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Abstract
Cooperative multi-agent decision making involves
a group of agents cooperatively solving learning
problems while communicating over a network
with delays. In this paper, we consider the ker-
nelised contextual bandit problem, where the re-
ward obtained by an agent is an arbitrary linear
function of the contexts’ images in the related
reproducing kernel Hilbert space (RKHS), and
a group of agents must cooperate to collectively
solve their unique decision problems. For this
problem, we propose COOP-KERNELUCB, an al-
gorithm that provides near-optimal bounds on the
per-agent regret, and is both computationally and
communicatively efficient. For special cases of
the cooperative problem, we also provide variants
of COOP-KERNELUCB that provides optimal per-
agent regret. In addition, our algorithm general-
izes several existing results in the multi-agent ban-
dit setting. Finally, on a series of both synthetic
and real-world multi-agent network benchmarks,
we demonstrate that our algorithm significantly
outperforms existing benchmarks.

1. Introduction
An emerging problem in online learning and multi-agent
distributed systems is the cooperative multi-agent bandit.
It involves a group V of V agents collectively solving a
decision problem while communicating with each other.
The problem proceeds in rounds t = 1, 2, ..., T , where at
any trial t = 1, 2, ..., each agent v ∈ V is presented with a
decision set Dv,t, and selects an action xv,t ∈ Dv,t. Each
agent obtains a stochastic reward yv,t, following:

yv,t = f(xv,t) + εv,t,

where εv,t is i.i.d. noise, and f is an unknown (but fixed)
function. The collective objective of the group of agents is
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to select actions that minimize the expected group regret:

RG(T ) =
∑
v∈V

T∑
t=1

(
f(x∗v,t)− f(xv,t)

)
,

where, x∗t = arg maxx∈Dv,t f(x). The research objec-
tive for this problem is to design multi-agent algorithms
that can leverage communication to improve overall perfor-
mance (Landgren et al., 2016a; Szorenyi et al., 2013).

Agents communicate via an undirected graph G = (V, E),
where (i, j) ∈ E if agents i and j are connected. Messages
from any agent v are available to agent v′ after d(v, v′)− 1
trials of the bandit, where d is the distance between the
agents in G. This gradually creates heterogeneity between
the information available to each agent, and is the primary
technical challenge in algorithm design for this problem.
Moreover, recent work assumes that the bandit problem
is common (i.e., f is identical for all agents), but this
assumption does not hold for most decentralized applica-
tions (Boldrini et al., 2018). For instance, in a decentralized
supply chain network (Thadakamaila et al., 2004), agents
interact with similar but non-identical decision problems,
since loads are generally distributed non-uniformly. In this
setting, naı̈vely incorporating observations from neighbor-
ing agents may not be beneficial, and algorithms must be
carefully designed to optimally leverage cooperation.

A related problem is the online social network clustering
of bandits, where, at every trial, a randomly selected agent
interacts with the bandit (Cesa-Bianchi et al., 2013; Gentile
et al., 2014; 2017; Li et al., 2016; 2019). In this formu-
lation, a fixed (but unknown) clustering over the agents
is assumed, where agents within a cluster have identi-
cal context functions. While the assumptions of linear-
ity and clustering are feasible in the context of social net-
works (Al Mamunur Rashid et al., 2006), these assumptions
may not hold for general multi-agent environments, such
as geographically-distributed computational clusters (Cano
et al., 2016). In the case when each agent has its own unique
decision problem, the clustering approach leads to an O(V )
multiplicative increase in the group regret. Moreover, the so-
cial network clustering problem is single-agent, since at any
trial, only one agent interacts with the bandit. This makes
it less challenging compared to the multi-agent cooperative
bandit, since there is no heterogeneity of information (as
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discussed earlier). Multi-agent settings have been consid-
ered for social network clustering (Korda et al., 2016), but
without delayed feedback (hence, without heterogeneity).

Contributions. In this paper, we study the cooperative
multi-agent bandit with delays. We assume that each agent
v ∈ V interacts with a separate bandit function fv, where
all functions fv, v ∈ V have small norm in a known repro-
ducing kernel Hilbert space (RKHS) (Schölkopf & Smola,
2005) specified by a fixed kernel Kx. This is a more general
setting compared to the existing clustering or identical (i.e.,
fully-cooperative) settings in the literature, and allows us to
propose a technique to measure the similarity between the
functions fv via an agent-based similarity kernel, which can
be learnt online when it is unknown. Under this formula-
tion, we present COOP-KERNELUCB, an algorithm for the
multi-agent contextual bandit problem on networks.

For the context-free multi-agent cooperative bandit
problem, existing bounds on group regret scale as
O
(√

TV log(V · λmax(G))
)

, where, λmax(G) is the max-
imum eigenvalue of the graph Laplacian for G (Martı́nez-
Rubio et al., 2019; Landgren et al., 2016b;a). These
bounds are obtained by using a communication protocol
known as the running consensus, that involves agents av-
eraging their beliefs with neighboring agents. This com-
munication protocol restricts these methods to the fully-
cooperative setting, i.e., all agents have identical arms; it
is trivial to see that naive averaging of estimates in non-
identical settings can lead to irreducible bias and Θ(T ) re-
gret. COOP-KERNELUCB employs an alternate communi-
cation protocol, entitled LOCAL (Suomela, 2013), that in-
volves agents sending messages to each other. Additionally,
COOP-KERNELUCB uses an alternative “network” kernel
Kz , to measure similarity between agent reward functions
f1, ..., fV . When Kz is known (such as, e.g., in cases when
agents correspond to users in a social network), we can use
Kz to construct a product kernel K = Kz �Kx, and use
K (instead of Kx) to construct upper confidence bounds.

We consider the case when the decision sets Dv,t can be
infinite or continuum action spaces, and ∀ v ∈ V, ‖fv‖H ≤
B. In this setting, the single-agent IGP-UCB (Chowd-
hury & Gopalan, 2017) algorithm, assuming the agent
interacts with a single function f , obtains a regret of
Õ(
√
V T (B

√
Υx
V T +Υx

V T )) (where the Õ hides additional
logarithmic dependence on 1/δ) when run for a total of V T
rounds (i.e., a centralized agent that pulls all arms), where
Υx
V T is the information gain after V T rounds, a quantity

dependent on the structure of the RKHS of X . We demon-
strate that COOP-KERNELUCB, that uses the underlying
martingale inequality from IGP-UCB, obtains a regret of
Õ
(√

V T · χ̄(Gγ)
(
B
√

Υx
V TΥz + Υx

V TΥz
))

. Here, Υz

is a term corresponding to the similarity between functions
fv via the kernelKz , and χ̄(Gγ) is a term accounting for the

delayed propagation of information in the network G1. This
bound is achieved by utilizing graph partitions to control
the deviation in the confidence bound for each agent.

Our bound is reminiscent of single-agent bounds with addi-
tional contexts (Deshmukh et al., 2017; Krause & Ong,
2011), which rely on a known Kz . However, in many
cases, Kz is (unknown) and requires estimation. For this
case, we provide an alternative algorithm via kernel mean
embeddings (Christmann & Steinwart, 2010). Against
state-of-the-art methods on a variety of real-world and syn-
thetic multi-agent networks, our algorithm exhibits supe-
rior performance. Moreover, we present a variant, EAGER-
KERNELUCB, of our algorithm (without regret bounds) that
comfortably outperforms COOP-KERNELUCB and other
benchmarks. This extends the current literature of coop-
erative bandit estimation from the stochastic multi-armed
problem (Landgren et al., 2018; Martı́nez-Rubio et al., 2019;
Landgren et al., 2016a) to a more general class of functions,
and provides a technique to determine task similarity over
arbitrary cooperative settings.

2. Preliminaries
Notation. We use boldface uppercase to represent matrices,
i.e.,A, and lowercase for vectors, i.e., x. The RKHS norm
of a function f in RKHS H with kernel K is given by
‖f‖H =

√
〈f, f〉H. We denote the set {a, a+1..., b−1, b}

by the shorthand [a, b] and simply as [b] when a = 1. We
refer to the γth graph power of a graph G as Gγ (i.e., Gγ
contains an edge (i, j) if there exists a shortest path of length
at most γ between i and j in G). We denote a clique in Gγ
as a γ-clique in G, and denote G as γ-complete if Gγ is
complete. Nγ(v) ⊆ V denotes the set of nodes at a shortest
distance of at most γ from node v in G, referred to as the “γ-
neighborhood” of v in G. The distance between two nodes
v and v′ in G is given by the shorthand dG(v, v′).

Problem Setup. We consider a multi-agent setting of V
agents sitting on the vertices of a network represented by an
undirected and connected graph G = (V, E)2. We assume
that agents each solve unique instances of kernelised contex-
tual bandit problems. At each step t = 1, 2, ... each agent
v ∈ V obtains, at time t, a decision set Dv,t ⊆ X ⊂ Rd,
whereX is a compact subset of Rd. In this paper, we assume
Dv,t to even be an infinite set or a continuum of actions,
however, we discuss the case when it is a finite set of con-
texts x(1)

v,t ,x
(2)
v,t , ... later on, for which tighter regret bounds

can be obtained. At each trial t, each agent selects an action

1χ̄(Gγ) denotes the minimum clique number of the γth power
of graph G, i.e., Gγ has an edge (i, j) if there is a path of length at
most γ between i and j in G.

2Our results and algorithm can be trivially extended to directed
or disconnected case, by considering each connected subgraph in-
dividually, and considering statistics of the directed graph instead.
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xv,t ∈ Dv,t, and receives a reward yv,t = fv (xv,t) + εv,t.
Where fv : X̃ → R is a fixed (but unknown) function,
and εv,t is additive noise such that the noise sequence
{εv,t}∞t=1,v∈V is conditionally R-sub-Gaussian.

Single-Agent UCB. Our approach builds on the existing re-
search for upper confidence bounds for bandit kernel learn-
ing, a line of research that has seen a lot of interest (Srinivas
et al., 2009; Krause & Ong, 2011; Chowdhury & Gopalan,
2017; Valko et al., 2013; Deshmukh et al., 2017). The cen-
tral idea across all these approaches is to construct an upper
confidence bound (UCB) envelope for the true function f(·)
using an estimate f̂t, and then chooses an action xt ∈ Dt
that maximizes this upper confidence bound, i.e., for some
estimate f̂t of f ,

xt = arg max
x∈Dt

[
f̂t (x) +

√
βtσt−1 (x)

]
. (1)

Here, βt is an appropriately chosen “exploration” parameter,
and σt−1 can be thought of as the “variance” in the estimate
f̂t. Existing UCB-based approaches aim to construct a
sequence (βt)t to ensure a near-optimal tradeoff between
exploration and exploitation. The natural choice for f̂t is
the solution to the kernelised ridge regression. Given λ ≥
0 andX<t = (xi, yi)

t
i=1,

f̂t = arg min
f∈H

1

t

∑
(x,y)∈X<t

(f(x)− y))2 + λ‖f‖2H. (2)

The solution to the above problem (2) can be
written as the following (Valko et al., 2013)
(for κt(x) = (K (x,xi))

t
i=1 ,yt = (yi)

t
i=1 andKt =

(K(xi,xj))i,j∈[t]):

f̂t(x) = κt(x)> (Kt + λI)
−1
yt. (3)

For any particular choice of the sequence (βt)t, various
algorithms can be obtained, with different regret guarantees.
To provide more insight into the regret bounds obtained by
various algorithms, we now provide the definition of Υx,
i.e., maximum information gain.

Definition 1 (Maximum Information Gain (Srinivas et al.,
2009; Krause & Ong, 2011)). For yt = f(xt) + εt, let
A ⊂ X be a finite subset such that |A| = T . Let yA =
fA + εA where fA = (f(xi))xi∈A and εA ∼ N (0, R2).
The maximum information gain Υx

T after T rounds is:

Υx
T , max

A⊂X :|A|=T
H(yA)−H(yA|f). (4)

Here H(·) refers to the entropy of a random variable. Fur-
thermore, if we assume that the kernel Kx is bounded; i.e.,
Kx(x,x) ≤ 1 ∀x ∈ X , the following is true for compact
and convex X ⊂ Rd. For linear Kx, Υx

T = O(d log T ).
For RBF Kx, Υx

T = O((log T )d+1). For Matérn Kx with

ν > 1, Υx
T = O(T

d(d+1)
2ν+d(d+1) (log T )).

Remark 1 (UCB Regret for Single-Agent Algorithms). Let
δ ∈ (0, 1]. For continuum-armed Dt, choosing βt =
2B + 300Υx

t−1log
3(t/δ) guarantees with probability at

least 1 − δ a regret of Õ(
√
T (B

√
Υx
T + Υx

T ln3/2(T ))),
as demonstrated in the work of (Srinivas et al., 2009)
(GP-UCB). This was improved via a new martingale in-
equality to Õ(

√
T (B

√
Υx
T + Υx

T )) in the work of Chowd-
hury & Gopalan (2017) with the choice of βt = B +
R
√

2(Υx
t−1 + 1 + ln(1/δ)). An alternative regret bound

of Õ(
√
d̃T ) was provided via the Sup-KernelUCB algo-

rithm of Valko et al. (2013) (for finite-armed Dt), where d̃
is the effective dimension of Kx, a measure of the intrin-
sic dimensionality of the RKHS H. d̃ is related to Υx as
Υx ≥ Ω(d̃ ln lnT ). Further work has focused on improving
bounds for various families of kernels, e.g., see (Janz et al.,
2020; Scarlett et al., 2017).

The primary goal in the cooperative learning setting is to
provide each agent with stronger estimators that leverage
observations from neighboring agents. A suitable baseline,
therefore, in this setting, would be that of a centralized agent
pulling V T arms in a round-robin manner. Existing single-
agent algorithms propose a regret bound of Õ(Υx

V T

√
V T )

in this setting, and this is the comparative regret bound we
wish to match. We do not focus on stronger controls for
specific kernels or of the information gain Υx, and for that
we refer the reader to references in Remark 1.

3. Cooperative Kernelized Bandits
Network Contexts. Recall that for any agent v, the rewards
yv are generated following yv,t = fv(xv,t) + εv,t. To
provide a relationship between different fv , we assume that
the functions fv, v ∈ V are parameteric functionals of some
function F : X × Z → R for a known network context
space Z such that ∀ v ∈ V,∃ zv ∈ Z such that ∀x ∈ X ,

fv(x) = F (x, zv). (5)

Kernel Assumptions. We denote the space X × Z as X̃ ,
and the overall input (x, z) as x̃. Furthermore, we assume
that the function F has a small norm in the reproducing
kernel Hilbert space (RKHS, Schölkopf & Smola (2005))
HK associated with a PSD kernel K : X̃ × X̃ → R. HK
is completely specified by the kernel K(·, ·), and via an
inner product 〈·, ·〉K following the reproducing property. As
is typical with the kernelized bandit literature, we assume
a known bound on the RKHS norm of F , i.e. ‖F‖K ≤
B, and we assume that the kernel has finite variance, i.e.
K(x̃, x̃) ≤ 1,∀ x̃ ∈ X̃ 3.

3These are typically made assumptions in the contextual bandit
literature, and avoid scaling of the regret bounds. In the linear case,
the first assumption corresponds to having a bound on the norm of
the context vectors (Chowdhury & Gopalan, 2017), and the second
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Finally, we must impose constraints on the interaction of
the inputs x and z via two kernels Kx(·, ·) and Kz(·, ·). We
assume that K is a composition of two separate positive-
semidefinite kernels,Kz andKx such thatKz : Z×Z → R,
i.e., operating on the network contexts, and Kx : X ×
X → R operates on the action contexts. Our regret bounds
assume that the overall kernelK is formed via the Hadamard
product of Kx and Kz:

K ((z,x), (z′,x′)) = Kx(x,x′)Kz(z, z
′). (6)

Remark 2 (Kernel Compositions). For the development
in the paper, we restrict ourselves to the Hadamard com-
position, however, it is important to note that this is not a
limitation of our technique, and other compositions can be
explored. See the Appendix for details on the sum (Kz⊕Kx),
and Kronecker (Kz ⊗Kx) compositions.

Remark 3 (Independent vs. Pooled Modeling). When Dv,t
are countably finite, an alternate formulation is the “in-
dependent” assumption (Li et al., 2010), where a separate
model is considered for each “arm”. We assume the “pooled”
environment (Abbasi-Yadkori et al., 2011), (i.e., where all

“arms” are modeled together), however it is easy to extend
results to the former setting, by assuming arm-dependent
network contexts (see appendix).

The network kernel, Kz , determines how “similar” agent
functions fv are. For example, if all agents solve the same
bandit problem, i.e., fv = f ∀v ∈ V , then the appropri-
ate choice for this is to set Z = {1}, and zv = 1 for all
v ∈ V , and hence, K = Kx. Alternatively, in many internet
applications, users (which may correspond to agents) are
arranged in an online social network (say, Gnet), and zv can
be a network embedding of user v in Gnet. Typically, how-
ever, Z can be defined more generally with a corresponding
positive semi-definite (PSD) kernel Kz .

3.1. LOCAL Communication

Existing research on distributed bandit learning has largely
focused on two communication protocols - the first being a
centralized setting (Liu & Zhao, 2010; Wang et al., 2020),
as is standard in distributed computation, where a central
server acts as an intermediary between “client” agents (i.e.,
a star-graph communication), and the second being the run-
ning consensus protocol, where agents are arranged in a
network structure, but communication is done by repeat-
edly averaging (a weighted version) of observations with
neighbors (Landgren et al., 2016a;b).

In this paper, we use the LOCAL communication proto-
col (Suomela, 2013; Fraigniaud, 2016; Linial, 1992), which
has recently seen an increase in interest in the decentralized
multi-agent bandit literature (Cesa-Bianchi et al., 2019a;b).

is to ensure the methods are scale-free (Agrawal & Goyal, 2012).

At an abstract level, it can be seen as a generalization of the
centralized communication protocol to a server-free, arbi-
trary graph setting. The protocol assumes that pulling a ban-
dit arm and communication occur sequentially within each
trial t, i.e., first, each agent v ∈ V pulls an arm x̃v,t and re-
ceives a reward yv,t from the respective bandit environment.
The agent then sends the messagemv,t = 〈t, v, x̃v,t, yv,t〉
to its neighbors in G. This message is forwarded from agent
to agent γ times (taking one trial of the bandit problem
each between forwards), after which it is dropped. The
time-to-live (delay) parameter γ is a common technique to
control communication complexity in this setting. Each
agent v ∈ V therefore also receives messagesmv′,t−d(v,v′)
from all the nodes v′ such that d(v, v′) ≤ γ.

3.2. Cooperative Kernel-UCB

In this section we present the primary algorithm, cooperative
Kernel-UCB. The central ideas in the development of the
algorithm are (a) to leverage the similarity of the agent
kernels (as specified by Kz) and (b) to control the variance
estimates σ2

v,t−1 between agents by delayed diffusion of
rewards.

Using an Augmented Kernel. For each agent v ∈ V we
construct an upper confidence bound (UCB) envelope for
the true function fv(·) = F (·, zv) over the space X̃ . This is
done by using the composition kernel K instead of the ac-
tion kernel Kx, which allows us to take the network context
zv into account. The agent then chooses an action that max-
imizes the upper confidence bound, following the typical ap-
proach in UCB-based algorithms. For any v ∈ V,x ∈ Dv,t,
the UCB can be given by,

xv,t = arg max
x∈Dv,t

[
F̂v,t (zv,x) +

√
βv,tσv,t−1 (zv,x)

]
.

(7)
Here F̂v,t(·, zv) is the agent’s estimate for fv at time t,
and the second term denotes the exploration bonus. Using
xv,t, the agent can construct the aggregate optimal context
x̃v,t = (zv,xv,t). F̂v,t is obtained by solving:

F̂v,t = arg minf∈HK
1

nv(t)

(∑
(x̃,y)∈X̃v,t

(f(x̃)− y)
2
)

+ λ‖f‖2HK .
(8)

Here, X̃v,t = (x̃i, yi)
nv(t)
i=1 denotes the nv(t) total action-

reward pairs available at time t. Note that this comprises
not just personal observations, but additional observations
available via the messages received until that time. The
solution to the above problem (8) is given as:

F̂v,t(x̃) = κv,t(x̃)> (Kv,t + λI)
−1
yv,t. (9)

Here, κv,t(x̃) = (K (x̃, x̃i))
nv(t)
i=1 denotes the vector of

kernel values between the input vector x and all previously
stored data by agent v, and similarly yv,t = (yv,i)

nv(t)
i=1

denotes the vector of rewards. The matrixKv,t denotes the
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nv(t)× nv(t) matrix of kernel evaluations of every pair of
samples x̃i, x̃j ∈ X̃v,t possessed by agent v. To construct
the sequence (βv,t)t, following result motivates the upper
confidence bound.

Lemma 1 (Chowdhury & Gopalan (2017)). Let X̃ ⊂ Rd,
and F : X̃ → R be a member of the RKHS of real-valued
functions on X̃ with kernel K, and RKHS norm bounded by
B. Then, with probability at least 1− δ, the following holds
for all x̃ ∈ X̃ , and simultaneously for all t ≥ 1, v ∈ V:

∆v,t(x̃) ≤ σ2
v,t−1(x̃)

(
B +R

√
ln

det(λI+Kv,t)
δ2 + 2 ln(V )

)
.

Where ∆v,t(x̃) =
∣∣∣F (x̃)− F̂v,t(x̃)

∣∣∣ and we denote

σ2
v,t−1(x̃) = K (x̃, x̃)−κv,t(x̃)> (Kv,t + λI)

−1
κv,t(x̃)

as the “variance” proxy for the UCB for brevity. This confi-
dence bound is derived using the stronger, kernelized self-
normalized concentration inequality from Chowdhury &
Gopalan (2017), that holds simultaneously for all t ≥ 1,
and hence prevents the second logarithmic term, in contrast
to (Srinivas et al., 2009) for continuum-armed Dv,t.

Controlling Drift via Clique Partitions. The funda-
mental idea in controlling regret is to bound the per-
round regret incurred by any agent by the UCB “variance”
term σ2

v,t−1(x̃v,t), and the algorithm attempts to bound∑
v∈V σ

2
v,t−1(x̃v,t) by a quantity smaller thanO(

√
V ) (i.e.,

improve over non-cooperative behavior). Our approach
is to obtain this rate by partitioning G into G subgraphs
G′1, ...,G′G, and ensuring that the variance terms are similar
for each agent within a subgraph for all t.

Our partitioning solution is a conservative one: let C be a
clique covering of the γ-power of G. For any clique C ∈ C,
we restrict each agent v ∈ C to only accept observations
from agents that belong to C as well. This ensures that at
any t, any agent v ∈ C has an upper bound on σ2

v,t−1 that
depends only on C. Therefore we can control the group
regret within each clique C, leading to a factor of

√
χ̄(Gγ)

(instead of V ) in the regret, where χ̄(·) is the clique number.

Remark 4 (Computational complexity). As outlined
in Valko et al. (2013), it is possible to perform an O(1)
update of the Gram matrix, via the Schur decomposition (l.
30-34, Algorithm 1). This update can also be applied when
Kz is unknown and approximated online, see Section 3.3.

Algorithm 1 presents the COOP-KERNELUCB algorithm
with a tunable exploration parameter η, which can be differ-
ent from the parameter βv,t used in the analysis, as is typical
in this setting (Gentile et al., 2014; Chowdhury & Gopalan,
2017). We now present a regret bound for this algorithm.

Theorem 1 (Group Regret under Delayed Communication).
Let C be a minimal clique covering of Gγ . When Dv,t is
continuum-armed, Algorithm 1 incurs a per-agent average

Algorithm 1 COOP-KERNELUCB
1: Input: Graph Gγ with clique cover Cγ , kernels
Kx(·, ·),Kz(·, ·), λ, explore param. η, buffersBv = φ.

2: for For each iteration t ∈ [T ] do
3: for For each agent v ∈ V do
4: if t = 1 then
5: xv,t ←RANDOM(Dv,t).
6: else
7: xv,t ← arg max

x∈Dv,t

(
f̂v,t(zv,x) + η√

λ
σv,t−1(zv,x)

)
.

8: end if
9: x̃v,t ← (zv,xv,t), yv,t ←PULL(x̃v,t).

10: if t = 1 then
11: (Kv,t)

−1 ← 1/K(x̃v,t, x̃v,t) + λ.
12: yv ← [yv,0].
13: κv = (K(·, x̃v,t)).
14: else
15: Bv ← Bv ∪ (x̃v,t, yv,t).
16: end if
17: mv,t ← 〈t, v, x̃v,t, yv,t〉.
18: SENDMESSAGE(mv,t).
19: for 〈t′, v′, x̃′, y′〉 in RECVMESSAGES(v, t) do
20: if v′ ∈ CLIQUE(v,Cγ) then
21: Bv ← Bv ∪ (x̃′, y′).
22: end if
23: end for
24: for (x̃′, y′) ∈ Bv do
25: yv ← [yv, y

′].
26: κv = (κv,K(·, x̃′)).
27: K22 ←

(
K(x̃′, x̃′) + λ− (κv)>(Kv,t)

−1κv
)−1

.
28: K11 ←

(
(Kv,t)

−1 +K22(Kv,t)
−1κv(κv)>(Kv,t)

−1
)
.

29: K12 ← −K22(Kv,t)
−1κτv .

30: K21 ← −K22(κv)>(Kv,t)
−1.

31: (Kv,t)
−1 ← [K11,K12;K21,K22].

32: end for
33: Bv = φ.
34: f̂v,t+1 ← (κv)> (Kv,t)

−1yv .

35: sv,ρ+1 ←
√
K(·, ·)− (κv)> (Kv,t)−1κv .

36: end for
37: end for

regret that satisfies, with probability at least 1− δ,

R̂(T ) = O

(√
χ̄(Gγ) · T

V

(
R · Υ̂T

+

√
Υ̂T

(
B +R

√
2 log

V λ

δ

)))
.

Here Υ̂T = maxC∈C
[
log det

(
1
λKC,T + I

)]
is the overall

information gain, and for any clique C ∈ C, the matrix
KC,T is the Gram matrix formed by actions from all agents
within C until time T , i.e. (x̃v,t)v∈C,t∈[T ].

We first discuss the leading factors in the bound. Compared
to single-agent bounds, a coarse approximation of our rate
reveals an additional factor of O

(√
χ̄(Gγ)

)
. This factor

arises from the delayed spread of information, and is equal
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to the minimum clique number of the γ power graph of the
communication network. When G is γ-complete (i.e., Gγ
is complete), χ̄(Gγ) = 1, providing us the best rate. An
example topology when this condition is realized include
γ/2-star graphs (one node at the center, and ‘spikes’ of γ/2
nodes). Conversely, since we assume G is connected, in the
worst-case graph, χ̄(Gγ) = dV/γe. in which case the regret
bound is equivalent to that obtained when all agents run
in isolation. This is achieved, for example, in a line graph.
Now, we formalize the idea of heterogeneity among agents.

Definition 2 (Heterogeneity). In a multi-agent setting with
V agents and context vector space Z with kernel Kz , let
Kz be the matrix of pairwise interactions, i.e., Kz =
(K(zv, zv′))v,v′∈V . Then, the corresponding heterogeneity
Υz for this setting is defined as Υz = rank(Kz).

For the composition considered in our paper, we can derive
a regret bound in terms of Υx

V T , i.e., the information gain
from V T actions x across agents and heterogeneity Υz .

Corollary 1. When K = Kz �Kx, Algorithm 1 incurs a
per-agent average regret, w. p. at least 1− δ,

R̂(T ) = Õ

(
Υz ·ΥV T ·

√
χ̄(Gγ) · T

V
· log

(
V λ

δ

))
.

Remark 5. The regret bound displays a smooth interaction
between the network structure, communication delays and
agent similarity4. Corollary 3 implies that the communica-
tion effectively acts as a “mask” on the underlying coopera-
tive performance, which is controlled primarily by the prox-
imity of the network contexts themselves. For instance, when
network contexts are identical (fully-cooperative), Υz = 1,
and then the network structure entirely determines the regret
(via χ̄(Gγ)). Conversely, if Kz is full-rank, then Υz = V ,
and agents cannot leverage cooperation. In this case, no
improvement can be obtained regardless of the density of G.

Examples. We now provide a few examples to illustrate
the problem setting. Consider the case when Kx and Kz

are both linear. In this case, the algorithm can be un-
derstood as a weighted variant of the linear UCB algo-
rithm: for an observation xv,t from an agent v to v′, the
“weighted” observation is given by (z>v zv′) · x>v,txv,t, and
hence the “weight” is (z>v zv′). In an ideal implementa-
tion, the vectors z ∈ Sd−1(1), i.e., the unit sphere in d
dimensions, such that z>z = 1, ensuring that personal
observations are given a weight of 1. Alternatively, when
both Kz and Kx are RBF kernels, we observe an addi-
tive effect, i.e., K = exp

(
−‖zv−zv′‖

2

2σ2
z

− ‖xv−xv′‖
2

2σ2
x

)
=

4We demonstrate this smooth relationship for the product ker-
nel, i.e. K = Kz�Kx, however, alternate relationships are worth
exploring. For more details and results on some forms of kernel
compositions, see Appendix.

exp
(
−‖x̂v−x̂v′‖

2

2

)
, where x̂ =

[
x/σx
v/σv

]
. Note that the addi-

tional factor incurred in comparison to single-agent learning
is Υz = O(d lnV ) for RBF Kz , and for any action or
network kernel, the regret can be obtained via Remark 1.

3.3. Approximating Network Contexts

The previous analysis assumes the availability of the un-
derlying network context vectors zv for each agent (or at
least oracle access to the kernel Kz), however, for many
applications, this information is not available, and must be
estimated from the contexts themselves. Our approach is
based on kernel mean embeddings (Blanchard et al., 2011;
Christmann & Steinwart, 2010; Deshmukh et al., 2017).

Consider the network context space Z to be the RKHS
HKx , and we assume that the contexts xv,t for each agent
are drawn from an underlying probability density Pv. The
idea is to use zv as a representation of Pv, so that we can
(with an appropriate metric), use Kz as a measure of “sim-
ilarity” of the context distributions. For this, we look to-
wards kernel mean embeddings of the distributions Pv in
the RKHS HKx . This implies that the augmented context
x̃v,t at any time t for any agent v ∈ V is (Ψ(Pv),xv,t),
where Ψ(Pv) = Ex∼Pv [φx(x)] = Ex∼Pv [Kx(·,x)] is the
kernel mean embedding of Pv inHKx . Using this, we can
define the kernel Kz as follows.

Kz (Ψ(Pv),Ψ(Pv′)) = exp
(
−‖Ψ(Pv)−Ψ(Pv′)‖2/2σ2

z

)
.

(10)
We can estimate this from the available context via
the empirical mean kernel embedding Ψ̂t(Pv) =
1
t

∑t
i=1Kx (·,xv,i). Now, we can calculate the empirical

kernel approximation K̂z,t(·, ·) at time t:

K̂z,t(Pv,Pv′) = exp
(
−MMDH(Ψ̂t(Pv), Ψ̂t(Pv′))/2σ2

z

)
,

(11)

The empirical maximum mean discrepancy (MMD) (Gret-
ton et al., 2012) is the measure employed to measure the
divergence of the embeddings inHKx , and is given by:

MMD2
H(Ψ̂t(Pv), Ψ̂t(Pv′)) =

t,t∑
τ,τ ′

(Kx(xv,τ ,xv,τ ′)

+Kx(xv′,τ ,xv′,τ ′)− 2Kx(xv,τ ,xv′,τ ′)). (12)

Our next result describes how the approximation (con-
structed from t samples each) K̂t = K̂z,t � Kx deviates
from the true kernel K = Kz �Kx under this model.
Lemma 2. For an RKHSH, assume that ‖f‖∞ ≤ d for all
f ∈ H with ‖f‖H ≤ 1. Then, the following is true with
probability at least 1− δ for all xi,xj ∈ X̃ :∣∣∣log

(
K̂z,t(xi,xj)
Kz(xi,xj)

)∣∣∣ ≤ 1
σ2
z

(
sup
P∈PX

Rt(H,P) + 2d
√

1
2t log 1

δ

)
.
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Here Rt(H,Pv) denotes the t-sample Rademacher aver-
age (Bartlett & Mendelson, 2002) of H under Pv ∈ PX .

Lemma 2 implies the consistency of the empirical Kernel
estimator, i.e., for any v, v′ ∈ V , K̂z,t → Kz with proba-
bility 1 as t→∞. To obtain Kz we can employ any other
PSD kernel KP on X besides Kx as well.

Remark 6 (Regret of Simultaneous Estimation). At any
instant, the empirical heterogeneity is locally controlled,
i.e., for a clique cover C of Gγ , Υz ≤ maxC∈C |C|2. This
follows directly from Theorem 2 of Krause & Ong (2011)
and the fact that for any agent in a clique C, the empirical
kernel approximation only takes 1/2 (|C| · (|C| − 1)) distinct
values at any instant. This implies that sparse network
settings can easily be shown to benefit from cooperation
(i.e., when |C| = O(V

1/4)), but future work can address
stronger controls on the group regret.

4. Extensions
Fully-Cooperative Setting. In the fully cooperative set-
ting, the network contexts for all agents are identical, and
each agent is solving the same contextual bandit problem.
When the decision set is fixed (i.e. Dv,t = D ⊂ X for
all v, t, Cesa-Bianchi et al. (2019b)) we can derive a vari-
ant of COOP-KERNELUCB that provides optimal perfor-
mance. The central idea of the algorithm is for centrally-
positioned agents to essentially follow Algorithm 1, how-
ever, the agents that are positioned peripherally in G mimic
the actions (obtained after the appropriate delay) of these
centrally positioned agents. We partition the set of agents
G into “central” and “peripheral” agents such that each pe-
ripheral agent is connected to at least one central agent in
Gγ . This algorithm is defined as DIST-KERNELUCB as this
algorithm is not decentralized. It just remains to define the
partition, which we do after introducing some notation.

Definition 3. An independent set of a graph G = (V, E)
is a set of vertices V ′ ⊆ V such that no two vertices in V ′
are connected. A maximal independent set V∗ is the largest
independent set, and independence number α(G) = |V∗|.

We set the “central” agents VC of G as the maximal weighted
independent set of Gγ (where, for any node v ∈ V , the
weight wv = Nγ(v)), and set the complement VP = V \VC
as the “peripheral” set. Each peripheral agent p is assigned
the central agent it is connected to (denoted as cent(p)), and
in case any peripheral agent is connected to more than one
central agent, we assign it to the central agent with maxi-
mum degree in Gγ . The set of peripheral agents assigned to
a central agent c is denoted by π(c). We can then make the
following claims about regret incurred in this setting.

