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Abstract
Likelihood-free methods perform parameter infer-
ence in stochastic simulator models where eval-
uating the likelihood is intractable but sampling
synthetic data is possible. One class of meth-
ods for this likelihood-free problem uses a clas-
sifier to distinguish between pairs of parameter-
observation samples generated using the simula-
tor and pairs sampled from some reference dis-
tribution, which implicitly learns a density ratio
proportional to the likelihood. Another popular
class of methods fits a conditional distribution to
the parameter posterior directly, and a particular
recent variant allows for the use of flexible neural
density estimators for this task. In this work, we
show that both of these approaches can be unified
under a general contrastive learning scheme, and
clarify how they should be run and compared.

1. Introduction
Modeling systems using parameterized stochastic simula-
tors is prevalent across many scientific and engineering
disciplines, including cosmology (Alsing et al., 2019), high-
energy physics (Brehmer et al., 2018a), and computational
neuroscience (Gonçalves et al., 2019). Specifying models
in this way is appealing since it is often easier to describe a
generative process implicitly rather than reasoning directly
about an emergent probability distribution. Traditional pa-
rameter inference algorithms such as variational methods
and Markov Chain Monte Carlo (MCMC) usually don’t
apply to these models, since explicit evaluation of the likeli-
hood function is often intractable.

In recent years, significant progress has been made toward
this challenge of likelihood-free inference (Sisson et al.,
2018). Most of the literature relies on sample-based meth-
ods that require very large numbers of simulations. Methods
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based on neural networks have reduced the number of sim-
ulations needed to perform effective inference by orders
of magnitude (Papamakarios, 2019; Cranmer et al., 2019).
Some of these can evaluate and sample from an approximate
posterior directly, bypassing the need for MCMC schemes
altogether. Ultimately, this line of work seeks to develop
a robust and practical toolkit which practitioners can rely
upon for whichever use case they desire.

In this paper, we consider two recently proposed approaches
to neural likelihood-free inference: the first uses classifica-
tion to approximate density ratios proportional to the like-
lihood (Hermans et al., 2020), whereas the second directly
casts the problem as a conditional density estimation task
(Greenberg et al., 2019). We demonstrate that these two
methods, traditionally viewed as distinct and compared as
such in the literature, are both instances of a more general
contrastive learning scheme, and can thus be unified under a
single framework. Using this perspective, we directly com-
pare the properties and behaviour of both algorithms, and
offer practical recommendations for those wishing to use
these methods.

2. Background
Given a vector of parameters θ, a stochastic simulator gen-
erates latent random numbers z, and produces observed
data x = g(θ, z), where g is some nonlinear function. The
likelihood of the parameters θ given observed data x is then

p(x |θ) =

∫
δ(x− g(θ, z)) p(z |θ) dz, (1)

where δ(·) is the Dirac delta, and this integral is intractable
in general. In some cases it may be possible to evaluate the
joint likelihood p(x, z |θ), but (i) this requires performing
inference on the constrained manifold (g(θ, z), z), and (ii)
often this augmented space is sufficiently high-dimensional
to make standard inference approaches infeasible. In other
cases, the simulator may be provided to us as a black-box
whose internal workings are not accessible, and it is still
desirable to carry out inference in this scenario.

We are interested in computing the posterior p(θ |x0) for a
specific observation x0, where we have prior beliefs p(θ)
about the parameters. This amounts to computing the den-
sity ratio p(x0 | θ)

p(x0) = p(θ |x0)
p(θ) , and this quantity need only be
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known up to a constant independent of θ if our approach
uses MCMC schemes. Throughout, we assume that the sim-
ulator defines a valid probability density function p(x |θ)
over observations x.

2.1. Learning density ratios

It is well known that binary classification can be used to
learn density ratios (Hastie et al., 2001; Sugiyama et al.,
2012; Mohamed & Lakshminarayanan, 2016). Defining
ppos(x) = p(x | y=1) and pneg(x) = p(x | y=0) for binary
y, and assuming each class is equally likely a priori yields

p(y = 1 |x) =
ppos(x)

ppos(x) + pneg(x)
=

r(x)

r(x) + 1
, (2)

where r(x) =
ppos(x)
pneg(x) . In other words, an optimal binary

classifier which distinguishes between samples from the
two distributions recovers the ratio between their density
functions. A common choice of parameterization for this
classifier is p(y = 1 |x) = σ(fφ(x)), where σ(·) is the
logistic sigmoid and fφ is a real-valued function whose
parameters φ can be fit using maximum likelihood, and the
optimal value for fφ is fφ(x) = log r(x).

