
pulls to the case where rewards are obtained after finite
delays. This can be understood by considering a complete
G, which is equivalent to having a centralised agent (since
there is no difference in information between agents). The
comparison with a single agent pulling MT arms(Martı́nez-
Rubio et al., 2019), is therefore an incorrect benchmark.

For the specific case of (1 + ε)-heavy tailed rewards, the
single-agent lower bound provided by (Bubeck et al., 2013)
can be easily extended to the cooperative multi-agent case.

Corollary 1 (Lower Bound on Heavy-Tailed Cooperative
Regret). For any ∆ ∈ (0, 1/4), there exist K ≥ 2 dis-
tributions ν1, ..., νK satisfying EX∼νk [|X|1+ε] ≤ u, and
EX∼ν∗ [X]−EX∼νk [X] = ∆∀k ∈ K, such that any consis-
tent decentralized policy Πt = (πm,t)m∈[M ],t∈[T ] that satis-
fies Assumption 2 obtains group regret of Ω(K∆−1/ε lnT ).

The O(∆−1/ε) dependency is unavoidable, as shown
in (Bubeck et al., 2013), and it can be matched using robust
estimators. The formulation of robust estimators makes
averaging-based communication protocols infeasible, such
as the running consensus, as shown in the following section.

5. The Limits of Running Consensus
Under the consensus protocol, agents maintain an esti-
mate of values of interest, which they average with their
neighbors every round. The protocol stores 2K opin-
ion vectors ŝk(t) = (ŝvk(t))v∈V , k ∈ [K] and n̂k(t) =
(n̂vk(t))v∈V , k ∈ [K], that are updated as follows.

ŝk(t) = P (ŝk(t− 1) + rk(t) ◦ ζk(t)) . (2)
n̂k(t) = P (n̂k(t− 1) + ζk(t)) . (3)

Here ŝk(t) is a vector of reward sums for arm k for each
agent, ζk(t) is a vector of indicators of whether the agents
pulled arm k at time t, and rk(t) is the vector of rewards
obtained by the agents from arm k. Using this, any agent
v ∈ V computes the empirical mean of each arm k.

µ̂
(v)
k (t) = ŝ

(v)
k (t)/n̂

(v)
k (t). (4)

When ε = 1, i.e. the reward distributions have finite
variance, we can design a UCB algorithm CONSENSUS-
UCB (Landgren et al., 2016a), where each agent chooses
the arm that maximizes the following UCB.

Av,t = arg max
k∈[K]

{
µ̂

(v)
k (t) +

√
6ρt2/3

|V |

(
n̂vk(t) + εk

n̂vk(t)2

)}
.

(5)

Theorem 2. The CONSENSUS-UCB algorithm obtains a
group regret of O

(
(1 + h(G))KT

2
3

)
after T trials, where

h(G) is, for constants apj that only depend on G,

h(G) =

|V |∑
p=1

|V |∑
j=2

|λpλj |
1− |λpλj |

apj .

A full description of this algorithm is included in the ap-
pendix. Since we are utilizing the empirical mean for
CONSENSUS-UCB, the UCB utilized cannot be made
tighter, suggesting that the algorithm is suboptimal in T .
More importantly, it can be expected that any algorithm that
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utilizes the empirical mean (running consensus converges to
the empirical mean as T →∞ (Aysal & Barner, 2010)) is
suboptimal in T owing to the suboptimality of the empirical
mean itself (see appendix).

6. Message-Passing Cooperative UCB
In the message-passing protocol, agents v ∈ V communi-
cate via messages qv(t) = 〈v, t, Av,t, Xv,t〉. This message
is first sent to its neighbors in G, and it is subsequently for-
warded by any agent that receives it until time t+ γ, after
which it is discarded. 0 ≤ γ ≤ diameter(G) is therefore the
communication density, where lower values of γ imply less
communication in the network.

Let Qv(t) denote the set of incoming messages received by
agent v at instant t. During any trial, the agent first pulls
an arm, and creates the message qv(t). It then processes all
messages in Qv(t), and updates its beliefs as per any bandit
algorithm. Finally, it discards all messages older than t− γ
and forwards all remaining messages in Qv(t) ∪ {qv(t)} to
all its neighbors in G. This protocol has been used in dis-
tributed optimization (Moallemi, 2007), non-stochastic ban-
dit settings (Bar-On & Mansour, 2019; Cesa-Bianchi et al.,
2019) and asynchronous online learning (Suomela, 2013).
This protocol satisfies Assumption 2 with γ = diameter(G).