Theorem 2. Dv,t is continuum-armed, DIST-KERNELUCB
incurs a per-agent average regret that satisfies, with proba-

bility at least 1− δ,

R̂(T ) = Õ

(
Υz ·ΥV T ·

√
α(Gγ) · T

V
· log

(
V λ

δ

))
.

Here, α(Gγ) refers to the independence number of Gγ .

The central concept utilized in this case is to partition the
network in a manner that allows for a group of agents to
make identical (albeit delayed) decisions. The regret analy-
sis uses the property that the vertex cover of the elements of
VC spans Gγ , and one can bound the total regret by simply
bounding the regret incurred by each “central” agent, since
for any “peripheral” agent v, the regret incurred is only a
constant larger than the correponding regret incurred by the
“central” agent, i.e., Rv(T ) ≤ Õ(

√
γ) +Rcent(v)(T ). The

full proof and algorithm pseudocode are in the appendix.

Remark 7. In addition to the tighter average per-agent
regret (since α(Gγ) ≤ χ̄(Gγ)), we can make a stronger
claim about the individual regret for any agent as well.
Both these regret bounds match the rates mentioned for the
context-free case in (Cesa-Bianchi et al., 2019b; Bar-On &
Mansour, 2019). Moreover, when γ = 1, then the bound
on the group regret matches the lower bound shown in the
nonstochastic case (Cesa-Bianchi et al., 2019a).

Eager Estimation. In addition to the algorithms mentioned
above, we also consider a (potentially stronger) variant of
COOP-KERNELUCB that does not take delays into account
at all, and simply updates its observation set as soon as it ob-
tains any new information (from any communicating agent).
Consequently, for any arbitrary G and γ, this can lead to
significant drift in the Gram matrices for any pair of agents,
making this algorithm (dubbed EAGER-KERNELUCB) sig-
nificantly more challenging to analyze. We defer the anal-
ysis therefore to future work and present empirical evalu-
ations of this variant in this paper. This algorithm can be
understood as Algorithm 1 run with all observations (i.e.,
lines 20-22 in Algorithm 1 are ignored), although we present
the complete pseudocode in the appendix.

5. Experiments
The central aspect we wish to experimentally understand
is the behavior of the algorithm with respect to network
structures and delay in cooperative learning (alternatively,
a detailed experimental comparison of single-agent Ker-
nelUCB under Gaussian noise can be found in (Srinivas
et al., 2009; Krause & Ong, 2011)), and hence our experi-
mental benchmark setup focuses on these aspects as well.
We conduct two major lines of experimentation, the first on
synthetically generated random networks, and the second on
real-world networks subsampled from the SNAP network
datasets (Leskovec & Sosič, 2016).
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Figure 1. An experimental comparison of COOP-KERNELUCB and its variants with benchmark techniques for contextual bandits. Each
experiment is averaged over 100 trials. The top row denotes the linear kernel, and the bottom row denotes the RBF kernel.

Comparison Environments. We compare in two bench-
mark setups. In order to compare performance with linear
methods, our first setup assumes Kx is the linear kernel,
and Kz is a clustering of the agents given by the indepen-
dent sets of the γth power of the underlying connectivity
graph G (Kz not known to the algorithms a priori, and
γ = diameter(G)/2). This is done to motivate the central
application scenario where the network connectivity and
task similarity are correlated. The second setup is where
Kx and Kz are both randomly initialized Gaussian kernels
(where Kz is again unknown to our method). We run both
setups on graphs of V = 200 nodes, Dv,t is a set of 8
randomly generated contexts for all v ∈ V, t ∈ T and di-
mensionality d = 10 for X and Z (for setup 2). For the
kernel estimation task, we set σ = 1, and we set λ = 1.

Network Structures. We run experiments on two network
structures - (a) synthetic, randomly generated networks and
(b) real-world networks. For the synthetic networks, we
generate random connected Erdos-Renyi networks (Erdős
& Rényi, 1960) of size V = 200 with p = 0.7. For the
synthetic networks, we subsample V nodes and their corre-
sponding edges (for V = 200) from the ego-Facebook,
musae-Twitch, and as-Skitter networks, in order to
represent a diverse set of networks found in social networks,
peer-to-peer distribution and autonomous systems.

Benchmark Methods. In the linear setting, we compare
against single-agent LinUCB (Li et al., 2010) (where ev-
ery agent runs LinUCB independently), OFUL (Abbasi-
Yadkori et al., 2011) and COOP-KERNELUCB and
EAGER-KERNELUCB. In the kernel setting, we compare
against single-agent KernelUCB (Valko et al., 2013), IGP-
UCB (Chowdhury & Gopalan, 2017). Additionally, an im-
portant benchmark we compare against is Naive Cooper-

ation, where agents run IGP-UCB (kernel) and LinUCB
(linear) but include observations from neighbors as their
own (without reweighting).

Results Summary. Figure 1 describes the regret achieved
on each of the 4 benchmark networks for both linear and
RBF (Gaussian) settings. Each plot is obtained after averag-
ing the results for 100 trials, where the bandit contexts were
refreshed every trial. We first highlight the general trend
observed. Since the baseline techniques do not utilize coop-
eration at all, we expect them to provide a per-agent regret
that scales linearly, instead of the O(1/

√
V ) dependence

for our algorithms, which is obtained in our results as well.
Among our algorithms, we see that COOP-KERNELUCB
and DIST-KERNELUCB perform similarly for the Erdos-
Renyi outperforms Naive Cooperation in both the linear
and kernel settings, which can be attributed to the fact that
naive cooperation does not take agent similarities into ac-
count. We observe that EAGER-KERNELUCB consistently
outperforms other algorithms, across all benchmark tasks.

Our motivation for this algorithm stems from work in the
delayed feedback regime for the stochastic (context-free)
bandit (Joulani et al., 2013), which suggests that incorporat-
ing observations as soon as they are available can provide
optimal regret. While it is challenging to derive a provably
optimal algorithm in the contextual setting (and more chal-
lenging in the multi-agent case), we simply extended the “as
soon as” heuristic in EAGER-KERNELUCB. The observed
empirical regret suggests to us that EAGER-KERNELUCB

obtains O(
√

T
V (γ + α(Gγ))) regret, lower than the other

variants of COOP-KERNELUCB. The other variations be-
tween different graph families can be attributed to the differ-
ence in connectivity (instead of the kernel approximation).



Kernel Methods for Cooperative Multi-Agent Contextual Bandits

6. Discussion and Related Work
This paper is inspired by and draws from concepts in several
(often disparate) subfields within the literature. We discuss
our contributions with respect to these areas sequentially.

Cooperative Multi-Agent Learning. Cooperative bandit
learning with delays has maintained the setting that all
agents solve the same bandit problem (i.e., fully cooper-
ative), which our work generalizes as a first step. In the
nonstochastic (multi-armed) case (without delays), this prob-
lem was first studied in the work of Awerbuch & Kleinberg
(2008), where they proposed an algorithm with a per-agent
regret bound of O(

√
(1 +KV −1) lnT ), which matches

(up to logarithmic factors) our version of the bound in the
same setting (with contexts). In the multi-armed case, (Land-
gren et al., 2016a;b; 2018; Martı́nez-Rubio et al., 2019)
provide algorithms whose regret scales as a function of the
graph Laplacian of G, using a consensus protocol (Bracha
& Toueg, 1985). Our algorithms are based on a message-
passing framework (i.e., LOCAL), which maintains the same
communication complexity, while providing significantly
better regret guarantees. Moreover, we can express the
consensus protocol as an instance (albeit restricted) of our
algorithm, when Kx(i, j) = µi1{i = j}, µi ∈ R is a
scaled simplex, and Kz(i, j) = A

d(i,j)
ij is the power of the

graph Laplacian. Algorithms for the nonstochastic non-
contextual case with delays have been developed in (Cesa-
Bianchi et al., 2019b; Bar-On & Mansour, 2019), that pro-
pose algorithms with per-agent average regret scaling as
Õ(
√
α(Gγ)TV −1) and individual regret (for agent v ∈ V )

scaling as Õ(
√

(1 +K|π(cent(v))|−1)T ), which match
the regret achieved by DIST-KERNELUCB in the fully co-
operative contextual setting. A minimax regret bound for
the nonstochastic context-free of O(

√
(γ +K)T ) is also

provided in (Cesa-Bianchi et al., 2019b), improving on the
work of Neu et al. (2010), which our work improves up
to smaller network factors (

√
χ̄(Gγ)). When we compare

our regret bounds with the algorithm-agnostic delayed feed-
back regret bounds provided by (Joulani et al., 2013) for the
single-agent case, we observe the same relationship.

