
Is There a Trade-Off Between Fairness and Accuracy?

A. Background on Chernoff Information
In this section, we provide a brief background on Chernoff bounds and Chernoff information, leading to the derivation of the
results under equal priors, i.e., ⇡0 = ