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Appendix

We present the detailed proofs of the main results of the paper below. The appendix is organized as follows. We provide
proofs to the simple propositions regarding the NTK presented in the paper in Appendix A, and prove the main results
for V-dominated and G-dominated convergence in the settings of gradient flow and gradient descent in Appendices B
and C. The proofs for gradient flow and gradient descent share the same main idea, yet the proof for gradient descent has
a considerate number of additional technicalities. In Appendices D and E we prove the lemmas used in the analysis of
Appendices B and C respectively. Before we move forward we highlight some of the challenges of the WN proof.

Distinctive aspects of the WN analysis The main idea of our proof are familiar and structured similarly to the work by
Du et al. (2019b) on the un-normalized setting. However, the majority of the proofs are modified significantly to account for
WN. To the best of our knowledge, the finite-step analysis that we present in Appendix C is entirely new, incorporating
updates of both v and g. The proof of Theorem C.1 is crucially dependent on the geometry of WN gradient descent and the
orthogonality property, in particular (2.3). Updates of the weights in both the numerator and denominator require additional
analysis that is presented in Lemma B.10. In Appendix E we prove Theorems 4.1, 4.2 based on the general Theorem C.1 and
Property 1 which is based on new detailed decomposition of the finite-step difference between iterations. In contrast to the
un-normalized setting, the auxiliary matrices V1

,G
1 that we have in the WN analysis are not piece-wise constant in v. To

prove they are positive definite, we prove Lemma 4.1 based on two new constructive arguments. We develop the technical
Lemma D.1 and utilize Bernstein’s inequality to reduce the amount of required over-parametrization in our final bounds on
the width m. The amount of over-parameterization in relation to the sample size n is reduced (from n

6 to n
4) through more

careful arguments in Lemmas B.3 and B.4, which introduce an intermediate matrix V̂(t) and follow additional geometrical
identities. Lemma B.9 reduces the polynomial dependence on the failure probability � to logarithmic dependence based on
sub-Gaussian concentration. The denominator in the WN architecture necessities worst bound analysis which we handle in
Lemma B.10 that is used throughout the proofs.

A. Weight Normalization Dynamics Proofs

In this section we provide proofs for Proposition 1, which describes the relation between vanilla and WeightNorm NTKs
and Observation 1 of the paper.

Proof of Proposition 1:

We would like to show that V(0) +G(0) = H(0). For each entry, consider
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This gives

(V(0) +G(0))ij =
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which proves the claim.

Proof of Observation 1:

We show that the initialization of the network is independent of ↵. Take ↵,� > 0, and for each k, initialize v
↵
k ,v

�
k as

v
↵
k (0) ⇠ N(0,↵2

I), v
�
k (0) ⇠ N(0,�2

I).

Then

v
↵
k (0)

kv↵k (0)k2
⇠

v
�
k (0)

kv�k (0)k2
⇠ Unif(Sd�1) (in distribution).
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Hence the distribution of each neuron �
� vk(0)
kvk(0)k2

�
at initialization is independent of ↵. Next for gk(0), we note that

kv↵k (0)k2 ⇠ ↵

�
kv�k (0)k2.

Initializing g
↵
k (0), g

�
k (0) as in (2.4),

g
↵
k (0) =

kvk(0)k2
↵

, g
�
k (0) =

kvk(0)k2
�

,

gives

g
↵
k (0), g

�
k (0) ⇠ �d, and

g
↵
k (0)v

↵
k (0)

kv↵k (0)k2
⇠

g
�
k (0)v

�
k (0)

kv�k (0)k2
⇠ N(0, I),

for all ↵,�. This shows that the network initialization is independent of ↵ and is equivalent to the initialization of the
un-normalized setting. Similarly, inspecting the terms in the summands of V(0),G(0) shows that they are also independent
of ↵. For

Vij(0) =
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i are independent of scale, and the fraction in the summand is identically 1. G(0) defined as
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is also invariant of scale since the projection onto a vector direction vk(0) is independent of scale.

B. Convergence Proof for Gradient Flow

In this section we derive the convergence results for gradient flow.

The main results are analogous to Theorems 4.1, 4.2 but by considering gradient flow instead of gradient descent the proofs
are simplified. In Appendix C we prove the main results from Section 4 (Theorem 4.1, 4.2) for finite step gradient descent.

We state our convergence results for gradient flow.
Theorem B.1 (V-dominated convergence). Suppose a network from the class (1.2) is initialized as in (2.4) with ↵ < 1 and

that assumptions 1,2 hold. In addition, suppose the neural network is trained via the regression loss (2.5) with target y

satisfying kyk1 = O(1). Then if m = ⌦
�
n
4 log(n/�)/�4

0

�
, WeightNorm training with gradient flow converges at a linear

rate, with probability 1� �, as

kf(t)� yk22  exp(��0t/↵
2)kf(0)� yk22.

This theorem is analogous to Theorem 4.1 but since here, the settings are of gradient flow there is no mention of the step-size.
It is worth noting that smaller ↵ leads to faster convergence and appears to not affect the other hypotheses of the flow
theorem. This “un-interuptted” fast convergence behavior does not extend to finite-step gradient descent where the increased
convergence rate is balanced by decreasing the allowed step-size.

The second main result for gradient flow is for G-dominated convergence.
Theorem B.2 (G-dominated convergence). Suppose a network from the class (1.2) is initialized as in (2.4) with ↵ > 1
and that assumptions 1, 2 hold. In addition, suppose the neural network is trained on the regression loss (2.5) with target

y satisfying kyk1 = O(1). Then if m = ⌦
�
max

�
n
4 log(n/�)/↵4

µ
4
0, n

2 log(n/�)/µ2
0

 �
, WeightNorm training with

gradient flow converges at a linear rate, with probability 1� �, as

kf(t)� yk22  exp(�µ0t)kf(0)� yk22.
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B.1. Proof Sketch

To prove the results above we follow the steps introduced in the proof sketch of Section 4. The main idea of the proofs
for V and G dominated convergence are analogous and a lot of the proofs are based of Du et al. (2019b). We show that
in each regime, we attain linear convergence by proving that the least eigenvalue of the evolution matrix ⇤(t) is strictly
positive. For the V-dominated regime we lower bound the least eigenvalue of ⇤(t) as �min(⇤(t)) � �min(V(t))/↵2 and
in the G-dominated regime we lower bound the least eigenvalue as �min(⇤(t)) � �min(G(t)).

The main part of the proof is showing that �min(V(t)),�min(G(t)) stay uniformly positive. We use several lemmas to show
this claim.

In each regime, we first show that at initialization the kernel under consideration, V(0) or G(0), has a positive least
eigenvalue. This is shown via concentration to an an auxiliary kernel (Lemmas B.1, B.2), and showing that the auxiliary
kernel is also strictly positive definite (Lemma 4.1).

Lemma B.1. Let V(0) and V
1

be defined as in (3.3) and (4.2), assume the network width m satisfies m = ⌦
�n2 log(n/�)

�2
0

�
.

Then with probability 1� �,

kV(0)�V
1k2  �0

4
.

Lemma B.2. Let G(0) and G
1

be defined as in (3.4) and (4.3), assume m satisfies m = ⌦
�n2 log(n/�)

µ2
0

�
. Then with

probability 1� �,

kG(0)�G
1k2  µ0

4
.

After showing that V(0),G(0) have a positive least-eigenvalue we show that V(t),G(t) maintain this positive least
eigenvalue during training. This part of the proof depends on the over-parametrization of the networks. The main idea is
showing that if the individual parameters vk(t), gk(t) do not change too much during training, then V(t),G(t) remain
close enough to V(0),G(0) so that they are still uniformly strictly positive definite. We prove the results for V(t) and G(t)
separately since each regime imposes different restrictions on the trajectory of the parameters.

For now, in Lemmas B.3, B.4, B.5, we make assumptions on the parameters of the network not changing “too much”;
later we show that this holds and is the result of over-parametrization. Specifically, over-parametrization ensures that the
parameters stay at a small maximum distance from their initialization.

V-dominated convergence To prove the least eigenvalue condition on V(t), we introduce the surrogate Gram matrix
V̂(t) defined entry-wise as

V̂ij(t) =
1

m

mX

k=1

⌦
x
vk(t)

?

i , x
vk(t)

?

j

↵
1ik(t)1jk(t). (B.1)

This definition aligns with V(t) if we replace the scaling term
�↵ckgk(t)
kvk(t)k2

�2 in each term in the sum Vij(t) by 1.

To monitor V(t)�V(0) we consider V̂(t)�V(0) and V(t)� V̂(t) in Lemmas B.3 and B.4 respectively:

Lemma B.3 (Rectifier sign-changes). Suppose v1(0), . . . ,vk(0) are sampled i.i.d. as (2.4). In addition assume we have

m = ⌦
� (m/�)1/dn log(n/�)

�0

�
and kvk(t)� vk(0)k2  ↵�0

96n(m/�)1/d
=: Rv . Then with probability 1� �,

kV̂(t)�V(0)k2  �0

8
.

Lemma B.4. Define

Rg =
�0

48n(m/�)1/d
, Rv =

↵�0

96n(m/�)1/d
. (B.2)
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Suppose the conditions of Lemma B.3 hold, and that kvk(t)� vk(0)k2  Rv , kgk(t)� gk(0)k2  Rg for all 1  k  m.

Then with probability 1� �,

kV(t)�V(0)k2  �0

4
.

G-dominated convergence We ensure that G(t) stays uniformly positive definite if the following hold.