Leveraging Social Contexts. There has been extensive re-
search in leveraging social side-observations across the ban-
dit literature. Cesa-Bianchi et al. (2013) provide an algo-
rithm called GoB.Lin that assumes an outer-product relation-
ship between information flow in the network (via the graph
Laplacian) and context information. This is exactly an in-
stance of our framework, where the kernel K(xi,xj) is de-
scribed by φ̃(xi)A

−1
⊗ φ̃(xj) (in their notation), extended to

the (kernel) multi-agent case with delayed feedback. In their
setting, our regret bounds match exactly those of GoB.Lin.
The clustering formulation can also be seen as a variant of
the kernel framework, where Kz(zv, zv′) = 1 if agents be-
long to the same cluster, and 0 otherwise. The clustering is

not known a priori, however, and the work of (Gentile et al.,
2014; 2017; Li & Zhang, 2018) provides algorithms with
tight regret guarantees for this case (our kernel embedding
technique is similar in this regard). Again, we highlight that
while multi-agent decision-making has been studied in the
social network case (with non-identical contexts) (Korda
et al., 2016; Wang et al., 2020), none, to our knowledge,
consider general graph communication with delays.

Kernel Methods for Bandit Optimization. A theoretical
treatment of kernelised bandit learning was first explored
in the work of Valko et al. (2013), which was built on the
LinUCB (Li et al., 2010) and SupLinUCB (Chu et al., 2011),
that were in turn inspired by the early work of Auer et al.
(2002). Our work is an improvement on the single-agent
algorithms provided by Valko et al. (2013) owing to the
martingale inequality presented in (Chowdhury & Gopalan,
2017), who use their result to construct improved versions
single-agent Gaussian Process bandit algorithms (Krause &
Ong, 2011; Srinivas et al., 2009). Our work also improves on
the multi-task framework introduced by (Deshmukh et al.,
2017) to the multi-agent setting with delays, along with
a stronger regret bound, and an approximation guarantee
for the kernel mean embedding approach to estimate task
similarity. Recent results (Calandriello et al., 2019; Janz
et al., 2020) on bandit optimization for certain kernel fami-
lies can certainly be used to construct algorithmic variants
with stronger guarantees on the context kernel Kx.

7. Conclusion
In this paper we presented COOP-KERNELUCB, an ker-
nelized algorithm for decentralized, multi-agent coop-
erative contextual bandits and proved regret bounds of
Õ(
√
χ̄(Gγ)T/V ) on the average pseudo-regret, and sup-

ported our theoretical developments with experimental per-
formance. However, there are several aspects of the ker-
nelised cooperative bandit problem that are left as open prob-
lems. An interesting first direction is to establish suitable
lower bounds on the group regret in cooperative decision-
making with delays. An Ω(

√
V T ) lower bound (Bubeck

et al., 2012) can be derived for a single-agent playing V T
trials sequentially, however each of the v ∈ V agents can
greatly reduce their uncertainty at every trial when cooper-
ating, hence understanding the limits of cooperation is an
interesting endeavor. Next, we presented a variant EAGER-
KERNELUCB of our algorithm that does not attempt to
control the drift between the agent Gram matrices, that out-
performs our main algorithm. We conjecture that a regret
guarantee of the order Õ(

√
(γ + α(Gγ))T/V ) exists for

this algorithm in the linear case, and proving this under suit-
able assumptions is an interesting future direction as well.
Finally, extending this line of research into the Bayesian
case is also worth exploring.
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A. Regret bound for COOP-KERNELUCB
We first state a few existing results that we will utilize in the proof.

Theorem 3 (Theorem 2 of (Chowdhury & Gopalan, 2017)). Let D ⊂ Rd, and f : D → R be a member of the RKHS
of real-valued functions on D with kernel K, and RKHS norm bounded by B. Then, with probability at least 1 − δ, the
following holds for all x ∈ D, and t ≥ 1:

∣∣∣f(x)− f̂t(x)
∣∣∣ ≤ st(x)

B +R

√
2 ln

√
det ((1 + η)It +Kt)

δ


Corollary 2. Let X̃ ⊂ Rd, and F : X̃ → R be a member of the RKHS of real-valued functions on X̃ with kernel K, and
RKHS norm bounded by B. Then, with probability at least 1− δ, the following holds for all x̃ ∈ X̃ , and simultaneously for
all t ≥ 1, v ∈ V:

∆v,t(x̃) ≤ σ2
v,t−1(x̃)

(
B +R

√
ln

det (λI +Kv,t)

δ2
+ 2 ln(V )

)
.

Proof. This follows from Theorem 3 with probability δ/V for each agent v ∈ V , and replacing λ = 1 + η.‘

Theorem 4 (Theorem 2.1 of (ZI), Characterization of Schur Decomposition). Let A be a Hermitian matrix given by

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , then, A33 −A32A
−1
22 A23 ≥ A33 − (A31, A32)

(
A11 A12

A21 A22

)−1(
A13

A23

)
.

The central observation in the regret bound is the control of the “variance” terms in each clique directly in terms of the
corresponding clique Gram matrix. We describe this result in the following lemma.

Lemma 3 (Per-Clique Variance Bound). Let C be a clique in Gγ and the clique Gram matrixKC,T be given by:

KC,T =

 K(x̃1,1, x̃1,1) ... K(x̃1,1, x̃|C|,T )
...

. . .
...

K(x̃|C|,T , x̃1,1) . . . K(x̃|C|,T , x̃|C|,T )

 .

Then, for any T ≥ γ,

T∑
t=γ

∑
v∈C

σ2
v,t−1(x̃v,t) ≤ γ|C|B + max(1,

1

λ
) log det

(
1

λ
KC,T + I

)
.

Proof. Consider a hypothetical agent that pulls arms in a round-robin fashion for all agents in C, i.e., let the
agents within the clique C be indexed (without loss of generality) as 1, 2, ..., |C|, and the agent pulls arms
x̃1,1, x̃2,1, ..., x̃1,2, x̃2,2, ..., x̃|C|−1,T , x̃|C|,T . Therefore, the agent will pull a total of |C|T arms. At any time t ∈ [|C|T ], let
the corresponding KERNELUCB parameters for this agent be given by:

KC,t =

 K(x̃1,1, x̃1,1) ... K(x̃1,1, x̃t mod |C|,bt/|C|c)
...

. . .
...

K(x̃t mod |C|,t, x̃1,1) . . . K(x̃t mod |C|,bt/|C|c, x̃t mod |C|,bt/|C|c)

 ,κC,t(x) =
[
K(x, x̃1,1), . . . ,K(x, x̃t mod |C|,bt/|C|c)

]
.

(13)

Consider the variance functional for any agent v ∈ C at time t ∈ στ :

σ2
v,t−1(x̃v,t) = K (x̃v,t, x̃v,t)− κv,t(x̃v,t)> (Kv,t + λI)

−1
κv,t(x̃v,t) (14)
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Let τ be the instance at which the round-robin agent pulls arm x̃v,t−γ . By Theorem 4, we have for t ≥ γ,

≤ K (x̃v,t, x̃v,t)− κC,τ (x̃v,t−γ)> (KC,τ + λI)
−1
κC,τ (x̃v,t−γ) (15)

≤ K (x̃v,t, x̃v,t)−K (x̃v,t−γ , x̃v,t−γ) +K (x̃v,t−γ , x̃v,t−γ)− κC,τ (x̃v,t−γ)> (KC,τ + λI)
−1
κC,τ (x̃v,t−γ).

(16)

Let σ2
C,τ = K (x̃v,t−γ , x̃v,t−γ)− κC,τ (x̃v,t−γ)> (KC,τ + λI)

−1
κC,τ (x̃v,t−γ). Summing up over all v ∈ C and t ≥ γ:

T∑
t=γ

∑
v∈C

σ2
v,t−1(x̃v,t) =

T∑
t′=T−γ

∑
v∈C

K (x̃v,t′ , x̃v,t′) +

|C|(T−γ)∑
τ=1

σ2
C,τ ≤ γ|C|B + log

|C|T∏
τ=1

(1 + σ2
C,τ )

 . (17)

Here the inequality follows since the kernel K is bounded by B and σ2
C,τ ≤ log(1 + σ2

C,τ ). Lemma 7 of (Deshmukh et al.,
2017) provides the following relationship for sequential pulls x̃v,t, t ∈ [T ] and their associated variance terms σ2

v,t−1(x̃v,t) :∏
t∈[T ]

(1 + σ2
v,t−1(x̃v,t)) =

det(KC,T + λI)

λ|C|T+1
= det(

1

λ
KC,T + λI). (18)

This result is obtained using the determinant identity of the Schur decomposition provided by (ZI). Applying this result to
KC,T and variance terms σ2

C,τ gives us the final result (since the round-robin agent pulls arms sequentially).

Armed with this result we can now prove the regret bound.

Theorem 5 (Group Regret under Delayed Communication). Let C be a minimal clique covering of Gγ . When Dv,t is
continuum-armed, COOP-KERNELUCB incurs a per-agent average regret that satisfies, with probability at least 1− δ,

R̂(T ) = O

(√
χ̄(Gγ) · T

V

(
R · Υ̂T +

√
Υ̂T

(
B +R

√
2 log

V λ

δ

)))
.

Here Υ̂T = maxC∈C
[
log det

(
1
λKC,T + I

)]
is the overall information gain, and for any clique C ∈ C, the matrixKC,T

is the Gram matrix formed by actions from all agents within C until time T , i.e. (x̃v,t)v∈C,t∈[T ].

Proof. Consider the group pseudoregret at any instant T .

RG(T ) =
∑
v∈G

(
T∑
t=1

rv,t

)
(19)

Let us examine the individual regret rv,t of agent v ∈ V at time t. From Theorem 1 and COOP-KERNELUCB, we know
that, for each agent v ∈ V , βv,tσv,t−1(x̃v,t) + f̂v,t (x̃v,t) ≥ βv,tσv,t−1(x̃∗v,t) + f̂v,t

(
x̃∗v,t

)
, fv(x̃

∗
v,t) ≤ βv,tσv,t−1(x̃∗v,t) +

f̂v,t
(
x̃∗v,t

)
and f̂v(x̃v,t) ≤ βv,tσv,t−1(x̃v,t) + fv (x̃v,t). Therefore for all t ≥ 1 with probability at least 1− δ,

rv,t = fv(x̃
∗
v,t)− fv(x̃v,t) (20)

≤ βv,tσv,t−1(x̃v,t) + f̂v,t (x̃v,t)− fv(x̃v,t) (21)
≤ 2βv,tσv,t−1(x̃v,t). (22)

Therefore, for agent v, we have (since βv,t > βv,t−1 (Auer et al., 2002)),

T∑
t=1

rv,t ≤ 2βv,T

T∑
t=1

σv,t−1(x̃v,t) ≤ 2γ
√
Bβv,γ + 2βv,T

T∑
t=γ

σv,t−1(x̃v,t) (23)

The second inequality follows from the fact that for all t ≤ γ, βv,t ≤ βv,γ and that for all v, t, σv,t−1(x̃v,t) ≤
√
B. We can

now sum up the second term for the entire group of agents. Setting β∗T = maxv∈V βv,T , we get,

T∑
t=γ

∑
v∈V

rv,t ≤ 2β∗T

(
T∑
t=γ

∑
v∈V

σv,t−1 (x̃v,t)

)
(24)
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≤ 2β∗T

√√√√V (T − γ)

(
T∑
t=γ

∑
v∈V

σ2
v,t−1 (x̃v,t)

)
(25)

≤ 2β∗T

√√√√V (T − γ)
∑
C∈Cγ

(
T∑
t=γ

∑
v∈C

σ2
v,t−1 (x̃v,t)

)
(26)

(a)

≤ 2β∗T

√√√√V (T − γ)
∑
C∈Cγ

(
γ|C|B + max(1,

1

λ
) log

(
det(KC,T + λI)

λ|C|T+1

))
(27)

≤ 2β∗T

√
V (T − γ) · χ̄(Gγ) ·max(1,

1

λ
)

(
γBV + max

C∈C
(log det(KC,T + λI))

)
(28)

≤ β∗T · O
(√

χ̄(Gγ) · V T · Υ̂T

)
. (29)

Here, (a) follows from Lemma 3. Now, from the definition of βv,T (Lemma 1), we know that, for all v ∈ V (where v
belongs to clique C),

βv,T = B +R
√
λ−1

√
log (det (Kv,T + λI)) + log

2V

δ
(30)

≤ B +R
√
λ−1

√
log (det (KC,T + λI)) + log

2V

δ
(31)

≤ B +R
√
λ−1

√
Υ̂T + log

2V λ

δ
(32)

∴ β∗T = B +R
√
λ−1

√
Υ̂T + log

2V λ

δ
(33)

= O

(
B +R

√
Υ̂T + log

2V λ

δ

)
. (34)

Using this result in the earlier derivation, and then averaging over the number of agents V gives us the final result.

A.1. Composition-Dependent Regret Bound

Here we provide a proof for Corollary 1 from the main paper.

Lemma 4. Let Υz = rk (Kz), where Kz = (Kz(zv, zv′))v,v′∈V . When K = Kz � Kx, Υ̂T = 2Υz (Υx
T + log(T )).

When K = Kz ⊕Kx, Υ̂T = 2 (Υz log(T ) + Υx
T ) .

Proof. We first note that Υ̂T ≤ log det
(
1
λKT + I

)
, whereKT = (K(x̃v,t, x̃v′,t′))v,v′∈V,t,t′∈[T ]. Furthermore, note that

(a) rk(Kz
T ) = rk(Kz), where Kz

T = (Kz(zv,t, zv′,t′))v,v′∈V,t,t′∈[T ], since Kz
T is composed entirely by tiling T 2 copies

of Kz . Now, to prove the first part, we simply use Theorem 2 of (Krause & Ong, 2011) on log det
(
1
λKT + I

)
. For the

second part, we apply Theorem 3 of (Krause & Ong, 2011).

Corollary 3. When K = Kz �Kx, Algorithm 1 incurs a per-agent average regret, with probability at least 1− δ,

R̂(T ) = Õ

(
Υz ·ΥV T ·

√
χ̄(Gγ) · T

V
· log

(
V λ

δ

))
.

Proof. This follows directly from Lemma 4 and Theorem 1.
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B. Simultaneous Estimation of Contexts
B.1. Proof of Lemma 2

Proof. We first state a concentration result for the kernel mean embedding obtained by Smola et al. (2007).

Lemma 5 (Smola et al. (2007)). For an RKHS H, assume that ‖f‖∞ ≤ d for all f ∈ H with ‖f‖H ≤ 1. Then, the
following is true with probability at least 1− δ for any Pv ∈ PX :

‖Ψ(Pv)− Ψ̂T (Pv)‖ ≤ 2RT (H,PX ) + d

√
1

T
log(1/δ).

We now begin the proof for Lemma 2 by analysing the absolute log-ratio of the estimated kernel and true kernel at any time
instant T . Consider two samples xi,xj ∈ X̃ at any instant t.∣∣∣∣∣log

(
K̂t(xi,xj)

K(xi,xj)

)∣∣∣∣∣ =
1

2σ2

∣∣∣‖Ψ(Pi)−Ψ(Pj)‖ − ‖Ψ̂T (Pi)− Ψ̂T (Pj)‖
∣∣∣ (35)

≤ 1

2σ2

∥∥∥Ψ(Pi)− Ψ̂T (Pi)−Ψ(Pj) + Ψ̂T (Pj)
∥∥∥ (36)

≤ 1

2σ2

(∥∥∥Ψ(Pi)− Ψ̂T (Pi)
∥∥∥+

∥∥∥Ψ(Pj)− Ψ̂T (Pj)
∥∥∥) . (37)

Here, the first inequality is obtained via the reverse triangle inequality, and the second is obtained by Cauchy-Schwarz.
Applying Lemma 5 with probability δ/2 on each term in the RHS, and replacing the Rademacher average for a specific P
with the sup completes the proof.

C. Proof of Theorem 2 of the Main Paper
We begin with a few observations. Let the independent set used be given by V∗ ⊂ V . For any agent v ∈ V \ V∗,
let c(v) denote the corresponding “center” agent that v will mimic. Then, we first notice that for any t ≥ d(v, c(v)),
xv,t = xc(v),t−d(v,c(v)). We will continue with the notation used in the proof for Theorem 1.

Lemma 6. Let v ∈ V∗ be a “center” agent, and Nγ(v) denote its gamma neighborhood (including itself). Without loss of
generality, consider an ordering 1, 2, ..., |Nγ(v)| over the agents in Nγ(v). Now, we define the neigborhood Gram matrix
Kv,T as:

Kv,T =

 K(x̃1,1, x̃1,1) ... K(x̃1,1, x̃|Nγ(v)|,T )
...

. . .
...

K(x̃|Nγ(v)|,T , x̃1,1) . . . K(x̃|Nγ(v)|,T , x̃|Nγ(v)|,T )

 .

Assume all agents V follow DIST-KERNELUCB. Then, for any agent v ∈ V ∗ and for any T ≥ γ,

T∑
t=γ

∑
v′∈Nγ(v)

σ2
v,t−1(x̃v′,t) ≤ Bγ|Nγ(v)|+ max(1,

1

λ
) log det

(
1

λ
KC,T + I

)
.

Proof. The proof is obtained in a manner similar to Lemma 3, with the trivial modification that each agent v ∈ V∗ considers
observations from its entire neighborhood Nγ(v) and not just its parent clique.

Theorem 6. Dv,t is continuum-armed, DIST-KERNELUCB incurs a per-agent average regret that satisfies, with probability
at least 1− δ,

R̂(T ) = Õ

(
Υz ·ΥV T ·

√
α(Gγ) · T

V
· log

(
V λ

δ

))
.

Here, α(Gγ) refers to the independence number of Gγ .
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Proof. Consider the group pseudoregret at any instant T .