In the context of likelihood-free inference, Hermans et al.
(2020) consider positive examples (y = 1) those pairs
(x,θ) ∼ p(x,θ) which are distributed jointly, and gen-
erated by sampling a parameter from the prior and subse-
quently simulating an observation for that parameter set-
ting. In contrast, negative examples (y = 0) are those
pairs (x,θ) ∼ p(x) p(θ) with parameters and observations
sampled independently from their respective marginal dis-
tributions. Then binary classification recovers the ratio

r(x,θ) =
p(x,θ)

p(x) p(θ)
=
p(x |θ)

p(x)
=
p(θ |x)

p(θ)
. (3)

Since the prior is known, it is possible to evaluate the pa-
rameter posterior exactly using p(θ |x0) = r(x0,θ) p(θ).
However, only exact evaluation of the posterior distribution
is achieved in this case, whereas sampling still requires an
MCMC scheme. Likelihood-free inference by ratio estima-
tion (LFIRE, Thomas et al., 2016) is a pioneering example
of this approach. However, Thomas et al. (2016) fit a classi-
fier using only observations x as input, meaning a separate
classifier is required for each posterior evaluation p(θ|x).

Moreover, Hermans et al. (2020) note that since we are
interested in computing the posterior for a particular ob-
servation x0, it may be wasteful to learn the ratio r(x,θ)
for all pairs (x,θ). Instead, it might be preferable to fo-
cus attention on those parameters which may have plausi-
bly generated x0, rather than parameters sampled from the
prior. Suppose we have access to such a proposal prior,
which we denote p̃(θ). Then, considering positive examples

(x,θ) ∼ p̃(x,θ) = p(x |θ) p̃(θ) and negative examples
(x,θ) ∼ p̃(x) p̃(θ), binary classification recovers the ratio

r̃(x,θ) =
p̃(x,θ)

p̃(x) p̃(θ)
=
p(x |θ)

p̃(x)
(4)

At the expense of exact posterior evaluation, we have ostensi-
bly gained a more accurate ratio estimate for the parameters
corresponding to the observation of interest. Moreover, it
is still possible to evaluate the posterior up to a constant,
since p(θ |x0) ∝ r̃(x0,θ) p(θ), so MCMC schemes can
still be used to generate samples from the desired posterior.
Using this approach, an algorithm emerges where the like-
lihood ratio is refined iteratively across a series of rounds,
and training data for a given round is generated using the
estimated ratios from preceding rounds i.e. the proposal
p̃(θ) is a mixture of posterior estimates from all preceding
rounds. We use the term Sequential Ratio Estimation (SRE)
to describe this approach of Hermans et al. (2020).

Finally, binary classification can equivalently be viewed as
a task where the model must correctly identify the correct
example given a set consisting of exactly one positive ex-
ample drawn jointly with an observation, and one negative
example drawn marginally. This equivalent perspective will
prove useful in deriving a unifying notation in later sections.
Denoting this set Θ = {θ0,θ1} and assuming each class is
equally likely a priori, we have

p(y = 1 |x,Θ) =
p(x,Θ | y = 1)

p(x,Θ | y = 0) + p(x,Θ | y = 1)
(5)

=
p(θ1 |x) p(θ0)

p(θ0 |x) p(θ1) + p(θ1 |x) p(θ0)
(6)

=
p(θ1 |x)/p(θ1)

p(θ0 |x)/p(θ0) + p(θ1 |x)/p(θ1)
. (7)

Now if we parameterize a binary classifier by

p(y = 1 |x,Θ) =
exp(fφ(θ1,x))

exp(fφ(θ0,x)) + exp(fφ(θ1,x))
, (8)

then the optimal classifier has fφ(θ,x) = log p(θ |x)
p(θ) +c(x),

where c(x) is constant with respect to θ.

2.2. Learning the posterior

Likelihood-free inference can also be cast as a conditional
density estimation problem directly. Consider a parame-
terized conditional density estimator qφ(θ |x), sometimes
referred to as a recognition model. The parameters φ can be
fit by minimizing L(φ) = E(x,θ)∼p(x,θ)[− log qφ(θ |x)].
With enough data and a sufficiently flexible model, qφ(θ |x)
will converge to the posterior density p(θ |x) for all pairs
(x,θ). Then the posterior density of interest can be com-
puted using p(θ |x0) = qφ(θ |x0). However, since we are
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again only interested in the posterior for a specific observa-
tion x0, it may be beneficial to learn the conditional density
more carefully for parameters which could have plausibly
generated that observation. Indeed, recent work, which we
group under the umbrella of Sequential Neural Posterior
Estimation (SNPE, Papamakarios & Murray, 2016; Lueck-
mann et al., 2017; Greenberg et al., 2019), has developed
sequential procedures for exactly this purpose, narrowing
focus to parameters of interest across a series of rounds,
where the posterior estimate for a given round is used as
the proposal prior for the subsequent round. Central to the
function of these methods is the proposal posterior p̃(θ |x),
related to the true posterior by

p̃(θ |x) = p(θ |x)
p̃(θ)

p(θ)

p(x)

p̃(x)
. (9)

SNPE-A. The first method is known as SNPE-A (Papa-
makarios & Murray, 2016). Given a proposal prior p̃(θ),
SNPE-A fits a neural density estimator qφ(θ |x) by min-
imizing L(θ) = E(x,θ)∼p(x | θ)p̃(θ)[− log qφ(θ |x)], con-
verging to the proposal posterior p̃(θ |x). The relation
p(θ |x) ∝ p̃(θ |x)p(θ)

p̃(θ) = qφ(θ |x)p(θ)
p̃(θ) can then be used

to compute the desired conditional density up to a constant.
In certain cases, we can compute the posterior analytically.
For example, when both p(θ) and p̃(θ) are Gaussian, and
the density estimator qφ(θ |x) is a mixture density network
(Bishop, 1994) with M Gaussian components, the poste-
rior is also a mixture of Gaussians with M components.
However, the algorithm precludes the use of more flexible
conditional density estimators, such as autoregressive mod-
els (Uria et al., 2016) or normalizing flows (Papamakarios
et al., 2019a), if we want a tractable posterior.

SNPE-B. The second of these methods, referred to as
SNPE-B (Lueckmann et al., 2017), allows for the use
of arbitrary neural density estimators. This is achieved
through minimizing an importance-weighted loss L(φ) =

E(x,θ)∼p(x | θ)p̃(θ)

[
−p(θ)

p̃(θ) log qφ(θ |x)
]
, where qφ(θ |x)

now recovers the correct posterior directly. Unfortunately,
the importance weights p(θ)

p̃(θ) are often high variance, and
can lead to poor performance of the algorithm overall.

SNPE-C (APT). Finally, the third method, and of particular
interest in this paper, is Automatic Posterior Transformation
(APT, Greenberg et al., 2019), or SNPE-C in the existing
taxonomy. SNPE-C neatly reparameterizes the proposal pos-
terior objective from SNPE-A so that maximum likelihood
recovers the true posterior directly. Setting

q̃φ(θ |x) = qφ(θ |x)
p̃(θ)

p(θ)

1

Zφ(x)
, (10)

where Zφ(x) =
∫
qφ(θ |x) p̃(θ)

p(θ) dθ, SNPE-C minimizes
L(φ) = E(x,θ)∼p(x | θ)p̃(θ)[− log q̃φ(θ |x)].

Unfortunately, SNPE-C as described requires the ability to
calculate the normalizing constant Zφ(x), which can be
computed analytically for an MDN, but not in general for
more flexible density estimators such as normalizing flows.
However, Greenberg et al. (2019) note that if the proposal
is uniform and supported on a finite set of discrete ‘atoms’
Θ, the integral reduces to a sum, and the proposal posterior
now defines a distribution over this discrete set:

q̃φ(θ |x) =
qφ(θ |x)/p(θ)∑

θ′∈Θ qφ(θ′ |x)/p(θ′)
. (11)

Moreover, Greenberg et al. (2019) show that when the
contrasting set is drawn from a distribution over parameters
whose support contains the support of the true posterior, the
density estimator qφ(θ |x) still converges to the full contin-
uous posterior. Intuitively, the inference problem has been
rephrased as a series of multiple choice questions: given
an observation x and a set of possible parameters Θ which
may have generated that observation, the task is to identify
the correct parameter θ. For the rest of the paper, SNPE-C
refers specifically to this atomic variant of the algorithm.

3. Method
Unifying SRE and SNPE-C. There is clear similarity be-
tween eq. (8) and eq. (11); indeed, modulo the switch from
a binary to multi-class setting, the difference is only no-
tational. SRE and SNPE-C are in fact both instances of
a more general contrastive learning scheme. To see this,
consider the posterior over labels for K categories given an
observation x and a set of examples Θ containing exactly
one positive example θ which generated that observation,
while the remaining set of contrasting examples Θ(\k) are
drawn jointly from some other distribution conditioned on
this joint pair. Then, again assuming each class is equally
likely a priori, we have

p(y = k |x,Θ) =
p(x,Θ | y = k) p(y = k)∑
k′ p(x,Θ | y = k′) p(y = k′)

(12)

=
p(θ(k) |x) p(Θ(\k) |x,θ(k))∑
k′ p(θ(k′) |x) p(Θ(\k′) |x,θ(k′))

.

Now suppose the elements of the contrasting set are drawn
independently of both the joint pair

(
x,θ(k)

)
, and of each

other, by sampling K − 1 times from the prior. In this case,
p(Θ(\k) |x,θ(k)) =

∏
l 6=k p(θ

(l)), and we have

p(y = k |x,Θ) =
p(θ(k) |x)

∏
l 6=k p(θ

(l))∑
k′ p(θ(k′) |x)

∏
l 6=k′ p(θ(l))

(13)

=
p(θ(k) |x)/p(θ(k))∑
k′ p(θ(k′) |x)/p(θ(k′))

(14)

=
exp
(
fφ(θ(k),x) + c(x)

)∑
k′ exp

(
fφ(θ(k′),x) + c(x)

) , (15)
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Algorithm 1 (Sequential) Contrastive Likelihood-free Inference

1: Input: Simulator p(x |θ), prior p(θ), true observation x0, classifier fφ(θ,x), rounds R, simulations per round N .
{For SNPE-C, we require fφ(θ,x) = log

qφ(θ |x)
p(θ) , where qφ(θ |x) is a normalized conditional density estimator.}

2: Initialize: Posterior p(1)(θ) = p(θ), dataset D = {}.
3: for r = 1 to R do
4: Sample θ(n) ∼ p(r)(θ), n = 1 . . . N . {For SRE, this step requires MCMC, but in the case of SNPE-C we can sample

i.i.d. from the density estimator, using rejection sampling if the density estimator has support outside the prior.}
5: Simulate x(n) ∼ p(x |θ(n)), n = 1 . . . N .
6: Aggregate training data D = D ∪

{(
x(n),θ(n)

)}
N
n=1.

7: while fφ not converged do
8: Sample mini-batch

{(
x(b),θ(b)

)}
B
b=1 ∼ D. {This is equivalent to sampling parameters from a proposal θ ∼

p̃(θ) = 1
r

∑r
r′=1 p

(r′)(θ), and then simulating x ∼ p(x |θ).}
9: For each pair in the mini-batch, sample 0 < K − 1 < B contrasting parameters without replacement from the

remainder of the mini-batch. {Equivalent to sampling each contrasting parameter independently from p̃(θ).}
10: Update φ by stochastic gradient descent using objective L(φ) = − 1

B

∑B
b=1 log

exp(fφ(θ(b),x(b)))∑K
k=1 exp(fφ(θ(k),x(b)))

.

11: end while
12: Update posterior p(r)(θ) ∝ exp(fφ(θ,x0)). {For SNPE-C, we can set p(r)(θ) = qφ(θ |x0) directly.}
13: end for

where the progression from eq. (14) to eq. (15) is directly
analogous to the progression from eq. (7) to eq. (8). Once
more, we see that the optimal classifier implicitly learns the
desired log-density ratio up to proportionality. Moreover,
we still recover the correct ratio even if we sample param-
eters from a proposal p̃(θ) instead of the prior p(θ), since
p̃(θ |x)
p̃(θ) ∝

p(θ |x)
p(θ) . With this result, the connection between

SRE and SNPE-C becomes clear.

• Setting K=2 and parameterizing the classifier as a stan-
dard feed-forward neural network fφ(θ,x) = NNφ(θ,x)
recovers SRE. The derivation above also generalizes SRE
from the binary case to multiple classes, and we will show
this generally improves performance of the algorithm.

• The multi-class problem with parameterization of the
classifier in terms of a density estimator fφ(θ,x) =

log
qφ(θ |x)

p(θ) recovers SNPE-C. In this case, qφ(θ |x)

yields a normalized approximation to the posterior when
the density and the prior are supported on the same set
(see appendix B for details), and may allow for efficient
and exact evaluation and sampling depending on the par-
ticular choice of density estimator. This provides an alter-
native derivation to that given by Greenberg et al. (2019)
of the correctness of the atomic variant of SNPE-C.

We believe this unifying perspective is beneficial to both
practitioners and researchers, since comparison of these
methods can now be cast in a more direct way, and the
trade-offs of each more carefully considered. For instance,
immediate questions arise concerning choice of contrasting
set size, and whether reparameterizing the classifier in terms
of a density estimator impacts inference. It is also interest-

ing to note how two lines of research into the likelihood-free
problem converged essentially independently to very similar
ideas; indeed, Hermans et al. (2020) compare to SNPE-C in
their experiments without explicitly noting this connection.
We present the general algorithm which encompasses both
of these methods, iteratively refining a posterior approxima-
tion across a sequence of rounds, in algorithm 1.

Connection to mutual information estimation. Similar
observations concerning density ratios have previously been
made in the wider machine learning literature, but the im-
plications for likelihood-free inference may not have been
fully appreciated. The topic has received particular attention
recently due to interest in mutual information estimation
with neural networks (Belghazi et al., 2018; van den Oord
et al., 2018; Poole et al., 2019). In this context, the classifier
is often referred to as a critic, and multi-sample variational
bounds have been derived for the mutual information, where
it is also known that it can be advantageous to reparameter-
ize the critic in terms of known densities. With this work, we
seek to clarify these points within the likelihood-free infer-
ence community, and unify two promising lines of research
which until now have been presented as distinct.

Of particular note is the connection of this contrastive learn-
ing scheme for likelihood-free inference to the multi-sample
lower bound on the mutual information popularized by
van den Oord et al. (2018). Imagine we sample a mini-
batch of B pairs

{
(x(b),θ(b))

}
B
b=1 from our training set,

where θ(b) ∼ p̃(θ) was sampled from the some proposal,
and x(b) ∼ p(x |θ(b)) was generated using the simula-
tor. To generate a contrasting set of examples, we choose
the remaining parameters in the batch, in effect sampling
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marginally from the proposal p̃(θ). Indeed, this is the pro-
cedure used by SNPE-C to generate a contrasting set, and
SRE can be extended similarly. Equivalently, this amounts
to setting K =B in eq. (15). The classification loss for a
minibatch is then

LB(φ) = − 1

B

B∑
b=1

log
exp
(
fφ(θ(b),x(b))

)∑
b′ exp

(
fφ(θ(b′),x(b))

) . (16)

The negative of this quantity is a well-known multi-sample
lower bound on the mutual information between the two
distributions defined by the joint p̃(x,θ) = p(x |θ) p̃(θ)
and the product of marginals p̃(x) p̃(θ) (Poole et al., 2019),
so that optimization of the classification loss can be equiv-
alently interpreted as optimization of an estimate of the
mutual information between these distributions.

This perspective gives some motivation for a sequential
approach in likelihood-free methods, where in each round
we sample parameters from a successively more accurate
targeted proposal p̃(θ) rather than the prior, which may be
expected to decrease the mutual information across rounds.
It also suggests that increasing the size of the contrasting set
K may be beneficial, since this mutual information estimate
is bounded above by logK. However, neither SRE or SNPE-
C needs to calculate the mutual information explicitly, and
the density ratios can be learned for any K ≥ 2.

4. Related Work
Approximate Bayesian Computation (ABC). We use the
term ABC to describe the group of likelihood-free inference
algorithms which require (i) choice of summary statistics
x for observations x, (ii) choice of a metric d(·, ·) which
computes distances between summary statistics, and (iii)
choice of a tolerance ε > 0 which determines whether
two summary statistics are sufficiently similar based on
the computed distance. Broadly, ABC methods draw ap-
proximate posterior samples by first proposing according to
some scheme, and then rejecting samples whose summary
statistics are distance more than ε from the observed sum-
maries. Such algorithms have formed a central component
of likelihood-free inference research for many years; see
e.g. reviews by Beaumont (2010), Lintusaari et al. (2016)
and Beaumont (2019). A drawback of ABC methods is that
they generally require a large number of simulations to yield
accurate results, which can be prohibitive when the simu-
lator is expensive. Comparisons in the existing literature
suggest that likelihood-free methods based on neural density
estimators can outperform traditional approaches such as Se-
quential Monte Carlo ABC (Sisson et al., 2007; Beaumont
et al., 2009; Toni et al., 2009) in terms of simulation cost,
often requiring orders of magnitude fewer simulations (Pa-
pamakarios & Murray, 2016; Papamakarios et al., 2019b).

Learning the likelihood. Conversely to fitting a condi-

tional density estimator to the posterior directly, it is also
possible to fit a synthetic likelihood to approximate p(x|θ).
A synthetic likelihood can be estimated separately for each
parameter θ considered, e.g. as part of an MCMC scheme
(Wood, 2010; Price et al., 2018; Fasiolo et al., 2018), or it
can be amortized across parameters (Fan et al., 2013; Meeds
& Welling, 2014). One advantage of the likelihood-learning
approach is that parameters can be drawn from any proposal
(Papamakarios et al., 2019b), and may even be chosen using
active learning (Gutmann & Corander, 2016; Lueckmann
et al., 2019; Järvenpää et al., 2018). In addition, the simula-
tor may be such that learning the likelihood is easier than
learning the posterior directly, which is often the case when
the forward process is specified using simple probabilistic
primitives, as in probabilistic programming (Gordon et al.,
2014). Finally, a model of the likelihood is often easier to
diagnose than a model of the posterior, since exact samples
from p(x|θ) can be readily obtained (Dalmasso et al., 2019).
On the other hand, any methods based on a surrogate likeli-
hood require an additional inference step (such as MCMC)
for posterior sampling, which adds complexity to the overall
algorithm and can introduce further approximation error.
Compounding this drawback is the fact that observations x
are often of much higher dimension than parameters θ, mak-
ing conditional density estimation of observations a more
difficult task. Indeed, Greenberg et al. (2019) show that the
performance of the Sequential Neural Likelihood algorithm
described by Papamakarios et al. (2019b) degrades when
concatenating uninformative noise to observations x.