6.1. Decentralized Algorithm

In the decentralized setting, each agent acts independently,
i.e., there is no centralized controller that dictates actions.
In this setting, each agent v maintains a set Svk(t) of rewards
obtained from arm k, which it updates at each trial from its
own pulls and incoming messages. Then it computes the
robust mean of Svk(t) via the estimator µ̂(|Smk (t)|, δ). Using
Assumption 1, it then estimate a UCB for each arm mean,
and selects the arm with the largest UCB (Algorithm 1).

Theorem 3. The group regret for Algorithm 1 when run
with parameter γ and mean estimator µ̂(n, δ) that satisfies
Assumption 1 with constants c and ρ satisfies:

RG(T ) ≤ Cχ̄ (Gγ)

( ∑
k:∆k>0

(2∆k)−1/ε

)
lnT+

(3M + γχ̄ (Gγ) (M − 1))

( ∑
k:∆k>0

∆k

)
.

Here, C > 0 is a constant independent of T,K,M , and
χ̄(·) refers to the clique number.

Proof (sketch). We first bound the regret in each clique C
within the clique covering Cγ of Gγ . This is done by notic-
ing that the upper confidence bound for any arm at a selected
t deviates by a constant amount between agents based on the

Algorithm 1 DECENTRALIZED MP-UCB
1: Input: Arms k ∈ [K], parameters ε, c, ρ, estimator µ̂(n, δ)
2: Svk ← φ ∀k ∈ [K], Qv(t)← φ, ∀v ∈ V .
3: for each iteration t ∈ [T ] do
4: for each agent v ∈ V do
5: if t ≤ K then
6: Am,t ← t.
7: else
8: for Arm k ∈ [K] do
9: µ̂

(v)
k ← µ̂(Svk , 1/t

2).

10: UCB(v)
k (t)← ρ

1
1+ε

(
2c ln t
|Sv

k
|

) ε
1+ε .

11: end for
12: Av,t ← arg maxk∈[K]

{
µ̂
(v)
k (t) + UCB(v)

k (t)
}

.
13: end if
14: Xv,t ← PULL(Av,t).
15: SvAv,t

← SvAv,t
∪ {Xv,t}

16: Qv(t)← Qv(t) ∪ {〈v, t, Av,t, Xv,t〉}.
17: for each neighbor v′ inN1(v) do
18: SENDMESSAGES(v, v′, Qv(t)).
19: end for
20: end for
21: for each agent v ∈ V do
22: Qv(t+ 1)← φ.
23: for each neighbor v′ inN1(v) do
24: Q′ ←RECEIVEMESSAGES(v′, v)
25: Qv(t+ 1)← Qv(t+ 1) ∪Q′.
26: end for
27: for 〈v′, t′, a′, x′〉 ∈ Qv(t+ 1) do
28: if v′ ∈ CLIQUE(v,Gγ) then
29: Sva′ ← Sva′ ∪ {x′}.
30: end if
31: end for
32: end for
33: end for

number of times each agent has pulled an arm. By bounding
this deviation, we obtain a relationship between the confi-
dence bound of each arm for each agent within the clique
C. Next, we bound the probability of pulling a suboptimal
arm within the clique C using the previous result. Summing
over the clique coverCγ delivers the final form of the result.
The complete proof is included in the appendix for brevity.

Remark 3. Communication density determines the group
regret dependence or “cooperation” in Algorithm 1. When
γ = diameter(G), χ̄(Gγ) = 1, and we incur optimal group
regret O(K∆−1/ε lnT ), and also satisfies both assump-
tions of Assumption 2. However, when γ = 0, i.e. agents do
not communicate, regret is O(|V |K∆−1/ε lnT ).

Each agent in Algorithm 1 utilizes observations only from its
own clique in Gγ to make decisions, effectively paritioning
G. When G is sparse (e.g., small-world networks (Barabasi,
2005)), the clique number of the graph Gγ can be large. In
this case, a centralized variant can provide lower regret.
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Algorithm 2 CENTRALIZED MP-UCB
1: Input: Same as Algorithm 1.
2: Set Svk ← φ ∀k ∈ [K], Qv(t)← φ, A∗v ← 1, for all v ∈ V .
3: for each iteration t ∈ [T ] do
4: for each agent v ∈ V do
5: if t ≤ K then
6: Av,t ← t.
7: else if v ∈ V ′ or t ≤ d(v, l(v)) then
8: Run lines 8-12 of Algorithm 1.
9: else

10: Av,t ← A∗v .
11: end if
12: Run lines 14-19 of Algorithm 1.
13: end for
14: for each agent v ∈ V do
15: Run lines 22-26 of Algorithm 1.
16: for 〈v′, t′, a′, x′〉 ∈ Qv(t+ 1) do
17: Sva′ ← Sva′ ∪ {x′}.
18: end for
19: A∗v =CHOOSELASTACTION(∪kSvk(t+ 1)).
20: end for
21: end for

6.2. Centralized Algorithm

In the centralized setting, we present a version of the
“follow-the-leader” strategy. Here, the agents are partitioned
into “leaders” and “followers”. The leader agents follow
the same procedure identically to Algorithm 1, and the fol-
lower agents simply copy the most recent action they have
observed of their associated leader. We now describe how
the graph G is partitioned into leaders and followers.
Definition 5 (Maximal Weighted Independent Set). An in-
depedent set of a graph G = (V,E) is a set of vertices
V ′ ⊆ V such that no two vertices in V ′ are connected. A
maximal independent set V ∗ is the largest independent set
in G, and the independence number α(G) = |V ∗|. For a
vertex-weighted graph, a maximal weighted independent set
V ′w ⊆ V is the maximal independent set such that the sum
of weights for all vertices in V ′w is the largest possible.

We select the leaders as the members of a maximal in-
dependent set V ′ ⊆ V of Gγ . For each follower agent
v ∈ V \ V ′ we assign a leader l(v) to it such that (a)
there is an edge between v and l(v) in Gγ , and (b) l(v)
has maximum degree in V ′ ∩ Nγ(v), i.e. l(v) ∈ V ′ such
that l(v) = arg maxv′∈V ′∩N1(v) degree(v). It is trivial to
demonstrate that each agent will either be a leader node,
or be connected to a leader (see appendix). Algorithm 2
describes this algorithm particularly from its differences
with the decentralized version.
Theorem 4. Algorithm 2 run with parameters γ, c, ρ ob-
tains the following group regret (where α(·) denotes the
independence number).

RG(T ) = O

(
α(Gγ)

( ∑
k:∆k>0

∆
−1/ε
k

)
lnT

)
.

Proof (sketch). The key idea is to partition Gγ into non-
overlapping sets given by V ′ and to note thatRv ≤ Rl(v)+γ
for any v ∈ V \V ′. Then, we can bound the number of times
any element in V ′ selects an arm until time t as a function of
its neighborhood in Gγ . Using this bound, we can then create
an UCB to bound the probability of pulling a suboptimal
arm for any agent v ∈ V ′, and collectively bound the group
regret of the entire neighborhood. Summing over v ∈ V ′
delivers the final result, since V ′ forms a vertex cover in Gγ .
The complete proof is available in the appendix.

Since α(G) ≤ χ̄(G) for any graph G, the centralized version
of the MP-UCB algorithm obtains regret strictly no worse
compared to the decentralized version. We are aware that
the set of leader nodes must form a maximal independent
set in Gγ , however, for large graphs there may be multiple
maximal independent sets present, and selecting a subop-
timal independent set can increase group regret. Agents
present more “centrally” may be a better choice as leaders,
compared to “peripheral” agents. Our choice of independent
set is motivated by the following result.
Corollary 2. For agent v ∈ G, let v∗ denote its correspond-
ing leader agent (v = v∗ for leaders), and F (v∗) denote
the corresponding set of follower agents for v∗ (including
v∗). The following holds for the regret Rv(T ).

Rv(T ) = O

(
K lnT

|F (v∗)|∆1/ε
min

)
.

We see that, intuitively, even for agents that themselves are
not well-connected, as long as they are connected to a well-
connected leader (with large |F (v∗)|), the individual regret
will be low. By this result, we select the weight assigned to
any agent v as its degree in Gγ , since, asymptotically perfor-
mance depends on (|F (v∗)|−1). A few additional remarks
can be made, inspired by Bar-On & Mansour (2019).
Remark 4. The average regret from Algorithm 2 is
O((α(Gγ)/|V |)K lnT ), i.e. optimal when γ = diam(G).
When γ =

√
K, Algorithm 2 can obtain a per-agent regret

of O(∆
−1/ε
∗
√
K lnT ). This can be shown following the

procedure in Bar-On & Mansour (2019), by noticing that
when G is connected, α(Gγ) ≤ d2|V |/(γ + 2)e. Also note
that we need only

√
K leaders at most to obtain this regret.

When γ = diam(G), then, only 1 arbitrarily chosen leader
can deliver optimal regret, regardless of its position in G.