R(T ) =
∑
v∈G

(
T∑
t=1

rv,t

)
(38)

Let us examine the individual regret rv,t of agent v ∈ V at time t. From Theorem 1 and COOP-KERNELUCB, we know
that, for each agent v ∈ V , βv,tσv,t−1(x̃v,t) + f̂v,t (x̃v,t) ≥ βv,tσv,t−1(x̃∗v,t) + f̂v,t

(
x̃∗v,t

)
, fv(x̃

∗
v,t) ≤ βv,tσv,t−1(x̃∗v,t) +

f̂v,t
(
x̃∗v,t

)
and f̂v(x̃v,t) ≤ βv,tσv,t−1(x̃v,t) + fv (x̃v,t). Therefore for all t ≥ 1 with probability at least 1− δ,

rv,t = fv(x̃
∗
v,t)− fv(x̃v,t) (39)

≤ βv,tσv,t−1(x̃v,t) + f̂v,t (x̃v,t)− fv(x̃v,t) (40)
≤ 2βv,tσv,t−1(x̃v,t). (41)

Therefore, for agent v, we have (since βv,t > βv,t−1 (Auer et al., 2002)),

T∑
t=1

rv,t ≤ 2βv,T

T∑
t=1

σv,t−1(x̃v,t) ≤ 2γ
√
Bβv,γ + 2βv,T

T∑
t=γ

σv,t−1(x̃v,t) (42)

The second inequality follows from the fact that for all t ≤ γ, βv,t ≤ βv,γ and that for all v, t, σv,t−1(x̃v,t) ≤
√
B. We can

now sum up the second term for the entire group of agents. Setting β∗T = maxv∈V βv,T , we get,

T∑
t=γ

∑
v∈V

rv,t ≤ 2β∗T

(
T∑
t=γ

∑
v∈V

σv,t−1 (x̃v,t)

)
(43)

≤ 2β∗T

√√√√V (T − γ)

(
T∑
t=γ

∑
v∈V

σ2
v,t−1 (x̃v,t)

)
(44)

≤ 2β∗T

√√√√√V (T − γ)
∑
v∈V∗

 T∑
t=γ

∑
v′∈Nγ(v)

σ2
v′,t−1 (x̃v,t)

 (45)

(a)

≤ 2β∗T

√
V (T − γ)

∑
v∈V∗

(
Bγ|Nγ(v)|+ max(1,

1

λ
) log

(
det(Kv,T + λI)

λ|C|T+1

))
(46)

≤ 2β∗T

√
V (T − γ) · α(Gγ) ·max(1,

1

λ
)

(
γBV + max

v∈V∗

(
log det(

1

λ
Kv,T + λI)

))
(47)

≤ β∗T · O
(√

α(Gγ) · V T · Υ̂D
T

)
. (48)

Note the alternate information gain quantity Υ̂D
T = maxv∈V∗ log det( 1

λKv,T + λI). Here, (a) follows from Lemma 6.
Now, from the definition of βv,T (Lemma 1), we know that, for all v ∈ V∗,

βv,T = B +R
√
λ−1

√
log (det (Kv,T + λI)) + log

2V

δ
(49)

≤ B +R
√
λ−1

√
log (det (Kv,T + λI)) + log

2V

δ
(50)

≤ B +R
√
λ−1

√
Υ̂D
T + log

2V λ

δ
(51)

∴ β∗T = B +R
√
λ−1

√
Υ̂D
T + log

2V λ

δ
(52)

= O

(
B +R

√
Υ̂D
T + log

2V λ

δ

)
. (53)
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The above bound on βv,T holds even for agents not in V∗ since they simply mimic one agent within V∗, each for whom the
above bound holds. Finally, applying the identical arguments as Lemma 4, we can bound Υ̂D

T in terms of Υz and Υx
V T .

Dividing by the number of agents V gives us the final result.

D. Additional Observations
D.1. “Independent” vs “Pooled” Settings

While we consider the pooled setting (Abbasi-Yadkori et al., 2011), we can easily extend our algorithm to the independent
case (i.e., one bandit algorithm for each arm), by running K different bandit algorithms in tandem (one for each arm), as
specified in (Deshmukh et al., 2017). In order to leverage observations between arms, we must specify an additional kernel
Karm and arm contexts for each arm. The overall kernel can then be given by,

K̃(x̃1, x̃2) = Karm(t1, t2)Kz(z1, z2)Kx(x1,x2) (54)

Here, x̃ = (x, z, t) is the augmented context that now contains both the task-based similarity context and the network-based
similarity context in addition to the typical context vector x. Alternatively, one can consider a joint kernel (where the arms
and network contexts are intertwined), as follows.

K̃(x̃1, x̃2) = Karm, network((t1z1), (t2, z2))Kx(x1,x2) (55)

These modifications will only increase the regret at most by a factor of
√
Krank(Karm) for all algorithms presented in this

paper, by simply considering the latter case and following a similar analysis as the previous theorems.

D.2. Alternative Compositions

In this paper, we explore composition kernels of the Hadamard form, i.e., K̃ = Kz �Kx. However, alternate formulations
may be considered as well, first of which is the additive kernel, i.e., K̃ = Kz ⊕Kx. For this case, we can rely on the
following rank decomposition (Horn & Johnson, 2012):

rank(Kz ⊕Kx) ≤ rank(Kz) + rank(Kx). (56)

Alternatively, when one considers the Kronecker product, i.e., K̃ = Kz ⊗Kx, we can use the following result from Schake
(2004)(KRON 16) to bound the rank of the overall Gram matrix:

rank(Kz ⊗Kx) = rank(Kz)rank(Kx). (57)

We omit these two compositions, however, as we found the Hadamard composition to work best in practice.

E. Pseudocode
Turn over for final page of Appendix.
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Algorithm 2 EAGER-KERNELUCB
1: Input: Graph Gγ with clique cover Cγ , kernels
Kx(·, ·),Kz(·, ·), λ, explore param. η, buffersBv = φ.

2: for For each iteration t ∈ [T ] do
3: for For each agent v ∈ V do
4: if t = 1 then
5: xv,t ←RANDOM(Dv,t).
6: else
7: xv,t ← arg max

x∈Dv,t

(
f̂v,t(zv,x) + η√

λ
σv,t−1(zv,x)

)
.

8: end if
9: x̃v,t ← (zv,xv,t), yv,t ←PULL(x̃v,t).

10: if t = 1 then
11: (Kv,t)

−1 ← 1/K(x̃v,t, x̃v,t) + λ.
12: yv ← [yv,0].
13: κv = (K(·, x̃v,t)).
14: else
15: Bv ← Bv ∪ (x̃v,t, yv,t).
16: end if
17: mv,t ← 〈t, v, x̃v,t, yv,t〉.
18: SENDMESSAGE(mv,t).
19: for 〈t′, v′, x̃′, y′〉 in RECVMESSAGES(v, t) do
20: Bv ← Bv ∪ (x̃′, y′).
21: end for
22: for (x̃′, y′) ∈ Bv do
23: yv ← [yv, y

′].
24: κv = (κv,K(·, x̃′)).
25: K22 ←

(
K(x̃′, x̃′) + λ− (κv)>(Kv,t)

−1κv
)−1

.
26: K11 ←

(
(Kv,t)

−1 +K22(Kv,t)
−1κv(κv)>(Kv,t)

−1
)
.

27: K12 ← −K22(Kv,t)
−1κv .

28: K21 ← −K22(κv)>(Kv,t)
−1.

29: (Kv,t)
−1 ← [K11,K12;K21,K22].

30: end for
31: Bv = φ.
32: f̂v,t+1 ← (κv)> (Kv,t)

−1yv .

33: σv,t+1 ←
√
K(·, ·)− (κv)> (Kv,t)−1κv .

34: end for
35: end for

Algorithm 3 DIST-KERNELUCB
1: Input: Graph Gγ with clique cover C, kernels
Kx(·, ·),Kz(·, ·), λ, η, bufferBv = φ∀v ∈ V .

2: for For each iteration t ∈ [T ] do
3: for For each agent v ∈ V do
4: if v ∈ VC then
5: x̃v,t, yv,t ← Run lines 4-18 from Algorithm 1.
6: else
7: if t ≤ d(v, cent(v)) then
8: x̃v,t, yv,t ← KernelUCB (Valko et al., 2013) or

IGP-UCB (Chowdhury & Gopalan, 2017).
9: else

10: x̃v,t, yv,t ← PULLLASTSTOREDARM(cent(v)).
11: end if
12: end if
13: mv,t ← 〈t, v, x̃v,t, yv,t〉.
14: SENDMESSAGE(mv,t).
15: if v ∈ VC then
16: for 〈t′, v′, x̃′, y′〉 in RECVMESSAGES(v, t) do
17: Bv ← Bv ∪ (x̃′, y′).
18: end for
19: Run lines 22-33 in Algorithm 1.
20: else
21: UPDATELASTSTOREDARM(cent(v)).
22: end if
23: end for
24: end for
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