Lemma B.5. Given v1(0), . . . ,vk(0) generated i.i.d. as in (2.4), suppose that for each k, kvk(t)�vk(0)k2 
p
2⇡↵µ0

8n(m/�)1/d
=:

R̃v , then with probability 1� �,

kG(t)�G(0)k2  µ0

4
.

After deriving sufficient conditions to maintain a positive least eigenvalue at training, we restate the discussion of linear
convergence from Section 4 formally.

Lemma B.6. Consider the linear evolution
df
dt = �

�
G(t)+ V(t)

↵2

�
(f(t)�y) from (3.5). Suppose that �min

�
G(t)+ V(t)

↵2

�
�

!
2 for all times 0  t  T . Then

kf(t)� yk22  exp(�!t)kf(0)� yk22
for all times 0  t  T .

Using the linear convergence result of Lemma B.6, we can now bound the trajectory of the parameters from their initialization.

Lemma B.7. Suppose that for all 0  t  T , �min

✓
G(t) + 1

↵2V(t)

◆
� !

2 and |gk(t) � gk(0)|  Rg  1/(m/�)1/d.

Then with probability 1� � over the initialization

kvk(t)� vk(0)k2  4
p
nkf(0)� yk2
↵!

p
m

=: R0
v (B.3)

for each k and all times 0  t  T .

Lemma B.8. Suppose that for all 0  t  T , �min

✓
G(t) + 1

↵2V(t)

◆
� !

2 . Then with probability 1 � � over the

initialization

|gk(t)� gk(0)| 
4
p
nkf(0)� yk2p

m!
=: R0

g

for each k and all times 0  t  T.

The distance of the parameters from initialization depends on the convergence rate (which depends on �min(⇤(t))) and the
width of the network m. We therefore are able to find sufficiently large m for which the maximum parameter trajectories are
not too large so that we have that the least eigenvalue of ⇤(t) is bounded from 0; this proves the main claim.

Before proving the main results in the case of gradient flow, we use two more technical lemmas.
Lemma B.9. Suppose that the network is initialized as (2.4) and that y 2 Rn

has bounded entries |yi|  M . Then

kf(0)� yk2  C
p
n log(n/�) for some absolute constant C > 0.

Lemma B.10 (Failure over initialization). Suppose v1(0), . . . ,vk(0) are initialized i.i.d. as in (2.4) with input dimension d.

Then with probability 1� �,

max
k2[m]

1

kvk(0)k2
 (m/�)

↵

1/d

.

In addition by (2.3), for all t � 0, with probability 1� �,

max
k2[m]

1

kvk(t)k2
 (m/�)

↵

1/d

.
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Remark (Assumption 2). Predominately, machine learning applications reside in the high dimensional regime with d � 50.

Typically d � 50. This therefore leads to an expression (m/�)1/d that is essentially constant. For example, if d = 50, for

maxk2[m]
1

kvk(0)k2
� 10, one would need m/� � 1080 (the tail of �

2
d also has a factor of (d/2)! · 2d/2 which makes the

assumption even milder). The term (m/�)1/d therefore may be taken as a constant for practicality,

max
k2[m]

1

kvk(0)k2
 C

↵
.

While we make Assumption 2 when presenting our final bounds, for transparency we do not use Assumption 2 during our
analysis and apply it only when we present the final over-parametrization results to avoid the overly messy bound. Without
the assumption the theory still holds yet the over-parametrization bound worsens by a power 1 + 1/(d� 1). This is since
the existing bounds can be modified, replacing m with m

1� 1
d .

Proof of Theorem B.1:

By substituting m = ⌦
�
n
4 log(n/�)/�4

0

�
and using the bound on kf(0)� yk2 of Lemma B.9, a direct calculation shows

that

kvk(t)� vk(0)k2
B.7
 ↵

p
nkf(0)� yk2p

m�0
 Rv.

Similarly m ensures that

|gk(t)� gk(0)|
B.8
 ↵

2p
nkf(0)� yk2p

m�0
 Rg.

The over-parametrization of m implies that the parameter trajectories stay close enough to initialization to satisfy the
hypotheses of Lemmas B.3, B.4 and that �min(⇤(t)) � �min(V(t))/↵2 � �0

2↵2 . To prove that �min(⇤(t)) � �0
2↵2 holds for

all 0  t  T , we proceed by contradiction and suppose that one of Lemmas B.7, B.8 does not hold. Take T0 to be the
first failure time. Clearly T0 > 0 and for 0 < t < T0 the above conditions hold, which implies that �min(V(t)) � �0

2 for
0  t  T0; this contradicts one of Lemmas B.7, B.8 at time T0. Therefore we conclude that Lemmas B.7, B.8 hold for
t > 0 and we can apply B.6 to guarantee linear convergence.

Here we consider the case where the convergence is dominated by G. This occurs when ↵ > 1.
Proof of Theorem B.2:

By substituting m = ⌦
�
n
4 log(n/�)/↵4

µ
4
0

�
and using the bound on kf(0)� yk2 of Lemma B.9 we have that

kvk(t)� vk(0)k2
B.7
 4

p
nkf(0)� yk2
↵µ0

p
m

B.9


Cn
p
log(n/�)

↵µ0
p
m

 R̃v.

Where the inequality is shown by a direct calculation substituting m.

This means that the parameter trajectories stay close enough to satisfy the hypotheses of Lemma B.5 if m =
⌦
�
n
4 log(n/�)/↵4

µ
4
0

�
. Using the same argument as Theorem B.1, we show that this holds for all t > 0. We pro-

ceed by contradiction, supposing that one of Lemmas B.7, B.8 do not hold. Take T0 to be the first time one of the
conditions of Lemmas B.7, B.8 fail. Clearly T0 > 0 and for 0 < t < T0 the above derivation holds, which implies that
�min(G(t)) � µ0

2 . This contradicts Lemmas B.7 B.8 at time T0, therefore we conclude that Lemma B.6 holds for all t > 0
and guarantees linear convergence.

Note that if ↵ is large, the required complexity on m is reduced. Taking ↵ = ⌦(
p

n/µ0) gives the improved bound

m = ⌦

✓
n
2 log (n/�)

µ2
0

◆
.
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C. Finite Step-size Training

The general technique of proof for gradient flow extends to finite-step gradient descent. Nonethless, proving convergence
for WeightNorm gradient descent exhibits additional complexities arising from the discrete updates and joint training with
the new parametrization (1.2). We first introduce some needed notation.

Define Si(R) as the set of indices k 2 [m] corresponding to neurons that are close to the activity boundary of ReLU at
initialization for a data point xi,

Si(R) := {k 2 [m] : 9 v with kv � vk(0)k2  R and 1ik(0) 6= 1{v>
xi � 0}}.

We upper bound the cardinality of |Si(R)| with high probability.
Lemma C.1. With probability 1� �, we have that for all i

|Si(R)| 
p
2mRp
⇡↵

+
16 log(n/�)

3
.

Next we review some additional lemmas needed for the proof of Theorems 4.1, 4.2. Analogous to Lemmas B.7, B.8, we
bound the finite-step parameter trajectories in Lemmas C.2, C.3.
Lemma C.2. Suppose the norm of kf(s)� yk22 decreases linearly for some convergence rate ! during gradient descent

training for all iteration steps s = 0, 1, . . . ,K with step-size ⌘ as kf(s)� yk22  (1� ⌘!
2 )skf(0)� yk22 . Then for each k

we have

|gk(s)� gk(0)| 
4
p
nkf(0)� yk2p

m!

for iterations s = 0, 1, . . . ,K + 1.

Lemma C.3. Under the assumptions of Lemma C.2, suppose in addition that |gk(s) � gk(0)|  1/(m/�)1/d for all

iterations steps s = 0, 1, . . .K . Then for each k,

kvk(s)� vk(0)k2  8
p
nkf(0)� yk2
↵
p
m!

for s = 0, 1, . . . ,K + 1.

To prove linear rate of convergence we analyze the s + 1 iterate error kf(s + 1) � yk2 relative to that of the s iterate,
kf(s)� yk2. Consider the network’s coordinate-wise difference in output between iterations, fi(s+1)� fi(s), writing this
explicitly based on gradient descent updates yields

fi(s+ 1)� fi(s) =
1p
m

mX

k=1

ckgk(s+ 1)

kvk(s+ 1)k2
�(vk(s+ 1)>xi)�

ckgk(s)

kvk(s)k2
�(vk(s)

>
xi). (C.1)

We now decompose the summand in (C.1) looking at the updates in each layer, fi(s+ 1)� fi(s) = ai(s) + bi(s) with

ai(s) =
1p
m

mX

k=1

ckgk(s+ 1)

kvk(s+ 1)k2
�(vk(s)

>
xi)�

ckgk(s)

kvk(s)k2
�(vk(s)

>
xi),

bi(s) =
1p
m

mX

k=1

ckgk(s+ 1)

kvk(s+ 1)k2
�
�(vk(s+ 1)>xi)� �(vk(s)

>
xi)
�
.

