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A. Variance Structure of the Rank-1 Perturbations
We hereby study how variance in the score function is captured by the full-rank weight matrix W parameterization versus
the rank-1 W⇤ � rsT parameterization. We first note that around a local optimum W⇤, the score function
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We can therefore characterize variance around a local optimum via expected fluctuation in the score
function,
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In what follows, we take fully connected networks to demonstrate that the rank-1 parameterization can have the same local
variance structure as the full-rank parameterization. We first formulate the fully connected neural network in the following
recursive relation. For fully connected network of width M and depth H , the score function f(x|W) can be recursively
defined as:
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Theorem 1 (Formal). For a fully connected network of width M and depth H learned over N data points, let W⇤ denote
local minimum of
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rank-1 perturbation
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for some symmetric positive semi-definite matrix ⌃. Let s(h)⇤ denote a column vector of ones. Then if the rank-1 perturbation
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D⇣
s(h) � s(h)⇤

⌘⇣
s(h) � s(h)⇤

⌘ET�
= ⌃,

NX

n=1

HX

h=1

EWh

hD
W(h) �W(h)

⇤ ,r2
W(h)f(xn|W⇤)

⇣
W(h) �W(h)

⇤

⌘E

F

i

=
NX

n=1

HX

h=1

Es(h)

hD⇣
s(h) � s(h)⇤

⌘
,r2

s(h)f(xn|W)
⇣
s(h) � s(h)⇤

⌘Ei
. (5)

Theorem 1 demonstrates a correspondence between the covariance structure in the perturbation of W and that of s. Since
⌃ can be any symmetric positive semi-definite matrix, we have demonstrated here that our rank-1 parameterization can
efficiently encode a wide range of fluctuations in W. In particular, it is especially suited for multiplicative noise as advertised.
If the covariance of
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We devote the rest of this section to prove Theorem 1.

Proof of Theorem 1. We first state the following lemma for the fluctuations of the score function f in W and s spaces.

Lemma 1. For a fully connected network of width M and depth H learned over N data points, let W⇤ denote local
minimum of
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n=1 f(xn|W) in the space of weight matrices. Then the local fluctuations of the score function in the space
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of the weight matrix W is:
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and in the space of the low rank representation s,
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For perturbations (W �W⇤) with a multiplicative structure, we can write that
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for some matrix ⌃ (in the simplest case where ⌃ = ✏ · I, this corresponds to the covariance of (W �W⇤) being a
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Plugging this result into equations 6 and 7, we know that for any n and h,
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Proof of Lemma 1. We first analyze the local geometric structures of the score function in the space of the full-rank weight
matrix W and the low rank vector s, respectively. We then leverage this Hessian information to finish our proof.
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Local Geometry of the score function f(xn|W⇤ � rsT): We can first compute the gradient of weight W at h-th layer
for the predictive score function f of an H layer fully connected neural network taken at data point xn:
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If we instead take the gradient over the vector s, we obtain that
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We can further analyze the Hessian of f :
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Variance Structures in the Score Function: Applying the results in equations 9 and 10, we obtain that
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B. Additional Experimental Details and Hyperparameters
We experiment with both mixture of Gaussian and mixture of Cauchy priors (and variational posteriors) for the rank-1
factors. All reported results are averages over 10 runs for the image classification tasks and 25 runs for the EHR task. For
Gaussian distributions in the image tasks, we achieve superior metric performance using only 1 Monte Carlo sample for
each of 4 components to estimate the integral in Equation 2 for both training and evaluation, unlike much of the BNN
literature, and we show further gains from using larger numbers of samples (4 and 25; see appendix C.3). For Cauchy
distributions on those image tasks, we use 1 Monte Carlo sample for each of 4 components for training, and use 4 samples
per component during evaluation. For the EHR task, we also use only 1 sample during training, but use 25 samples during
evaluation (down from 200 samples for the Bayesian models in Dusenberry et al. (2019)). See Appendix B for details
on hyperparameters. Our code uses TensorFlow and Edward2’s Bayesian Layers (Tran et al., 2018); all experiments are
available at https://github.com/google/edward2.

For rank-1 BNNs, there are three hyperparameters in addition to the deterministic baseline’s: the number of mixture
components (we fix it at 4); prior standard deviation (we vary among 0.05, 0.1, and 1); and the mean initialization for
variational posteriors (either random sign flips with probability random sign init or a random normal with mean 1 and
standard deviation random sign init). All hyperparameters for our rank-1 BNNs can be found in Tables 5, 6, and 7.

