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A. Additional experimental results
A.1. SRE vs SNPE-C

(a) Nonlinear Gaussian (b) Lotka-Volterra

(c) M/G/1

Figure 4: Comparison of posterior samples for SRE (sub-figure left) and SNPE-C (sub-figure right) on each task. For both
methods, we use K = 100 to generate the contrasting set.
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(a) SRE (b) SNPE-C

Figure 5: Comparison of SRE and SNPE-C metrics on Nonlinear Gaussian task. Before recovering the multimodal posterior,
the posteriors can sometimes become too confident in certain parameter settings, leading to the observed negative log
likelihood behaviour.

A.2. SRE vs SNL

(a) Lotka-Volterra (b) M/G/1

Figure 6: Comparison of posterior samples for SNL (sub-figure left) and SRE (sub-figure right) on each task.
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Figure 7: Comparison of Nonlinear Gaussian metrics for SRE and SNL.

A.3. SNPE-C MCMC

Figure 8: Metrics for Nonlinear Gaussian, Lotka-Volterra, and M/G/1 using SNPE-C with MCMC instead of i.i.d. sampling
in each round.
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B. Correctness of SNPE-C for arbitrary proposals p̃(θ)
Assuming optimality of the classifier, we have

fφ(x,θ) = log
p̃(θ |x)

p̃(θ)
+ c̃(x) (17)

= log
p(θ |x)

p(θ)
+ c(x), where c(x) = c̃(x) + log

p(x)

p̃(x)
. (18)

Now, since fφ(x,θ) = log
qφ(θ |x)

p(θ) , we have

log
qφ(θ |x)

p(θ)
= log

p(θ |x)

p(θ)
+ c(x) (19)

⇐⇒ log qφ(θ |x) = log p(θ |x) + c(x). (20)

Exponentiating and then integrating both sides w.r.t. θ gives∫
qφ(θ |x) dθ = exp(c(x))

∫
p(θ |x) dθ =⇒ c(x) = 0. (21)

Thus for the optimal classifier, we have

qφ(θ |x) = p(θ |x), (22)

and the parameterized conditional density estimator recovers the true posterior for any proposal p̃(θ).