Further, each layer summand is then subdivided into a primary term and a residual. ai(s), corresponding to the difference in

the first layer
✓

ckgk(s+1)
kvk(s+1)k2

� ckgk(s)
kvk(s)k2

◆
, is subdivided into a

I
i (s) and a

II
i (s) as follows:

a
I
i (s) =

1p
m

mX

k=1

✓
ckgk(s+ 1)

kvk(s)k2
� ckgk(s)

kvk(s)k2

◆
�(vk(s)

>
xi), (C.2)

a
II
i (s) =

1p
m

mX

k=1

✓
ckgk(s+ 1)

kvk(s+ 1)k2
� ckgk(s+ 1)

kvk(s)k2

◆
�(vk(s)

>
xi). (C.3)
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bi(s) is sub-divided based on the indices in the set Si that monitor the changes of the rectifiers. For now, Si = Si(R) with
R to be set later in the proof. bi(s) is partitioned to summands in the set Si and the complement set,

b
I
i (s) =

1p
m

X

k 62Si

ckgk(s+ 1)

kvk(s+ 1)k2
�
�(vk(s+ 1)>xi)� �(vk(s)

>
xi)
�
,

b
II
i (s) =

1p
m

X

k2Si

ckgk(s+ 1)

kvk(s+ 1)k2
�
�(vk(s+ 1)>xi)� �(vk(s)

>
xi)
�
.

With this sub-division in mind, the terms corresponding to convergence are a
I(s),bI(s) whereas a

II(s),bII(s) are
residuals that are the result of discretization. We define the primary and residual vectors p(s), r(s) as

p(s) =
aI(s) + bI(s)

⌘
, r(s) =

aII + bII(s)

⌘
. (C.4)

If the residual r(s) is sufficiently small and p(s) may be written as p(s) = �⇤(s)(f(s)� y) for some iteration dependent
evolution matrix ⇤(s) that has

�min(⇤(s)) = !/2 (C.5)

for ! > 0 then the neural network (1.2) converges linearly when trained with WeightNorm gradient descent of step size ⌘.
We formalize the condition on r(s) below and later derive the conditions on the over-parametrization (m) ensuring that r(s)
is sufficiently small.

Property 1. Given a network from the class (1.2) initialized as in (2.4) and trained with gradient descent of step-size ⌘,

define the residual r(s) as in (C.4) and take ! as in (C.5). We specify the “residual condition” at iteration s as

kr(s)k2  c!kf(s)� yk2

for a sufficiently small constant c > 0 independent of the data or initialization.

Here we present Theorem C.1 which is the backbone of Theorems 4.1 and 4.2.

Theorem C.1. Suppose a network from the class (1.2) is trained via WeightNorm gradient descent with an evolution matrix

⇤(s) as in (C.5) satisfying �min(⇤(s)) � !/2 for s = 0, 1, . . .K. In addition if the data meets assumptions 1, 2, the

step-size ⌘ of gradient descent satisfies ⌘  1
3k⇤(s)k2

and that the residual r(s) defined in (C.4) satisfies Property 1 for

s = 0, 1, . . . ,K then we have that

kf(s)� yk22 
✓
1� ⌘!

2

◆s

kf(0)� yk22

for s = 0, 1, . . . ,K.

Proof of Theorem C.1:

This proof provides the foundation for the main theorems. In the proof we also derive key bounds to be used in Theorems
4.1, 4.2. We use the decomposition we described above and consider again the difference between consecutive terms
f(s+ 1)� f(s),

fi(s+ 1)� fi(s) =
1p
m

mX

k=1

ckgk(s+ 1)

kvk(s+ 1)k2
�(vk(s+ 1)>xi)�

ckgk(s)

kvk(s)k2
�(vk(s)

>
xi). (C.6)
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Following the decomposition introduced in (C.2), aIi (s) is re-written in terms of G(s),

a
I
i (s) =

1p
m

mX

k=1

ck

kvk(s)k2

✓
� ⌘

@L(s)

@gk

◆
�(vk(s)

>
xi)

= � ⌘

m

mX

k=1

ck

kvk(s)k2

nX

j=1

(fj(s)� yj)
ck

kvk(s)k2
�(v>

k (s)xj)�(v
>
k (s)xi)

= �⌘

nX

j=1

(fj(s)� yj)
1

m

mX

k=1

(ck)
2
�

✓
vk(s)>xi

kvk(s)k2

◆
�

✓
vk(s)>xj

kvk(s)k2

◆

= �⌘

nX

j=1

(fj(s)� yj)Gij(s),

where the first equality holds by the gradient update rule gk(s + 1) = gk(s) � ⌘rgkL(s). In this proof we also derive
bounds on the residual terms of the decomposition which we will aid us in the proofs of Theorems 4.1, 4.2. aIi (s) is the
primary term of ai(s), now we bound the residual term a

II
i (s). Recall aIIi (s) is written as

a
II
i (s) =

1p
m

mX

k=1

✓
ckgk(s+ 1)

kvk(s+ 1)k2
� ckgk(s+ 1)

kvk(s)k2

◆
�(vk(s)

>
xi),

which corresponds to the difference in the normalization in the second layer. Since rvkL(s) is orthogonal to vk(s) we have
that

ckgk(s+ 1)

✓
1

kvk(s+ 1)k2
� 1

kvk(s)k2

◆
�(vk(s)

>
xi)

= ckgk(s+ 1)

✓
1p

kvk(s)k22 + ⌘2krvkL(s)k22
� 1

kvk(s)k2

◆
�(vk(s)

>
xi)

=
�ckgk(s+ 1)⌘2krvkL(s)k22

kvk(s+ 1)k2kvk(s)k2(kvk(s)k2 + kvk(s+ 1)k2)
�(vk(s)

>
xi)

 �ckgk(s+ 1)⌘2krvkL(s)k22
2kvk(s)k2kvk(s+ 1)k2

�

✓
vk(s)>xi

kvk(s)k2

◆
,

where the first equality above is by completing the square, and the inequality is due to the increasing magnitudes of kvk(s)k2.

Since 0  �

✓
vk(s)

>xi

kvk(s)k2

◆
 1, the above can be bounded as

|aIIi (s)|  1p
m

mX

k=1

����
gk(s+ 1)⌘2krvkL(s)k22
2kvk(s)k2kvk(s+ 1)k2

����

 1p
m

mX

k=1

⌘
2
�
1 +Rg(m/�)1/d

�3
nkf(s)� yk22(m/�)1/d

↵4m

=
⌘
2
n
�
1 +Rg(m/�)1/d

�3kf(s)� yk22(m/�)1/d

↵4
p
m

. (C.7)

The second inequality is the result of applying the bound in equation (E.1) on the gradient norm krvkL(s)k2 and using
Lemma B.10.

Next we analyze bi(s) and sub-divide it based on the sign changes of the rectifiers. Define the set Si := Si(R) as in Lemma
C.1 with R taken to be such that kvk(s+ 1)� vk(0)k2  R for all k. Take b

II
i (s) as the sub-sum of bi(s) with indices k

from the set Si.

b
I
i (s) corresponds to the sub-sum with the remaining indices. By the definition of Si, for k 62 Si we have that 1ik(s+ 1) =
1ik(s). This enables us to factor 1ik(s) and represent bIi (s) as a Gram matrix similar to V(s) with a correction term from
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the missing indices in Si.

b
I
i (s) = � 1p

m

X

k 62Si

✓
ckgk(s+ 1)

kvk(s+ 1)k2

◆�
⌘
⌦
rvkL(s), xi

↵�
1ik(s)

= � ⌘

m

X

k 62Si

✓
ckgk(s+ 1)

kvk(s+ 1)k2

◆✓
ckgk(s)

kvk(s)k2

◆ nX

j=1

(fj(s)� yj)1ik(s)1jk(s)
⌦
x
vk(s)

?

j , xi

↵
.

Note that
⌦
x
vk(s)

?

j , xi

↵
=
⌦
x
vk(s)

?

j , x
vk(s)

?

i

↵
therefore,

b
I
i (s) = � ⌘

m

X

k 62Si

✓
ckgk(s+ 1)

kvk(s+ 1)k2

◆✓
ckgk(s)

kvk(s)k2

◆ nX

j=1

(fj(s)� yj)1ik(s)1jk(s)
⌦
x
vk(s)

?

j , x
vk(s)

?

i

↵
.

Define Ṽ(s) as

Ṽij(s) =
1

m

mX

k=1

✓
↵ckgk(s+ 1)

kvk(s+ 1)k2

◆✓
↵ckgk(s)

kvk(s)k2

◆
1jk(s)1ik(s)

⌦
x
vk(s)

?

i , x
vk(s)

?

j

↵
.

This matrix is identical to V(s) except for a modified scaling term
� c2kgk(s+1)gk(s)
kvk(s)k2kvk(s+1)k2

�
. We note however that

min

 ✓
ckgk(s)

kvk(s)k2

◆2

,

✓
ckgk(s+ 1)

kvk(s+ 1)k2

◆2
!


✓

ckgk(s)

kvk(s)k2

◆✓
ckgk(s+ 1)

kvk(s+ 1)k2

◆

 max

 ✓
ckgk(s)

kvk(s)k2

◆2

,

✓
ckgk(s+ 1)

kvk(s+ 1)k2

◆2
!

because gk(s), c2k are positive. Hence the matrix Ṽ(s) satisfies the hypothesis of Lemma B.4 entirely. We write b
I
i (s) as

b
I
i (s) = �⌘/↵

2
nX

j=1

(fj(s)� yj)(Ṽij(s)� Ṽ
?
ij(s)),

where we have defined

Ṽ
?
ij(s) =

1

m

X

k2Si

✓
↵ckgk(s)

kvk(s)k2

◆✓
↵ckgk(s+ 1)

kvk(s+ 1)k2

◆
1ik(s)1jk(s)

⌦
x
vk(s)

?

i , x
vk(s)

?

j

↵
. (C.8)

We then bound the magnitude of each entry Ṽ
?
ij(s):

Ṽ
?
ij(s) =

1

m

X

k2Si

✓
↵ckgk(s)

kvk(s)k2

◆✓
↵ckgk(s+ 1)

kvk(s+ 1)k2

◆
1ik(s)1jk(s)

⌦
x
vk(s)

?

i , x
vk(s)

?

j

↵

 (1 +Rg(m/�)1/d)2|Si|
m

. (C.9)

Lastly we bound the size of the residual term b
II
i (s),

|bIIi (s)| =
�����

1p
m

X

k2Si

ckgk(s+ 1)

kvk(s+ 1)k2

✓
�(vk(s+ 1)>xi)� �(vk(s)

>
xi)

◆����

 gk(s+ 1)⌘|Si| · krvkL(s)k2p
mkvk(s+ 1)k2

 ⌘|Si|(1 + (m/�)1/dRg)krvkL(s)k2
↵
p
m

.
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Where we used the Lipschitz continuity of � in the first bound, and took Rg > 0 that satisfies |gk(s+ 1)� gk(0)|  Rg in
the second inequality. Applying the bound (E.1),

|bIIi (s)|  ⌘|Si|
p
n(1 +Rg(m/�)1/d)2kf(s)� yk2

↵2m
. (C.10)

The sum f(s+ 1)� f(s) = a
I(s) + a

II(s) + b
I(s) + b

II(s) is separated into the primary term ⌘p(s) = aI(s) + bI(s)
and the residual term ⌘r(s) = aII(s) + bII(s) which is a result of the discretization. With this, the evolution matrix ⇤(s)
in (C.5) is re-defined as

⇤(s) := G(s) +
Ṽ(s)� Ṽ

?(s)

↵2

and

f(s+ 1)� f(s) = �⌘⇤(s)(f(s)� y) + ⌘r(s).

Now we compare kf(s+ 1)� yk22 with kf(s)� yk22,

kf(s+ 1)� yk22 =kf(s+ 1)� f(s) + f(s)� yk22
=kf(s)� yk22 + 2

⌦
f(s+ 1)� f(s), f(s)� y

↵

+
⌦
f(s+ 1)� f(s), f(s+ 1)� f(s)

↵
.

Substituting

f(s+ 1)� f(s) = a
I(s) + b

I(s) + a
II(s) + b

II(s) = �⌘⇤(s)(f(s)� y) + ⌘r(s)

we obtain

kf(s+ 1)� yk22 =kf(s)� yk22 + 2(�⌘⇤(s)(f(s)� y) + ⌘r(s))>(f(s)� y)

+ ⌘
2(⇤(s)(f(s)� y)� r(s))>(⇤(s)(f(s)� y)� r(s))

kf(s)� yk22 + (f(s)� y)>(�⌘⇤(s) + ⌘
2
⇤

2(s))(f(s)� y)

+ ⌘r(s)>(I� ⌘⇤(s))(f(s)� y) + ⌘
2kr(s)k22.

Now as �min(⇤(s)) � !/2 and ⌘ = 1
3k⇤(s)k2

, we have that

(f(s)� y)>(�⌘⇤(s) + ⌘
2
⇤

2(s))(f(s)� y) = �⌘(f(s)� y)>(I� ⌘⇤(s))⇤(s)(f(s)� y)  �3⌘!

8
kf(s)� yk22.

Next we analyze the rest of the terms and group them as q(s),

q(s) := ⌘r(s)>(I� ⌘⇤(s))(f(s)� y) + ⌘
2kr(s)k22

 ⌘kr(s)k2kf(s)� yk2 + ⌘
2kr(s)k22.

By Property 1 we have

q(s)  ⌘c!kf(s)� yk22(1 + ⌘c!)  2c⌘!kf(s)� yk22,

so that

q(s)  c
0
⌘!kf(s)� yk22,

for c0 sufficiently small. Substituting, the difference f(s+ 1)� y is bounded as

kf(s+ 1)� yk22  kf(s)� yk22 � ⌘!(1� ⌘k⇤(s)k2)kf(s)� yk22 + c
0
⌘!kf(s)� yk22

 (1� ⌘!(1� ⌘k⇤(s)k2) + c
0
⌘!)kf(s)� yk22

 (1� ⌘!/2)kf(s)� yk22,
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for well chosen absolute constant c. Hence for each s = 0, 1, . . . ,K,

kf(s+ 1)� yk22  (1� ⌘!/2)kf(s)� yk22,

so the prediction error converges linearly.

In what comes next we prove the necessary conditions for Property 1, and define the appropriate ! for the V and G

dominated regimes, in order to show �min(⇤(s)) � !/2.

Proof of Theorem 4.1:

To prove convergence we would like to apply Theorem C.1 with !/2 = �0
2↵2 . To do so we need to show that m =

⌦
�
n
4 log(n/�)/�4

0

�
guarantees that Property 1 holds and that �min(⇤(s)) � �0/2↵2. For finite-step gradient training, take

Rv =
↵�0

192n(m/�)1/d
, Rg =

�0

96n(m/�)1/d
. (C.11)

Note the residual r(s) and the other terms bI(s),bII(s) depend on the sets Si that we define here using Rv . We make the
assumption that kvk(s)�vk(0)k2  Rv and |gk(s)�gk(0)|  Rg for all k and that s = 0, 1, . . .K+1, this guarantees that
bI(s) and ⇤(s) are well defined. Applying Lemmas B.1, B.4 with Rv, Rg defined above, we have that �min(Ṽ(s)) � 5�0

8 .
Then the least eigenvalue of the evolution matrix ⇤(s) is bounded below

�min(⇤(s)) = �min

✓
G(s) +

Ṽ(s)� Ṽ
?(s)

↵2

◆

� �min

✓
Ṽ(s)� Ṽ

?(s)

↵2

◆

=
�min(Ṽ(s)� Ṽ

?(s))

↵2

� 5�0

8↵2
� kṼ?(s)k2

↵2
.

The first inequality holds since G(s) � 0 and the last inequality is since �min(Ṽ(s)) � 5�0
8 .

To show �min(⇤(s)) � �0
2↵2 we bound kṼ?(s)k2  �0

8 . By (C.9), we have

|Ṽ?
ij(s)| 

(1 +Rg(m/�)1/d)|Si|
m

 (1 +Rg(m/�)1/d)

✓p
2R̃vp
⇡↵

+
16 log(n/�)

3m

◆
.

Substituting Rv, Rg and m, a direct calculation shows that

|Ṽ?
ij(s)| 

�0

8n
,

which yields

kṼ?(s)k2  kṼ?(s)kF  �0

8
.

Hence �min(⇤(s)) � �0
2↵2 for iterations s = 0, 1, . . .K.

We proceed by showing the residual r(s) satisfies property 1. Recall r(s) is written as

r(s) =
a
II(s)

⌘
+

b
II(s)

⌘
.

and Property 1 states that kr(s)k2  c⌘�0

↵2 kf(s)� yk2 for sufficiently small absolute constant c < 1. This is equivalent to
showing that both a

II(s), bII(s) satisfy

kaII(s)k2  c⌘�0

↵2
kf(s)� yk2, (C.12)

kbII(s)k2  c⌘�0

↵2
kf(s)� yk2. (C.13)



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

We consider each term at turn. By (C.10),

kbII(s)k2 
p
nmax

i
b
II
i (s)

 max
i

⌘n(1 +Rg(m/�)1/d)2|Si|kf(s)� yk2
↵2m

 CmRv⌘nkf(s)� yk2
↵2m

 �0⌘kf(s)� yk2
↵2

· nCRv.

In the above we used the values of Rv, Rg defined in (C.11) and applied Lemma C.1 in the third inequality. Taking
m = ⌦

�
n
4 log(n/�)/�4

0

�
with large enough constant yields

kbII(s)k2  c�0⌘kf(s)� yk2
↵2

.

Next we analogously bound kaII(s)k via the bound (C.7),

kaII(s)k2 
p
nmax

i
a
II
i (s)


⌘
2
n
3/2
�
1 +Rg(m/�)1/d

�3kf(s)� yk22(m/�)1/d

↵4
p
m

 ⌘�0kf(s)� yk2
↵2

·
⌘
�
1 +Rg(m/�)1/d

�3
n
3/2kf(s)� yk2(m/�)1/d

�0↵
2
p
m

 ⌘�0kf(s)� yk2
↵2

· ⌘

↵2
·
Cn

2
p
log(n/�)

�0
p
m

 c⌘!kf(s)� yk2.

In the above we applied Lemma B.9 once again. The last inequality holds since m = ⌦(n4 log(n/�)/�4
0) and ⌘ =

O

✓
↵2

kV(s)k2

◆
, hence r(s) satisfies Property 1. Now since Theorem C.1 holds with ! = �0/↵

2 we have that the maximum

parameter trajectories are bounded as kvk(s) � vk(0)k2  Rv and kgk(s) � gk(0)k  Rg for all k and every iteration
s = 0, 1, . . . ,K + 1 via Lemmas C.2, C.3.

To finish the proof, we apply the same contradiction argument as in Theorems B.1, B.2, taking the first iteration s = K0

where one of Lemmas C.2, C.3 does not hold. We note that K0 > 0 and by the definition of K0, for s = 0, 1, . . . ,K0 � 1
the Lemmas C.2, C.3 hold which implies that by the argument above we reach linear convergence in iteration s = K0. This
contradicts one of Lemmas C.2, C.3 which gives the desired contradiction, so we conclude that we have linear convergence
with rate �0/2↵2 for all iterations.

Proof of Theorem 4.2:

For G-dominated convergence, we follow the same steps as in the proof of Theorem 4.1. We redefine the trajectory constants
for the finite step case

R̃v :=

p
2⇡↵µ0

64n(m/�)1/d
, Rg :=

µ0

48n(m/�)1/d
.