Following Section 3’s ablations, we always (with one exception) use a prior with mean at 1, the average per-component
log-likelihood, and initialize variational posterior standard deviations under the dropout parameterization as 10�3 for
Gaussian priors and 10. The one exception is the Cauchy rank-1 Bayesian RNN on MIMIC-III, where we use a prior with
mean 0.5.

Rank-1 BNNs apply rank-1 factors to all layers in the network except for normalization layers and the embedding layers in
the MIMIC-III models. We are not Bayesian about the biases, but we do not find it made a difference.

We use a linear KL annealing schedule for 2/3 of the total number of training epochs (we also tried 1/3 and 1/4 and did not
find the setting sensitive). Rank-1 BNNs use 250 training epochs for CIFAR-10/100 (deterministic uses 200); 135 epochs
for ImageNet (deterministic uses 90); and 12000 to 25000 steps for MIMIC-III.

All methods use the largest batch size before we see a generalization gap in any method. For ImageNet, this is 32 TPUv2
cores with a per-core batch size of 128; for CIFAR-10/100, this is 8 TPUv2 cores with a per-core batch size of 64; for
MIMIC-III this differs depending on the architecture. All CIFAR-10/100 and ImageNet methods use SGD with momentum
with the same step-wise learning rate decay schedule, built on the deterministic baseline. For MIMIC-III, we use Adam
(Kingma & Ba, 2014) with no decay schedule.

For MIMIC-III, all hyperparameters for the baselines match those of Dusenberry et al. (2019), except we used a batch size
of 128 for the deterministic and Bayesian Embeddings models. Since Dusenberry et al. (2019) tuned each model separately,
including the architecture sizes, we also tuned our rank-1 Bayesian RNN architecture sizes (for performance and memory
constraints). Of note, the Gaussian rank-1 RNN has a slightly smaller architecture (rnn dim=512 vs. 1024).

https://github.com/google/edward2
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Dataset CIFAR-10 CIFAR-100

ensemble size 4
base learning rate 0.1

prior mean 1.0
per core batch size 64

num cores 8
lr decay ratio 0.2
train epochs 250

lr decay epochs [80, 160, 180]
kl annealing epochs 200

l2 0.0001 0.0003

Method Normal Cauchy Normal Cauchy

alpha initializer trainable normal trainable cauchy trainable normal trainable cauchy
alpha regularizer normal kl divergence cauchy kl divergence normal kl divergence cauchy kl divergence
gamma initializer trainable normal trainable cauchy trainable normal trainable cauchy
gamma regularizer normal kl divergence cauchy kl divergence normal kl divergence cauchy kl divergence

prior stddev 0.1 0.1 0.1 0.01
dropout rate (init) 0.001 10�6 0.001 10�6

random sign init �0.5 �0.5 �1.0 �1.0

Table 5: Hyperparameter values for Rank-1 BNNs with Wide ResNet-28-10 on CIFAR-10 and CIFAR-100. Alpha and
Gamma refer to the r and s vectors in the main text. The initializer determines the form of the variational posterior whereas
the regularizer dictates the choice of priors. Note that all priors and approximate posteriors are mixtures.

Dataset ImageNet

ensemble size 4
base learning rate 0.1

prior mean 1.0
per core batch size 128

num cores 32
lr decay ratio 0.1
train epochs 135

lr decay epochs [45, 90, 120]
kl annealing epochs 90

l2 0.0001

Method Normal Cauchy

alpha initializer trainable normal trainable cauchy
alpha regularizer normal kl divergence cauchy kl divergence
gamma initializer trainable normal trainable cauchy
gamma regularizer normal kl divergence cauchy kl divergence

prior stddev 0.05 0.005
dropout rate (init) 0.001 10�6

random sign init �0.75 �0.5

Table 6: Hyperparameter values for Rank-1 BNNs with ResNet-50 on ImageNet.
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Dataset MIMIC-III

ensemble size 4
embeddings initializer trainable normal
embeddings regularizer normal kl divergence

random sign init 0.5
rnn dim 512

hidden layer dim 512
l2 1e�4

bagging time precision 86400
num ece bins 15

Method Normal Cauchy

alpha initializer trainable normal trainable cauchy
alpha regularizer normal kl divergence cauchy kl divergence
gamma initializer trainable normal trainable cauchy
gamma regularizer normal kl divergence cauchy kl divergence

prior mean 1. 0.5
prior stddev 0.1 0.0001

dropout rate (init) 0.001 5e�7
dense embedding dimension 32 16

embedding dimension multiplier 0.85827 0.984215
batch size 128 32

learning rate 0.00030352 0.001
fast weight lr multiplier 1. 0.575

kl annealing steps 20000 694216
max steps 25000 12000

bagging aggregate older than �1 60 ⇤ 60 ⇤ 24 ⇤ 90
clip norm 7.29199 1.83987

Table 7: Hyperparameter values for Rank-1 Bayesian RNNs on MIMIC-III.
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(a) Test NLL (b) Test Accuracy (c) Test ECE

Figure 8: Dropout-parameterized initialization for the variational distribution’s standard deviations. Each boxplot is over 96
runs from a hyperparameter sweep. Using a dropout rate (and therefore standard deviation) close to zero gets much better
accuracy at a slight cost of calibration error.