Contrastive learning. The use of classification for density-
ratio estimation is long-standing in machine learning, and
is closely linked to the broad paradigm of learning-by-
comparison, or contrastive learning. A prominent exam-
ple of this line of thinking is Noise Contrastive Estimation
(Gutmann & Hyvärinen, 2010), a method for fitting unnor-
malized distributions, or energy-based models, by learn-
ing relative probabilities through comparison with a known
noise distribution. This approach forms the basis of the sub-
sequent LFIRE method (Thomas et al., 2016). The branch
of Generative Adversarial Networks literature concerned
with fitting discriminators which approximate f -divergences
(Goodfellow et al., 2014; Nowozin et al., 2016) has also
made significant contribution to the ubiquity of density-
ratio estimation techniques. Recently, contrastive learning
has also shown great promise in unsupervised pre-training
for vision tasks. A variant of Contrastive Predictive Coding
(van den Oord et al., 2018; Hénaff et al., 2019) has demon-
strated that a linear classifier on top of features learned in an
unsupervised manner on ImageNet outperforms early con-
volutional networks in accuracy, while Momentum Contrast
(He et al., 2019) outperforms supervised pre-training in a
series of downstream detection and segmentation tasks.

Density-ratio estimation for likelihood-free inference.
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Figure 1: Comparison of SRE (left) and SNPE-C (right) across tasks and metrics, featuring mean and standard deviation
across 10 random seeds. Negative log probability of true parameters is calculated using a kernel density estimate on posterior
samples at the end of each round. Median distance uses the L2 distance between observations generated at each round and
true observations. Increasing the contrasting-set size leads to more efficient inference, if only marginally in some cases.

The ratio of the likelihood p(x|θ) to the marginal p(x)
is of central importance to Bayesian inference, and thus
a natural quantity to estimate in likelihood-free inference.
An early example of estimating this ratio is given by
Izbicki et al. (2014); subsequent examples include LFIRE
(Thomas et al., 2016) and SRE (Hermans et al., 2020), which
we have already discussed. Another possibility is to learn
the ratio between likelihoods p(x|θ1) and p(x|θ2), with
or without amortization across parameters θ1 and/or θ2.
This likelihood ratio can be used as the acceptance ratio in
MCMC (Pham et al., 2014) or as a test statistic in hypothesis
testing (Brehmer et al., 2018a), and can be learned by binary
classification (Cranmer et al., 2016) or by regressing the
joint-likelihood ratio if the latter is available (Brehmer et al.,
2018b; Stoye et al., 2018). Other applications of density-
ratio estimation in likelihood-free inference include: using
binary-classification performance as a distance metric for
ABC (Gutmann et al., 2018), estimating variational bounds
(Tran et al., 2017), and testing goodness-of-fit of synthetic
likelihoods (Dalmasso et al., 2019).

5. Experiments
In this section we compare SRE and SNPE-C experimen-
tally, and discuss practical details of their implementation.
For completeness we also consider Sequential Neural Likeli-
hood (SNL, Papamakarios et al., 2019b), another sequential
method for likelihood-free inference which fits a neural den-
sity estimator as a surrogate likelihood. The classifier for
SRE is a feed-forward residual network with two residual
blocks of 50 hidden units. All density estimators for SNL
and SNPE-C use a MAF (Papamakarios et al., 2017) ar-
chitecture, consisting of a stack of five MADEs (Germain

et al., 2015), each with two hidden layers of 50 units, and
a standard normal base distribution. While MAF features
density evaluation that is efficiently parallelizable across
data dimensions, sampling is sequential, but the dimension-
ality of the parameter spaces considered is low enough that
sampling is efficient. It is also worthwhile to point out the
modularity of both SNL and SNPE-C, which readily allow
for any off-the-shelf density estimator to be plugged in; the
choice of MAF was made here in line with previous work.

We use axis-aligned slice sampling (Neal, 2003) as an
MCMC method for SNL and SRE. A single MCMC
chain persists across rounds for each method, where we
perform burn-in of 200 iterations whenever the target dis-
tribution changes, and retain every tenth accepted sample.
In each round, the parameters of each method are fit us-
ing stochastic gradient descent with the Adam (Kingma &
Ba, 2015) optimizer, a learning rate of 5e-4, and a mini-
batch size of 100. To prevent overfitting, we perform
early-stopping based on a held-out validation set of ten
percent of the training data aggregated so far, stopping train-
ing when validation performance does not improve over
20 epochs. We compare likelihood-free methods using a
testbed of three simulators, namely the Nonlinear Gaus-
sian simulator with tractable likelihood described by Pa-
pamakarios et al. (2019b), along with the Lotka–Volterra
predator-prey and M/G/1 queue models whose setups are
detailed by Papamakarios & Murray (2016). For all tasks
we acquire 1000 new simulations per round, running the
Nonlinear Gaussian and M/G/1 tasks for 25 rounds, and
Lotka–Volterra for 20. All experiments are repeated across
10 random seeds using a single GPU, and code is available
at https://github.com/conormdurkan/lfi.

https://github.com/conormdurkan/lfi
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Figure 2: Distribution of rejection sampling acceptance
rates for SNPE-C using 107 samples in rounds 1, 10, and 20
across 10 random seeds. Whiskers delineate 5th and 95th

percentiles. Maximum likelihood training in the first round
forces qφ to place density in the prior support. However,
learning by classification in later rounds means there is no
penalty for leaking significant density, and this phenomenon
occurs in two of three tasks, with high variance in the third.

A note on choice of prior. A subtle detail arises when using
SNPE-C with a density estimator whose support does not
match that of the prior. Such scenarios arise commonly in
practice, where simulators often impose hard constraints on
parameter values, and a box uniform prior is chosen over
an appropriate region. Indeed, each task considered in this
section uses a box uniform prior on some region, in line
with the setup in previous literature, while a MAF with a
standard normal base distribution has support everywhere.
However, this can lead to difficulties, as noted by Greenberg
et al. (2019). Unlike maximum likelihood training, the
classification objective defined by eq. (15) does not force
qφ to place density in the prior support, but instead dictates
only that density ratios are correct in this region; this is
an inherent property of training a density estimator in an
implicit fashion using a proxy classification task.

The consequence of this detail is that the density estima-
tor can use an arbitrarily small portion of its density to fit
the correct ratios if optimization using eq. (15) means it is
advantageous to do so. This behaviour occurs commonly
in practice, with posterior density ‘leaking’ from the prior
support across rounds, such that acceptance rates for rejec-
tion sampling using the density estimator can become low.
We stress, however, that this issue only arises with SNPE-C
when the posterior support does not match that of the prior.
On the other hand, there is no such similar notion for SRE,
since the feed-forward network fφ defines a density only
implicitly and is never evaluated outside of the prior support.

A full solution to this issue requires either reparameterizing
the prior to be unconstrained, or alternatively reparameter-
izing the density estimator qφ to be supported only on the
same region as the prior. We would argue that the former
option is heavily influenced by domain-specific factors; it is

often natural for practitioners to prescribe hard constraints
because simulators fail or run indefinitely for invalid values.
For example, reparameterizing a strictly positive parameter
on a log-scale may be problematic since exponentiated pa-
rameter values can lie arbitrarily close to zero, and although
technically valid, may be numerically unstable. Empiri-
cally, we also found that box uniform priors tend to produce
sharper posterior estimates than, say, Gaussian priors. On
the other hand, reparameterizing the density estimator to be
supported on some fixed range using an invertible squashing
function, such as the sigmoid, leads to its own set of numer-
ical issues. While theoretically valid, we encountered sig-
nificant optimization difficulties when testing this approach,
with densities often becoming degenerate due to numerical
instabilities, and similar observations have been made in the
density estimation literature (Durkan et al., 2019).

We mitigate this issue in practice by fitting SNPE-C in the
first round using maximum likelihood, which is possible
because we sample parameters from the prior initially. This
forces the model to place density on the prior support in the
first round. We also found the inductive bias of a MAF ben-
eficial, since a series of elementwise affine transformations
makes it difficult to transform a standard normal base dis-
tribution in an extreme way. In contrast, we found mixture
models such as MDNs prone to entire mixture components
drifting far from the prior support, while the remaining
components are left to model the correct density ratios.