To use Theorem C.1 we need to show that m = ⌦
�
n
4 log(n/�)/↵4

µ
4
0

�
guarantees Property 1, and that �min(⇤(s)) � µ0/2.

We again note that the residual r(s) and bI(s),bII(s) depend on the sets Si that we define here using R̃v above as
Si := Si(R̃v).

We start by showing the property on the least eigenvalue. We make the assumption that we have linear convergence with
!/2 = µ0/2 and step-size ⌘ for iterations s = 0, . . .K so that Lemmas C.2, C.3 hold. Via an analogous analysis of the
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continous case we reach that m = ⌦
�
n
4 log(n/�)/µ4

0↵
4
�

implies

kvk(s)� vk(0)k2  16↵
p
nkf(0)� yk2
↵
p
mµ0

 R̃v, |gk(s)� gk(0)| 
8
p
nkf(0)� yk2p

mµ0
 Rg.

for s = 0, . . .K + 1 by Lemmas C.2, C.3 and that ⇤(s),bI(s) are well defined. Using the bounds on the parameter
trajectories, Lemma B.5 and R̃v defined above yield �min(G(s)) � 5µ0

8 . The least eigenvalue of the evolution matrix ⇤(s)
is bounded below as

�min(⇤(s)) = �min

✓
G(s) +

Ṽ(s)� Ṽ
?(s)

↵2

◆

� �min(G(s))� kṼ?(s)k2

since Ṽ(s) � 0 and ↵ � 1. We bound the spectral norm of kṼ?(s)k2, for each entry i, j we have by (C.9) that

|Ṽ?
ij(s)| 

(1 +Rg(m/�)1/d)|Si|
m

 (1 +Rg(m/�)1/d)

✓p
2R̃vp
⇡↵

+
16 log(n/�)

3m

◆

 8R̃vp
2⇡↵

 µ0

8n
.

where in the above inequalities we used our bounds on R̃v, Rg and m. Then the spectral norm is bounded as

kṼ?(s)k2  kṼ?(s)kF  µ0/8.

Hence we have that �min(⇤(s)) � µ0/2 for s = 0, 1, . . .K.

Next we show the residual r(s) satisfies Property 1. Recall r(s) is written as

r(s) =
a
II(s)

⌘
+

b
II(s)

⌘
.

Property 1 states the condition kr(s)k2  c!⌘kf(s)� yk2 for sufficiently small c < 1 with ! = µ0. This is equivalent to
showing that both a

II(s), bII(s) satisfy that

kaII(s)k2  c⌘µ0kf(s)� yk2, (C.14)

kbII(s)k2  c⌘µ0kf(s)� yk2, (C.15)

for sufficiently small absolute constant c. For bII(s) we have that (C.10) gives

kbII(s)k2 
p
nmax

i
b
II
i (s)

 max
i

⌘(1 +Rg(m/�)1/d)2|Si|nkf(s)� yk2
↵2m

.

Next applying Lemmas C.1 and B.9 in turn yields

 CmR̃v⌘nkf(s)� yk2
↵2m

 ⌘µ0kf(s)� yk2
R̃v

n↵2
.

Substituting m = ⌦
�
n
4 log(n/�)/µ4

0↵
4
�

for a large enough constant and Rv we get

kbII(s)k2  c⌘µ0kf(s)� yk2.
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Analogously we bound kaII(s)k2 using (C.7),

kaII(s)k2 
p
nmax

i
a
II
i (s)


⌘
2
n
3/2
�
1 +Rg(m/�)1/d

�3kf(s)� yk22(m/�)1/d

↵4
p
m

 ⌘µ0kf(s)� yk2 ·
⌘
�
1 +Rg(m/�)1/d

�3
n
3/2kf(s)� yk2(m/�)1/d

µ0↵
4
p
m

 ⌘µ0kf(s)� yk2 ·
⌘

↵2
·
Cn

2
p
log(n/�)

↵2µ2
0

p
m

 c⌘µ0kf(s)� yk2.

Where we have used Lemma B.9 in the third inequality and substituted m = ⌦(n4 log(n/�)/↵4
µ
4
0) noting that ⌘ =

O
�

1
k⇤(s)k2

�
and that ↵ � 1 in the last inequality. Therefore we have that r(s) satisfies Property 1 so that Theorem C.1

holds. By the same contradiction argument as in Theorem 4.1 we have that this holds for all iterations.

D. Additional Technical Lemmas and Proofs of the Lemmas from Appendix B

Proof of Lemma 4.1:

We prove Lemma 4.1 for V1, G1 separately. V1 can be viewed as the covariance matrix of the functionals �i defined as

�i(v) = xi

✓
I� vv

>

kvk22

◆
1{v>

xi � 0} (D.1)

over the Hilbert space V of L2(N(0,↵2
I)) of functionals. Under this formulation, if �1,�2, . . . ,�n are linearly independent,

then V
1 is strictly positive definite. Thus, to show that V1 is strictly positive definite is equivalent to showing that

c1�1 + c2�2 + · · ·+ cn�n = 0 in V (D.2)

implies ci = 0 for each i. The �is are piece-wise continuous functionals, and equality in V is equivalent to

c1�1 + c2�2 + · · ·+ cn�n = 0 almost everywhere.

For the sake of contradiction, assume that there exist c1, . . . , cn that are not identically 0, satisfying (D.2). As ci are not
identically 0, there exists an i such that ci 6= 0. We show this leads to a contradiction by constructing a non-zero measure
region such that the linear combination

P
i ci�i is non-zero.

Denote the orthogonal subspace to xi as Di := {v 2 Rd : v>
xi = 0}. By Assumption 1,

Di 6✓
[

j 6=i

Dj

This holds since Di is a (d � 1)-dimensional space which may not be written as the finite union of sub-spaces Di \Dj

of dimension d� 2 (since xi and xj are not parallel). Thus, take z 2 Di\
S

j 6=i Dj . Since
S

j 6=i Dj is closed in Rd, there
exists an R > 0 such that

B(z, 4R) \
[

j 6=i

Dj = ;.

Next take y 2 @B(z, 3R) \ Di (where @ denotes the boundary) on the smaller disk of radius 3R so that it satisfies
kyk2 = maxy02@B(z,3R)\Di

ky0k2. Now for any r  R, the ball B(y, r) is such that for all points v 2 B(y, r) we have
kvx?

i k2 � 2R and kvxik2  R. Then for any r  R, the points v 2 B(y, r) ⇢ B(z, 4R) satisfy that

kxv?

i k2 � kxik2 �
xi · v
kvk2

� kxik2
✓
1� R

2R

◆
� kxik2

2
.
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Next we decompose the chosen ball B(y, r) = B
+(r) _ B

�(r) to the areas where the ReLU function at the point xi is
active and inactive

B
+(r) = B(y, r) \ {x>

i v � 0}, B
�(r) = B(y, r) \ {x>

i v < 0}.

Note that �i has a discontinuity on Di and is continuous within each region B
+(r) and B

�(r). Moreover, for j 6= i, �j

is continuous on the entire region of B(y, r) since B(y, r) ⇢ B(z, 4R) ⇢ D
c
j . Since we have that �j is continuous in the

region, the Lebesgue differentiation theorem implies that for r ! 0, �i satisfies on B
+(r), B�(r):

lim
r!0

1

µ(B+(r))

Z

B+(r)
�i = x

y?

i 6= 0, lim
r!0

1

µ(B�(r))

Z

B�(r)
�i = 0.

For j 6= i �j is continuous on the entire ball B(y, r) hence the Lebesgue differentiation theorem also gives

lim
r!0

1

µ(B+(r))

Z

B+(r)
�i = �j(y), lim

r!0

1

µ(B�(r))

Z

B�(r)
�i = �j(y).

We integrate c1�1 + . . . cn�n over B�(r) and B
+(r) separately and subtract the integrals. By the assumption, c1�1 + · · ·+

cn�n = 0 almost everywhere so each integral evaluates to 0 and the difference is also 0,

0 =
1

µ(B+(r))

Z

B+(r)
c1�1 + · · ·+ cn�n � 1

µ(B�(r))

Z

B�(r)
c1�1 + · · ·+ cn�n. (D.3)

By the continuity of �j for j 6= i taking r ! 0 we have that

1

µ(B+(r))
lim
r!0

Z

B+(r)
�j �

1

µ(B�(r))

Z

B�(r)
�j = �j(y)� �j(y) = 0.

For �i the functionals evaluate differently. For B�(r) we have that

1

µ(B�(r))
lim
r!0

Z

B�(r)
�i =

1

µ(B�(r))
lim
r!0

Z

B�(r)
0 = 0,

while the integral over the positive side, B+(r) is equal to

1

µ(B+(r))

Z

B+(r)
�i(z)dz =

1

µ(B+(r))

Z

B+(r)
x
z?

i dz = x
y?

i .

By construction, kxy?

i k2 > R and is non-zero so we conclude that for (D.3) to hold we must have ci = 0. This gives the
desired contradiction and implies that �1, . . .�n are independent and V

1 is positive definite with �min(V1) = �0.

Next we consider G1 and again frame the problem in the context of the covariance matrix of functionals. Define

✓i(v) := �

✓
v
>
xi

kvk2

◆

for v 6= 0.

Now the statement of the theorem is equivalent to showing that the covariance matrix of {✓i} does not have zero-eigenvalues,
that is, the functionals ✓is are linearly independent. For the sake of contradiction assume 9 c1, . . . , cn such that

c1✓1 + c2✓2 + · · ·+ cn✓n = 0 in V (equivalent to a.e).