C. Further Ablation Studies
C.1. Initialization

There are two sets of parameters to initialize: the set of weights W and the variational parameters of the rank-1 distributions
q(r) and q(s). The weights are initialized just as in deterministic networks. For the variational posterior distributions,
we initialize the mean following BatchEnsemble: random sign flips of ±1 or a draw from a normal centered at 1. This
encourages each sampled vector to be roughly orthogonal from one another (thus inducing different directions for diverse
solutions as one takes gradient steps); unit mean encourages the identity.

For the variational standard deviation parameters �, we explore two approaches (Figure 8). The first is a “deterministic
initialization,” where � is set close to zero such that—when combined with KL annealing—the initial optimization trajectory
resembles a deterministic network’s. This is commonly used for variational inference (e.g., Kucukelbir et al. (2017)).
Though this aids optimization and aims to prevent underfitting, one potential reason for why BNNs still underperform
is that a deterministic initialization encourages poorly estimated uncertainties: the distribution of weights may be less
prone to expand as the annealed KL penalizes deviations from the prior (the cost tradeoff under the likelihood may be too
high). Alternatively, we also try a “dropout initialization”, where standard deviations are reparameterized with a dropout
rate: � =

p
p/(1� p) where p is the binary dropout probability.3 Dropout rates between 0.1 and 0.3 (common in modern

architectures) imply a standard deviation of 0.3-0.65. Figure 8 shows accuracy and calibration both decrease as a function
of initialized dropout rate; NLL stays roughly the same. We recommend deterministic initialization as the accuracy gains
justify the minor cost in calibration.

C.2. Real-valued Scale Parameterization

As shown in Equation 3, the hierarchical prior over r and s induces a prior over the scale parameters of the layer’s weights.
A natural question that arises is: should the r and s priors be constrained to be positive-valued, or left unconstrained as
real-valued priors? Intuitively, real-valued priors are preferable because they can modulate the sign of the layer’s inputs
and outputs. To determine whether this is beneficial and necessary, we perform an ablation under our CIFAR-10 setup
(Section 4). In this experiment, we compare a global mixture of Gaussians for the real-valued prior, and a global mixture
of log-Gaussian distributions for the positive-valued prior. For each, we tune over the initialization of the prior’s standard

3 To derive this, observe that dropout’s Bernoulli noise, which takes the value 0 with probability p and 1/(1� p) otherwise, has mean
1 and variance p/(1� p) (Srivastava et al., 2014).
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deviation, and the L2 regularization for the point-wise estimated W. For the Gaussians, we also tune over the initialization
of the prior’s mean.

Figure 9 displays our findings. Similar to study of priors over r, s, or both, we compare results across NLL, accuracy, and
ECE on the test set and CIFAR-10-C corruptions dataset. We find that both setups are comparable on test accuracy, and that
the real-valued setup outperforms the other on test NLL and ECE. For the corruptions task, the two setups compare equally
on NLL, and differ on accuracy and ECE.

Figure 9: Real-valued vs positive-valued priors over s and r, each evaluated over three runs on the CIFAR-10 test set and
CIFAR-10-C corrupted dataset.

C.3. Number of Evaluation Samples

In Table 8, we experiment with using multiple weight samples, per mixture component, per example, at evaluation time
for our Wide ResNet-28-10 model trained on CIFAR-10. In all cases, we use the same model that was trained using only
a single weight sample (per mixture component, per example). As expected, an increased number of samples improves
metric performance, with a significant improvement across all corrupted metrics. This demonstrates one of the benefits to
incorporating local distributions over each mixture component, namely that given an increased computational budget, one
can improve upon the metric performance at prediction time.

D. Additional Discussion and Future Directions
For future work, we’d like to push further on our results by scaling to larger ImageNet models to achieve state-of-the-art in test
accuracy alongside other metrics. Although we focus on variational inference in this paper, applying this parameterization in
MCMC is a promising parameter-efficient strategy for scalable BNNs. As an alternative to using mixtures trained with the
average per-component log-likelihood, one can use multiple independent chains over the rank-1 factors. Another direction
for future work is the straightforward extension to higher rank factors. However, prior work (Swiatkowski et al., 2019;
Izmailov et al., 2019) has demonstrated diminishing returns that practically stop at ranks 3 or 5.