5.1. Size of the contrasting set
We first examine the role played by the size of the contrast-
ing set. To this end, we run both SRE and SNPE-C for
K ∈ {2, 50, 100}, and compare metrics across tasks. Re-
sults are shown in fig. 1. Across both multiple tasks and
multiple metrics, the general trend suggests that increasing
the size of the contrasting set results in more efficient infer-
ence, if only marginally in some cases. Computationally,
setting K = 100 means we are effectively evaluating mini-
batches of size B2, since the contrasting sets are generated
using the full Cartesian product of B items in the original
mini-batch. However, for B = 100, we found very little
difference in wall-clock time for this operation due to effi-
cient batch computation on the GPU. These experiments
demonstrate the effectiveness of SRE in a relatively low-data
regime; Hermans et al. (2020) use one million simulations
for a majority of their tasks, whereas the performance of
the same algorithm is tested here with orders of magnitude
fewer. Based on these results, the rest of our experiments
with SRE and SNPE-C are run using the full mini-batch
with K = 100 to generate the contrasting set.

5.2. Comparison of SRE and SNPE-C
The equivalence of SRE and SNPE-C also encourages in-
vestigation as to whether reparameterization of the classifier
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Figure 3: Left: Comparison of SRE and SNL across tasks and metrics, with negative log probability and median distance as
in fig. 1. Right: Posterior samples for SNL (left) and SRE (right) on the Nonlinear Gaussian task; true parameters in orange.

in terms of a conditional density estimator has a noticeable
impact on the quality of inference. Practitioners may be
well-versed in the use of standard classifiers from the mod-
ern machine learning toolbox, but less familiar with the
recent surge of flexible density estimators based on neural
networks. Comparison of these approaches may thus guide
practical use, since if no discrepancy in performance is ob-
served, SNPE-C has a clear advantage in that a posterior
approximation with density evaluation and i.i.d. sampling is
available at the end of training. We again refer to fig. 1 for
results, which indeed show SNPE-C closely matching SRE.
As a control, we also ran SNPE-C with MCMC sampling,
and observed essentially the same performance as with i.i.d.
sampling. However, it is important to consider these results
in the context of fig. 2, which visualize rejection sampling
acceptance rates across each task for a number of rounds.
As discussed, SNPE-C leaks density outside of the prior sup-
port, with acceptance rates around 1% meaning i.i.d. sam-
pling becomes up to 100 times slower. Nevertheless, this
may still be appreciably faster than MCMC sampling; using
a neural density estimator, we may generate large batches
consisting of thousands of i.i.d. samples in parallel with a
few passes of a neural network, while MCMC requires at
least one neural network pass to evaluate a transition kernel
which may not even result in a single effective sample.

5.3. Comparison of SRE and SNL
Finally we compare SRE with SNL. Like SRE, SNL is also
reliant on MCMC sampling to generate posterior samples
in each round. Results are displayed in fig. 3. Overall, SNL
seems to outperform SRE, particularly on the M/G/1 task.
Though we don’t do so here, SNL also makes it possible
to carry out goodness-of-fit testing to check correctness of
its surrogate likelihood model, since sampling observations
from the model is straightforward, which is not the case for

SRE. However, as mentioned already, if observations are
high-dimensional, SRE has a clear advantage in that it need
not parameterize a distribution over this high-dimensional
space, but only take as input this object to the classifier.

6. Discussion
Recent work has demonstrated cases where likelihood-free
inference methods that leverage deep representations can
reduce the number of simulations needed for accurate and
efficient inference by orders of magnitude. However, there
are several open problems: in their current implementations,
the methods described in this paper still (i) require too many
simulations if a simulator takes many days to run, (ii) have
difficulty exploiting multiple observations, and (iii) don’t
deal gracefully with failed simulations. Moreover, the meth-
ods in the literature have used a variety of density estimation
and density-ratio estimation principles and architectures. As
a result, practitioners facing a new problem domain will
have difficulty choosing from the alternatives.

In this work, we identify a strong connection between two
strands of the literature, exemplified by SRE and SNPE-C,
that were previously compared as unrelated methods. Our
connection contributes new understanding of these exist-
ing approaches, and shows that SRE can and should be
generalized to use multi-class classification.

It would be easy to assume that SNPE-C is harder to fit
because it uses a conditional density estimator rather than a
classifier as in SRE. However, our control experiments show
that — when trained using the same codebase and classifi-
cation objective — the representations give similar results.
In such cases, using a conditional density estimator should
be preferred, because it gives a normalized posterior and
removes the need to use MCMC. However, we also iden-
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tify open practical problems with SNPE-C for priors with
compact support, which mean that MCMC may be neces-
sary in the case of extremely high rejection rates. We hope
that our comparison helps clarify the underlying choices for
likelihood-free practitioners, and will motivate researchers
to progress the open problems that we have identified.
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