Via the same contradiction argument we show that ci = 0 for all i. Unlike �i defined in (D.1), each ✓i is continuous and
non-negative so equality “a.e” is strengthened to “for all v”,

c1✓1 + c2✓2 + · · ·+ cn✓n = 0.



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

Equality everywhere requires that the derivatives of the function are equal to 0 almost everywhere. Computing derivatives
with respect to v yields

c1x
v?

1 1{v>
x1 � 0}+ c2x

v?

2 1{v>
x2 � 0}+ · · ·+ cnx

v?

n 1{v>
xn � 0} = 0.

Which coincide with

c1�1 + · · ·+ cn�n

By the first part of the proof, the linear combination c1�1 + · · ·+ cn�n is non-zero around a ball of positive measure unless
ci = 0 for all i. This contradicts the assumption that the derivative is 0 almost everywhere; therefore G

1 is strictly positive
definite with �min(G1) =: µ0 > 0.

We briefly derive an inequality for the sum of indicator functions for events that are bounded by the sum of indicator
functions of independent events. This enables us to develop more refined concentration than in Du et al. (2019b) for
monitoring the orthogonal and aligned Gram matrices during training.

Lemma D.1. Let A1, . . . , Am be a sequence of events and suppose that Ak ✓ Bk with B1, . . . , Bm mutually independent.

Further assume that for each k, P(Bk)  p, and define S = 1
m

Pm
k=1 1Ak . Then with probability 1� �, S satisfies

S  p

✓
2 +

8 log(1/�)

3mp

◆
.

Proof of Lemma D.1:

Bound S as

S =
1

m

mX

k=1

1Ak  1

m

mX

k=1

1Bk .

We apply Bernstein’s concentration inequality to reach the bound. Denote Xk =
1Bk
m and S̃ =

Pm
k=1 Xk. Then

Var(Xk)  EX2
k = (1/m)2P(Xk) + 0  p

m2
, ES̃ = E

mX

k=1

Xk  p.

Applying Bernstein’s inequality yields

P(S̃ � ES̃ � t)  exp

✓
�t

2
/2Pm

k=1 EX2
k + t

3m

◆
.

Fix � and take the smallest t such that P(S̃ � ES̃ � t)  �. Denote t = r · ES̃, either P(S̃ � ES̃ � ES̃)  �, or t = rES̃
corresponds to r � 1. Note that t = rES̃  rp. In the latter case, the bound is written as

P(S̃ � ES̃ � rp)  exp

✓
�(pr)2/2

p/m+ pr
3m

◆
 exp

✓
�(pr)2/2
p
m (1 + r

3 )

◆
 exp

✓
�(pr)2/2

p
m ( 4r3 )

◆
= exp

✓
�3prm

8

◆
.

Solving for � gives

rp  8 log(1/�)

3m
.

Hence with probability 1� �,

S  S̃  max

(
p

✓
1 +

8 log(1/�)

3mp

◆
, 2p

)
 p

✓
2 +

8 log(1/�)

3mp

◆
.
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Proof of Lemma B.1:

We prove the claim by applying concentration on each entry of the difference matrix. Each entry Vij(0) is written as

Vij(0) =
1

m

mX

k=1

⌦
x
vk(0)

?

i , x
vk(0)

?

j

↵✓↵ck · gk
kvkk2

◆2

1ik(0)1jk(0).

At initialization gk(0) = kvk(0)k2/↵, c2k = 1 so Vij(0) simplifies to

Vij(0) =
1

m

mX

k=1

⌦
x
vk(0)

?

i , x
vk(0)

?

j

↵
1ik(0)1jk(0).

Since the weights vk(0) are initialized independently for each entry we have EvVij(0) = V
1
ij . We measure the deviation

V(0) � V
1 via concentration. Each term in the sum 1

m

Pm
j=1

⌦
x
vk(0)

?

i , x
vk(0)

?

j

↵
1ik(0)1jk(0) is independent and

bounded,

�1 
⌦
x
vk(0)

?

i , x
vk(0)

?

j

↵
1ik(0)1jk(0)  1.

Applying Hoeffding’s inequality to each entry yields that with probability 1� �/n
2, for all i, j,

|Vij(0)�V
1
ij | 

2
p

log(n2/�)p
m

.

Taking a union bound over all entries, with probability 1� �,

|Vij(0)�V
1
ij | 

4
p
log(n/�)p

m
.

Bounding the spectral norm, with probability 1� �,

kV(0)�V
1k22  kV(0)�V

1k2F 
X

i,j

|Vij(0)�V
1
ij |2

 16n2 log(n/�)

m
.

Taking m = ⌦
�n2 log(n/�)

�2
0

�
therefore guarantees

kV(0)�V
1k2  �0

4
.

Proof of Lemma B.2:

This is completely analogous to B.1. Recall G(0) is defined as,

Gij(0) =
1

m

mX

k=1

⌦
x
vk(0)
i , x

vk(0)
j

↵
c
2
k1ik(0)1jk(0)

with c
2
k = 1 and vk(0) ⇠ N(0,↵2

I) are initialized i.i.d. Since each term is bounded like B.1. The same analysis gives

kGij(0)�G
1
ij k22  16n2 log(n/�)

m
.
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Taking m = ⌦
⇣

n2 log(n/�)
µ2
0

⌘
therefore guarantees,

kG(0)�G
1k2  µ0

4
.

Proof of Lemma B.3:

For a given R, define the event of a possible sign change of neuron k at point xi as

Ai,k(R) = {9v : kv � vk(0)k2  R, and 1{vk(0)
>
xi � 0} 6= 1{v>

xi � 0}}

Ai,k(R) occurs exactly when |vk(0)>xi|  R, since kxik2 = 1 and the perturbation may be taken in the direction of �xi.
To bound the probability Ai,k(R) we consider the probability of the event

P(Ai,k(R)) = P(|vk(0)
>
xi| < R) = P(|z| < R).

Here, z ⇠ N(0,↵2) since the product vk(0)>xi follows a centered normal distribution. The norm of kxik2 = 1 which
implies that z computes to a standard deviation ↵. Via estimates on the normal distribution, the probability on the event is
bounded like

P(Ai,k(R))  2R

↵
p
2⇡

.

We use the estimate for P(Ai,k(R)) to bound the difference between the surrogate Gram matrix and the Gram matrix at
initialization V(0).
Recall the surrogate V̂(t) is defined as

V̂ij(t) =
1

m

mX

k=1

⌦
x
vk(t)

?

i , x
vk(t)

?

k

↵
1ik(t)1jk(t).

Thus for entry i, j we have

|V̂ij(t)�Vij(0)| =
����
1

m

mX

k=1

⌦
x
vk(t)

?

i , x
vk(t)

?

j

↵
1ik(t)1jk(t)� hxvk(0)

?

i , x
vk(0)

?

j i1ik(0)1jk(0)

����

This sum is decomposed into the difference between the inner product and the difference in the rectifier patterns terms
respectively:

✓⌦
x
vk(t)

?

i ,x
vk(t)

?

j

↵
�
⌦
x
vk(0)

?

i ,x
vk(0)

?

j

↵◆
,

✓
1ik(t)1jk(t)� 1ik(0)1jk(0)

◆
.

Define

Y
k
ij =

✓⌦
x
vk(t)

?

i , x
vk(t)

?

j

↵
�
⌦
x
vk(0)

?

i , x
vk(0)

?

j

↵◆�
1ik(t)1jk(t)

�
,

Z
k
ij =

✓⌦
x
vk(0)

?

i , x
vk(0)

?

j

↵◆✓
1ik(t)1jk(t)� 1ik(0)1jk(0)

◆
.

Then

|V̂ij(t)�Vij(0)| =
����
1

m

mX

k=1

Y
k
ij + Z

k
ij

���� 
����
1

m

mX

k=1

Y
k
ij

����+
����
1

m

mX

k=1

Z
k
ij

����.

To bound | 1m
Pm

k=1 Y
k
ij | we bound each |Y k

ij | as follows.
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|Y k
ij | =

�����

✓⌦
x
vk(t)

?

i , x
vk(t)

?

j

↵
�
⌦
x
vk(0)

?

i , x
vk(0)

?

j

↵◆�
1ik(t)1jk(t)

�
�����


����
⌦
x
vk(t)

?

i , x
vk(t)

?

j

↵
�
⌦
x
vk(0)

?

i , x
vk(0)

?

j

↵����

=

����hxi,xji �
⌦
x
vk(t)
i , x

vk(t)
j

↵
+
⌦
x
vk(0)
i , x

vk(0)
j

↵
� hxi,xji

����

=

�����

⌧
x
>
i vk(t)

kvk(t)k2
· vk(t)

kvk(t)k2
,
x
>
j vk(t)

kvk(t)k2
· vk(t)

kvk(t)k2

�
�
⌦
x
vk(0)
i , x

vk(0)
j

↵
�����

=

�����
x
>
i vk(t)

kvk(t)k2
·
x
>
j vk(t)

kvk(t)k2
�
⌦
x
vk(0)
i , x

vk(0)
j

↵
�����

=

�����
x
>
i vk(0)

kvk(0)k2
·
x
>
j vk(0)

kvk(0)k2
+ x

>
i

✓
vk(t)

kvk(t)k2
� vk(0)

kvk(0)k2

◆
·
x
>
j vk(t)

kvk(t)k2

+ x
>
j

✓
vk(t)

kvk(t)k2
� vk(0)

kvk(0)k2

◆
· x

>
i vk(0)

kvk(0)k2
�
⌦
x
vk(0)
i , x

vk(0)
j

↵
�����



�����x
>
i

✓
vk(t)

kvk(t)k2
� vk(0)

kvk(0)k2

◆
·
x
>
j vk(t)

kvk(t)k2

�����+

�����x
>
i

✓
vk(t)

kvk(t)k2
� vk(0)

kvk(0)k2

◆
·
x
>
j vk(t)

kvk(t)k2

�����

 2

����
vk(t)

kvk(t)k2
� vk(0)

kvk(0)k2

����
2

.