6.3. Additional Optimizations

O(K) Per-round Communication. We now demonstrate
that communicating additional information beyond just
action-reward pairs can significantly improve performance,
and obtain optimal regret without knowledge of G. In this
case, the message qv(t) is augmented as follows.

qv(t) =
〈
v, t, Av,t, Xv,t, µ̂

(v)(t),Nv(t)
〉
. (6)
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Where µ̂(v)(t) = (µ̂
(v)
k (t))k∈[K] are the robust mean esti-

mates used by agent m to make decisions at time t, and
Nv(t) = (|Svk(t)|)k∈[K] is the vector containing the num-
ber of reward samples possessed by agent v until time t.
Each agent v also maintains a set W of the most recent
(µ̂(v′)(t),Nv′(t)) for each v′ ∈ Nγ(v) ∪ {v}, which they
update with each message received from agent v′. At any
instant, the agent chooses, for each arm k, the corresponding
µ̂v
∗

k (t) andNv∗(t) inW with the largestNv∗(t) (and “tight-
est” UCB) to construct its upper confidence bound. The full
algorithm (KMP-UCB) is described in the appendix.

Theorem 5. KMP-UCB obtains group regret RG(T ) of
O(α(Gγ)K∆−1/ε lnT ) over any connected graph G.

Proof (sketch). We first note that there will be an indepen-
dent set of agents V ′ ∈ V that has, at any given t, the largest
set of observations within their neighborhoods. Since at trial
t + diameter(Gγ), any other agent will either use the con-
fidence estimates of v ∈ V ′, or will have better estimates
(from more samples). This provides us a technique to lower
bound the number of times the entire group of agents V will
pull an arm at any time t in terms of the pulls of v ∈ V , and
then construct a UCB for each arm from it. We then proceed
by the standard UCB technique for a single-agent, and use
concentration of the robust mean to derive regret for each
v ∈ V ′. Finally, summing over v gives us the desired result.

Contrasted to the regret bound of O(
√
|V |α(G)TK lnK)

obtained by Cesa-Bianchi et al. (2019) for the nonstochastic
case (where communication is also O(K) per agent), our
algorithm obtains lower group regret in the stochastic case.
Additionally, this implies a O(ln |V |) improvement over the
previous bound in the stochastic case (Martı́nez-Rubio et al.,
2019).

Online Estimation of Trimmed Mean. The trimmed mean
estimator requires selecting a sample Xi at time t only if
|Xi| ≤ (2ui ln t)1/(1+ε) (Definition 4). This implies that
the ith reward sample an agent has will be selected at the
smallest time t such that (|Xi|1+ε/(i)) ≤ 2u ln t. When T
is knowns, we can utilize a binary search tree to make an
update to the robust mean O(ln t) instead of O(t) at time t.
We outline this procedure in Algorithm 3.

Algorithm 3 assumes that for any t, a new set of observations
Ot is available, which it incorporates into the robust mean
with O(ln t) per sample (instead of typically recomputing
the mean for each t). The complexity stems from the binary
search, assuming the dictionary lookup is O(1).

7. Experiments
Our primary contributions are in leveraging cooperation to
accelerate overall decision-making, and the most interest-
ing aspects of this study pertain to how graph structures,

Algorithm 3 ONLINE TRIMMED MEAN ESTIMATOR

1: Input: u, T .
2: Create dictionary D of size T , where D(t) = φ ∀t ∈ [T ].
3: Create BST B with entries ((2u ln t)1/(1+ε))t∈[T ].
4: ŜO ← 0, n← 0
5: for t ∈ [T ] do
6: Ot ← OBSERVATIONS(t).
7: for xt ∈ Ot do
8: n← n+ 1
9: it ← max

(
t, SEARCH(B, (|xt|1+ε/n))

)
.

10: D(it)← D(it) ∪ {xt}.
11: end for
12: for x ∈ D(t) do
13: ŜO ← ŜO + x.
14: end for
15: µ̂O(t)← ŜO/n.
16: end for

scalability, heavy tails and decentralized vs. centralized
estimation affect the group regret. To this end, we analyse
these aspects in our experimental setup, and relegate other
comparisons (∆k, number of arms, etc.) to the appendix.

Reward Distributions. We conduct experiments using α-
stable densities (Lévy, 1925), that admit finite moments
only of order < α ≤ 2, and we consider α-stable densities
where α ≥ 1. The α-stable family includes several widely
used distributions, such as Gaussian (α = 2, only light-
tailed density), Lévy (α = 0.5) and Cauchy (α=1). The
primary advantage of this density is that α can be adjusted
to alter the heaviness of the reward distribution (α > 1).