One surprising finding in our experimental results is that heavy-tailed priors, on a low-dimensional subspace, can significantly
improve robustness and uncertainty calibration while maintaining or improving accuracy. This is likely due to the heavier
tails allowing for more points in loss landscape valleys to be covered, whereas a mixture of lighter tails could place multiple
modes that are nearly identical. However, with deeper or recurrent architectures, samples from the heavy-tailed posteriors
seem to affect the stability of the training dynamics, leading to slightly worse predictive performance. One additional
direction for future work is to explore ways to stabilize automatic differentiation through such approximate posteriors or to
pair heavy-tailed priors with sub-Gaussian posteriors.
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Method NLL(#) Accuracy(") ECE(#) cNLL / cA / cECE

Rank-1 BNN - Gaussian
1 sample 0.128 96.3 0.008 0.84 / 76.7 / 0.080
4 samples 0.126 96.3 0.008 0.80 / 77.3 / 0.074

25 samples 0.125 96.3 0.007 0.77 / 77.8 / 0.070
Rank-1 BNN - Cauchy 4 samples 0.120 96.5 0.009 0.74 / 80.5 / 0.090

Deep Ensembles WRN-28-5 0.115 96.3 0.008 0.84 / 77.2 / 0.089
WRN-28-10 0.114 96.6 0.010 0.81 / 77.9 / 0.087

Table 8: Results across multiple weight samples (per mixture component, per example) at evaluation time for Wide ResNet-
28-10 on CIFAR-10. Greater than 1 sample with Gaussian distributions yields a marginal improvement on in-distribution
NLL and ECE, while yielding a significant improvement on all corrupted metrics. Cauchy rank-1 BNNs with 4 weight
samples outperform Gaussians on all metrics except ECE. Note that training still uses a single weight sample (per mixture
component, per example) for both Gaussian and Cauchy rank-1 BNNs. We include the deep ensembles results again to
show that with an increased number of samples, a rank-1 WRN-28-10 can exceed an ensemble of WRN-28-5 models, which
collectively have a comparable parameter count.

E. Choices of Loss Functions
E.1. Definitions

x 2 Rd
, yc 2 {0, 1},

CX

c=1

yc = 1

logits = f(x,✓)

probs = softmax(logits)
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�i

p(y|x,✓) = Categorical(y; probs)

=
CY

c=1
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= �y> log softmax(f(x,✓))

M = num weight samples
C = num classes

E.2. Negative log-likelihood of marginalized logits

= �y> log softmax

✓Z
f(x,✓)p(✓)d✓

◆

⇡ �y> log softmax

 
1

M

MX

m=1

f(x,✓(m))

! (11)



Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors

E.3. Negative log-likelihood of marginalized probs

= �y> log
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�
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E.4. Marginal Negative log-likelihood (i.e., average NLL or Gibbs cross-entropy)

= Ep(✓)[� log p(y|x,✓)]
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⇡ 1

M

MX
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o
(13)

E.5. Negative log marginal likelihood (i.e., mixture NLL)

= � log p(y|x)

= � log
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)
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o
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(14)

As we saw in Section 3, due to Jensen’s inequality, (14)  (13). However, we find that minimizing the upper bound (i.e. Eq.
13) to be easier while allowing for improved generalization performance. Note that for classification problems (i.e., Bernoulli
or Categorical predictive distributions), Eq. 12 is equivalent to Eq. 14, though more generally, marginalizing the parameters
of the predictive distribution before computing the negative log likelihood (Eq. 12) is different from marginalizing the
likelihood before taking the negative log (Eq. 14), and from marginalizing the negative log likelihood (Eq. 13). Also note
that though they are mathematically equivalent for classification, the formulation of Eq. 14 is more numerically stable than
Eq. 12.
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F. Out-of-distribution Performance
F.1. CIFAR-10-C Results

(a) Accuracy (higher is better).

(b) Negative log-likelihood (lower is better).

(c) Expected calibration error (lower is better).

Figure 10: Results on CIFAR-10-C showing median performance across corruption types, and for increasing settings of the
skew intensity.
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F.2. CIFAR-100-C Results

(a) Accuracy (higher is better).

(b) Negative log-likelihood (lower is better).

(c) Expected calibration error (lower is better).

Figure 11: Results on CIFAR-100-C showing median performance across corruption types, and for increasing settings of the
skew intensity.
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F.3. ImageNet-C Results

(a) Accuracy (higher is better).

(b) Negative log-likelihood (lower is better).

(c) Expected calibration error (lower is better).

Figure 12: Results on ImageNet-C showing median performance across corruption types, and for increasing settings of the
skew intensity.
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