Therefore, we have
����
1

m

mX

k=1

Y
k
ij

���� 
2

m

mX

k=1

����
vk(t)

kvk(t)k2
� vk(0)

kvk(0)k2

����
2

 4Rv(2m/�)1/d

↵

 8Rv(m/�)1/d

↵
,

where the first inequality follows from Lemma B.10. Note that the inequality holds with high probability 1� �/2 for all i, j.

For the second sum, | 1m
Pm

k=1 Z
k
ij |  1

m

Pm
k=1 1Aik(R)+

1
m

Pm
k=1 1Ajk(R) so we apply Lemma D.1 to get, with probability

1� �/2n2

����
1

m

mX

k=1

Z
k
ij

���� 
2Rv

↵
p
2⇡

✓
2 +

2
p
2⇡↵ log (2n2

/�)

3mRv

◆

 8Rv

↵
p
2⇡

,

since m satisfies m = ⌦
� (m/�)1/dn2 log(n/�)

�0

�
. Combining the two sums for Y k

ij and Z
k
ij , with probability 1� �

2n2 ,

|V̂ij(t)�Vij(0)| 
8Rv

↵
p
2⇡

+
8Rv(m/�)1/d

↵
 12Rv(m/�)1/d

↵
.

Taking a union bound, with probability 1� �/2,

kV̂(t)�V(0)kF =

sX

i,j

|V̂ij(t)�Vij(0)|2  12nRv(m/�)1/d

↵
.
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Bounding the spectral norm by the Frobenous norm,

kV̂(t)�V(0)k2  12nRv(m/�)1/d

↵
.

Taking Rv = ↵�0

96n(m/�)1/d
gives the desired bound.

kV̂(t)�V(0)k2  �0

8
.

Proof of Lemma B.4:

To bound kV(t)�V(0)k2 we now consider kV(t)� V̂(t)k2. The entries of Vij(t) are given as

Vij(t) =
1

m

mX

k=1

⌦
x
vk(t)

?

i , x
vk(t)

?

j

↵
1ik(t)1jk(t)

✓
↵ck · gk
kvk(0)k2

◆2

.

The surrogate V̂(t) is defined as

V̂ij(t) =
1

m

mX

k=1

⌦
x
vk(t)

?

i , x
vk(t)

?

j

↵
1ik(t)1jk(t).

The only difference is in the second layer terms. The difference between each entry is written as

|Vij(t)� V̂ij(t)| =
����
1

m

mX

k=1

⌦
x
vk(t)

?

i , x
vk(t)

?

j

↵
1ik(t)1jk(t)

 ✓
↵ck · gk
kvk(t)k2

◆2

� 1

!�����

 max
1km

✓
↵
2
gk(t)2

kvk(t)k22
� 1

◆
.

Write 1 = ↵2g2
k(0)

kvk(0)k2
2

, since kvk(t)k2 is increasing in t according to (2.3)

↵
2
gk(t)2

kvk(t)k22
� 1 =

↵
2
gk(t)2

kvk(t)k22
� ↵

2
gk(0)2

kvk(0)k22
 3Rg(m/�)1/d + 3Rv(m/�)1/d/↵.

The above inequality is shown by considering different cases for the sign of the difference gk(t)� gk(0). Now
�����
↵
2
gk(t)2

kvk(t)k22
� ↵

2
gk(0)2

kvk(0)k22

����� =

�����

✓
↵gk(t)

kvk(t)k2
+

↵gk(0)

kvk(0)k2

◆✓
↵gk(t)

kvk(t)k2
� ↵gk(0)

kvk(0)k2

◆�����



�����

✓
↵gk(0) + ↵Rg

kvk(0)k2
+

↵gk(0)

kvk(0)k2

◆✓
↵gk(t)

kvk(t)k2
� ↵gk(0)

kvk(0)k2

◆�����

 (2 +Rg(m/�)1/d)

�����

✓
↵gk(t)

kvk(t)k2
� ↵gk(0)

kvk(0)k2

◆�����

 (2 +Rg(m/�)1/d)max

 ����
↵(gk(0) +Rg)

kvk(0)k2
� ↵gk(0)

kvk(0)k2

����,
����
↵(gk(0)�Rg)

kvk(0)k2 +Rv
� ↵gk(0)

kvk(0)k2

����

!

 (2 +Rg(m/�)1/d)max
�
Rg(m/�)1/d, Rg(m/�)1/d +Rv(m/�)1/d/↵

�

 3Rg(m/�)1/d + 3Rv(m/�)1/d/↵,

where the second inequality holds due to Lemma B.10 with probability 1� � over the initialization.



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

Hence:

kV̂(t)�V(t)k2  kV̂(t)�V(t)kF =

sX

i,j

|V̂ij(t)�Vij(t)|2  3nRg(m/�)1/d + 3nRv(m/�)1/d/↵.

Substituting Rv, Rg gives

kV̂(t)�V(t)k2  �0

8
.

Now we use Lemma B.3 to get that with probability 1� �

kV̂(t)�V(0)k2  �0

8
.

Combining, we get with probability 1� �

kV(t)�V(0)k2  �0

4
.

We note that the source for all the high probability uncertainty 1 � � all arise from initialization and the application of
Lemma B.10.

Proof of Lemma B.5:

To prove the claim we consider each entry i, j of G(t)�G(0). We have,

|Gij(t)�Gij(0)| =

�����
1

m

mX

k=1

�

✓
vk(t)>xi

kvk(t)k2

◆
�

✓
vk(t)>xj

kvk(t)k2

◆
� �

✓
vk(0)>xi

kvk(0)k2

◆
�

✓
vk(0)>xj

kvk(0)k2

◆�����

 1

m

�����

mX

k=1

�

✓
vk(t)>xi

kvk(t)k2

◆
�

✓
vk(t)>xj

kvk(t)k2

◆
� �

✓
vk(t)>xi

kvk(t)k2

◆
�

✓
vk(0)>xj

kvk(0)k2

◆�����

+
1

m

�����

mX

k=1

�

✓
vk(t)>xi

kvk(t)k2

◆
�

✓
vk(0)>xj

kvk(0)k2

◆
� �

✓
vk(0)>xi

kvk(0)k2

◆
�

✓
vk(0)>xj

kvk(0)k2

◆�����

 2

����
vk(t)

kvk(t)k2
� vk(0)

kvk(0)k2

����
2

 2R̃v(m/�)1/d

↵
.

In the last inequality we used the fact that
����

vk(0)

kvk(0)k2
� vk(t)

kvk(t)k2

����
2

 kvk(t)� vk(0)k2
kvk(0)k2

 (m/�)1/d

↵
kvk(t)� vk(0)k2,

where the first inequality uses that kvk(0)k2  kvk(t)k2 and is intuitive from a geometrical standpoint. Algebraically given
vectors a,b, then for any c � 1

����
ac

kak2
� b

kbk2

����
2

2

=

����
a

kak2
� b

kbk2
+ (c� 1)

a

kak2

����
2

2

=

����
a

kak2
� b

kbk2

����
2

2

+ (c� 1)2 + 2(c� 1)

⌧
a

kak2
� b

kbk2
,

a

kak2

�

�
����

a

kak2
� b

kbk2

����
2

2

+ (c� 1)2 �
����

a

kak2
� b

kbk2

����
2

2

.

The first inequality in the line above is since ha,bi
kak2,kbk2

 1.
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Hence,

kG(t)�G(0)k2  kG(t)�G(0)kF =

sX

i,j

|Gij(t)�Gij(0)|2  2nR̃v(m/�)1/d

↵
p
2⇡

.

Taking R̃v =
p
2⇡↵µ0

8n(m/�)1/d
gives the desired bound. Therefore, with probability 1� �,

kG(t)�G(0)k2  µ0

4
.

Now that we have established bounds on V(t),G(t) given that the parameters stay near initialization, we show that the
evolution converges in that case:

Proof of Lemma B.6:

Consider the squared norm of the predictions kf(t)� yk22. Taking the derivative of the loss with respect to time,

d

dt
kf(t)� yk22 = �2(f(t)� y)>

✓
G(t) +

V(t)

↵2

◆
(f(t)� y).

Since we assume that �min

✓
G(t) + V(t)

↵2

◆
� !

2 , the derivative of the squared norm is bounded as

d

dt
kf(t)� yk22  �!kf(t)� yk22.

Applying an integrating factor yields

kf(t)� yk22 exp(!t)  C.

Substituting the initial conditions, we get

kf(t)� yk22  exp(�!t)kf(0)� yk22.

For now, assuming the linear convergence derived in Lemma B.6, we bound the distance of the parameters from initialization.
Later we combine the bound on the parameters and Lemmas B.4, B.5 bounding the least eigenvalue of ⇤(t), to derive a
condition on the over-parametrization m and ensure convergence from random initialization.

Proof of Lemma B.7:

Denote f(xi) at time t as fi(t). Since kxvk(t)
?

i k2  kxik2 = 1, we have that
����
dvk(t)

dt

����
2

=

����
nX

i=1

(yi � fi(t))
1p
m
ckgk(t)

1

kvk(t)k2
x
v?

i 1ik(t)

����
2

 1p
m

nX

i=1

|yi � fi(t)|
ckgk(t)

kvk(t)k2
.