Graph Partitioning. For Algorithm 2, we require computing
the maximal weighted independent set of G. This problem
is NP-Hard for arbitrary G, and difficult to approximate. We
use the approximate algorithm presented in (Lucas, 2014)
that uses the QUBO (Glover & Kochenberger, 2018) solver.

Experiment 1: Random Graphs. We set K = 5, α = 1.9
for the standard α-stable density, and sample arm means
randomly from the interval [0, 1] for each arm every experi-
ment. We then construct random graphs on 200 agents from
the Erdos-Renyi (ER) (p = 0.7) and Barabasi-Albert (BA)
(m = 5) random graph families, and compare all three of
our algorithms (using the trimmed mean estimator, with
γ = diam(G)/2) with the CONSENSUS-UCB and single-
agent ROBUST-UCB(Bubeck et al., 2013) algorithms. We
compare the group regret RG(T ) vs. T , averaged over 100
random graphs and bandit instances. The results for Erdos-
Renyi graphs (Figure (1A)) and Barabasi-Albert graphs
(Figure (1B)) demonstrate that while our algorithms outper-
form the baselines (in the order dictated by regret bounds),
the gain is larger for the former. We attribute this to the net-
work connectivity, i.e., since Barabasi-Albert graphs have
“hubs”, the clique number χ̄(G) for these graphs is larger.

Experiment 2: Real-World Networks. We select the p2p-
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Figure 1. Experimental benchmarks, where each experiment is averaged over 100 trials. Figures (A) and (B) compare performance on
samples of random graphs; (C) and (D) compare performance on two classes of real-world networks, and (E) and (F) are ablations.

Gnutella04 (Figure 1C) and ego-Facebook (Figure 1D)
network structures from the SNAP repository (Leskovec &
Sosič, 2016) to experiment with in the real-world setting.
For both experiments, we sample subgraphs of 500 nodes,
and use these subgraphs. A common misconception is to
compare our distributed multi-agent problem with the social
network clustering problem (Gentile et al., 2014; Li et al.,
2016), which is more scalable since it is single-agent (i.e.,
one action chosen per trial). These networks are chosen
because they represent two diverse situations cooperative
decision-making can be applicable in – social networks
and peer-to-peer communication networks. In both cases,
we observe a similar trend. The gains are larger in the
p2p-Gnutella case since ego-Facebook is dense (with fewer
nodes), hence CONSENSUS-UCB performs better as well.

Experiment 3: Effect of γ and α. As ablation experiments,
we investigate the effect of communication density γ (Fig-
ure 1E) and tail parameter α (Figure 1F) on the group regret.
For both experiments, we construct random graphs on 200
agents from the Erdos-Renyi (p = 0.7) family. We compare
the group regret at T = 10000 trials as a function of γ,
and α, respectively. First, we observe that communication
density has a significant effect on all but the KMT-UCB
algorithms. Next, we see that CONSENSUS-UCB progres-
sively gets worse as the tail gets heavier (i.e, α→ 1+).

8. Conclusion
In this paper, we presented a treatment of cooperative bandit
estimation under heavy tails. We provided the first asymp-

totic lower bound on cooperative estimation that holds for
arbitrary graphs G and a wide variety of communication
protocols. We present the first robust cooperative estimation
algorithms that can all provide optimal regret, even without
knowledge of G. We support our bounds via experiments
over random graphs as well. However, our work leaves sev-
eral open questions in robust multi-agent decision-making.

First, we note that our best algorithm provides an asymp-
totic group regret of O(α(Gγ)K lnT ), which is similar to
the results obtained in the non-stochastic case (Cesa-Bianchi
et al., 2019; Martı́nez-Rubio et al., 2019). The α(Gγ) over-
head can be attributed to the fact that information does not
flow completely through the network (cf. Assumption 2a).
This leads us to believe that tighter lower bounds can be
obtained by taking this aspect of the communication proto-
col into account. Moreover, in realistic settings, messages
incur stochasticity, i.e. they can be dropped at random, or
propagate with varying delay γ. This line of work has been
studied in the single-agent setting (Pike-Burke et al., 2017;
Vernade et al., 2018), however the problem becomes more
challenging when multiple agents interact simultaneously.

The extension of our setting to the contextual case is not
trivial. Robust single-agent estimation for linear bandits is
a difficult problem from both the algorithmic and computa-
tional point of view, since statistically optimal multivariate
estimators require exponential time to compute (Lugosi &
Mendelson, 2019). Furthermore, delay creates a

√
γ scaling

of the regret (Neu et al., 2010), which is amplified in the
multi-agent setting. Addressing such scenarios is a difficult
but crucial next step in this line of research.
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