Now using (2.3) and the initialization kvk(0)k = ↵gk(0), we bound
����

ckgk(t)
kvk(t)k2

����,

����
ckgk(t)

kvk(t)k2

���� 
����ck
✓
gk(0) +Rg

kvk(0)k2

◆���� 
1

↵

✓
1 + ↵Rg/kvk(0)k2

◆
.
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By Lemma B.10, we have that with probability 1� � over the initialization,

↵/kvk(0)k2  C(m/�)1/d.

Hence ↵Rg/kvk(0)k2  1. This fact bounds
����

ckgk(t)
kvk(t)k2

���� with probability 1� � for each k,

����
ckgk(t)

kvk(t)k2

����  2/↵.

Substituting the bound,
����
d

dt
vk(t)

����
2

 2

↵
p
m

nX

i=1

|fi(t)� yi|

 2
p
n

↵
p
m
kf(t)� yk2

 2
p
n

↵
p
m

exp(�!t/2)kf(0)� yk2.

Thus, integrating and applying Jensen’s inequality,

kvk(t)� vk(0)k2 
Z s

0

����
dvk(s)

dt

����
2

ds  4
p
nkf(0)� yk2
↵!

p
m

.

Note that the condition |gk(t)�gk(0)|  Rg is stronger than needed and merely assuring that |gk(t)�gk(0)|  1/(m/�)1/d

suffices.

Analogously we derive bounds for the distance of gk from initialization.

Proof of Lemma B.8:

Consider the magnitude of the derivative dgk
dt ,

����
dgk

dt

���� =
����

1p
m

nX

j=1

(fj � yj)
ck

kvkk2
�(v>

k xj)

����.

Note
����

ck

kvkk2
�(v>

k xj)

���� =
�����
✓
v
>
k xj

kvkk2

◆����  1

Thus applying Cauchy Schwartz
����
dgk(t)

dt

���� 
2
p
np
m

kf(t)� yk2  2
p
np
m

exp(�!t/2)kf(0)� yk2,

and integrating from 0 to t yields

|gk(t)� gk(0)| 
Z t

0

����
dgk

dt
(s)

����ds 
Z t

0

2
p
np
m

exp(�!s/2)kf(0)� yk2ds 
4
p
nky � f(0)k2p

m!
.

Proof of Lemma B.9:

Consider the ith entry of the network at initialization,

fi(0) =
1p
m

mX

k=1

ck�

✓
gkv

>
k xi

kvkk2

◆
.
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Since the network is initialized randomly and m is taken to be large we apply concentration to bound fi(0) for each i.

Define zk = ck�

✓
gk(0)vk(0)

>xi

kvk(0)k2

◆
. Note that zk are independent sub-Gaussian random variables with

kzkk  kN(0, 1)k = C.

Here k · k denotes the 2-sub-Gaussian norm, (see (Vershynin, 2018) for example). Applying Hoeffding’s inequality bounds
fi(0) as

P(|
p
mfi(0)| > t)  2 exp

✓
� t

2
/2Pm

k=1 kzkk 2

◆

= 2 exp

✓
�t

2

2mC

◆
.

Which gives with probability 1� �/n that

|fi(0)|  C̃

p
log (n/�).

Now with probability 1� � we have that, for each i,

|fi(0)� yi|  |yi|+ C̃

p
log(n/�)  C2

p
log(n/�).

Since yi = O(1). Hence, with probability 1� �,

kf(0)� yk2  C

p
n log(n/�).

Proof of Lemma B.10:

At initialization vk ⇠ N(0,↵2
I) so the norm behaves like kvk(0)k22 ⇠ ↵

2
�d. The cumulative density of a chi-squared

distribution with d degrees of freedom behaves like F (x) = ⇥(xd/2) for small x so we have that with probability 1� �
m , that

kvk(0)k2 � ↵(m/�)
1
d where d is the input dimension. Applying a union bound, with probability 1� �, for all 1  k  m,

1

kvk(0)k2

�
m/�

�

↵

1/d

.

Now by (2.3) for t � 0, kvk(t)k2 � kvk(0)k2 so

1

kvk(t)k2
 1

kvk(0)k2

�
m/�

�

↵

1/d

.

E. Proofs of Lemmas from Appendix C and Proposition 2

Proof of Proposition 2:

The proof of proposition 2, follows the proofs of Theorems 4.1, 4.2, and relies on Theorem C.1. In particular for each ↵ > 0
at initialization, take !↵(s) = �min(⇤(s)) and define the auxiliary !↵,0 = �min(V1

/↵
2 +G

1). Then we have that

!↵,0 � �0/↵
2 + µ0 > 0.

Hence, by the same arguments of Theorem 4.1, 4.2 for !↵(s) if m =
�
n
4 log(n/�)/↵4

!
4
↵,0

�
, then we have that the

conditions of Theorem C.1 are satisfied, namely, �(s) � �0
2 and µ(s) � µ0

2 . Taking ⌘↵ = O

✓
1

k⇤(s)k2

◆
, then the required
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step-size for convergence is satisfied. This follows from the same argument of Theorems 4.1, 4.2 and depends on the fact
that k⇤(s)�⇤(0)k2  1

↵2 kV(s)�V
1(0)k2 + kG(s)�G(0)k2. Now we consider the term, ↵!↵,0. For ↵ = 1,

↵!↵,0 = �min(H
1).

Which matches the results of un-normalized convergence. In general, we have that

↵!↵,0 � ↵(�0/↵
2 + µ0) � min{�0, µ0}.

Therefore the bound on m is taken to be independent of ↵ as m = ⌦

✓
n4 log(n/�)
min{µ4

0,�
4
0}

◆
which simplifies the presentation. Now

for each ↵ the effective convergence rate is dictated by the least eigenvalue !↵ and the allowed step-size ⌘↵ as,
✓
1� ⌘↵!↵

◆
.

Then taking ↵
⇤ = argmin↵>0(1� ⌘↵!↵) we have that

(1� ⌘↵⇤!↵⇤)  (1� ⌘1!1).

which corresponds to the un-normalized converegence rate. Therefore as compared with un-normalized training we have
that for ↵⇤, WN enables a faster convergence rate.

Proof of Lemma C.1:

Fix R, without the loss of generality we write Si for Si(R). For each k, vk(0) is initialized independently via ⇠ N(0,↵2
I),

and for a given k, the event 1ik(0) 6= 1{v>
xi � 0} corresponds to |vk(0)>xi|  R. Since kxik2 = 1, vk(0)>xi ⇠

N(0,↵2). Denoting the event that an index k 2 Si as Ai,k, we have

P(Ai,k) 
2R

↵
p
2⇡

.

Next the cardinality of Si is written as

|Si| =
mX

k=1

1Ai,k .

Applying Lemma D.1, with probability 1� �/n,

|Si| 
2mR

↵
p
2⇡

+
16 log(n/�)

3
.

Taking a union bound, with probability 1� �, for all i we have that

|Si| 
2mR

↵
p
2⇡

+
16 log(n/�)

3
.

Proof of Lemma C.2:

To show this we bound the difference gk(s)� gk(0) as the sum of the iteration updates. Each update is written as
����
@L(s)

@gk

���� =
����

1p
m

nX

i=1

(fi(s)� yi)
ck

kvk(s)k2
�(vk(s)

>
xi)

����.

As
����ck�

✓
vk(s)

>xi

kvk(s)k2

◆����  1,

����
@L(s)

@gk

���� 
1p
m

nX

i

|fi(s)� yi| 
p
np
m
kf(s)� yk2.
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By the assumption in the statement of the lemma,
����
@L(s)

@gk

���� 
p
n(1� ⌘!

2 )s/2kf(0)� yk2p
m

.

Hence bounding the difference by the sum of the gradient updates:

|gk(K + 1)� gk(0)|  ⌘

KX

s=0

����
@L(s)

@gk

���� 
4⌘

p
nkf(0)� yk2p

m

KX

s=0

(1� ⌘!

2
)s/2.

The last term yields a geometric series that is bounded as

1

1�
p
1� ⌘!

2

 4

⌘!
,

Hence

|gk(K + 1)� gk(0)| 
4
p
nkf(0)� yk2
!
p
m

.

Proof of Lemma C.3:

To show this we write vk(s) as the sum of gradient updates and the initial weight vk(0). Consider the norm of the gradient
of the loss with respect to vk,

krvkL(s)k2 =

����
1p
m

nX

i=1

(fi(s)� yi)
ckgk(s)

kvk(s)k2
1ik(s)x

vk(s)
?

i

����
2

.

Since kvk(s)k2 � kvk(0)k2 � ↵(�/m)1/d with probability 1 � � over the initialization, applying Cauchy Schwartz’s
inequality gives

krvkL(s)k2  (1 +Rg(m/�)1/d)
p
nkf(s)� yk2

↵
p
m

. (E.1)

By the assumption on kf(s)� yk2 this gives

krvkL(s)k2 
2
p
n(1� ⌘!

2 )s/2kf(0)� yk2
↵
p
m

.

Hence bounding the parameter trajectory by the sum of the gradient updates:

kvk(K + 1)� vk(0)k2  ⌘

KX

s=0

krvkL(s)k2  2
p
nkf(0)� yk2
↵
p
m

KX

s=1

✓
1� ⌘!

2

◆s/2

yields a geometric series. Now the series is bounded as

1

1�
p
1� ⌘!

2

 4

⌘!
,

which gives

kvk(K + 1)� vk(0)k2  8
p
nkf(0)� yk2
↵
p
m!

.


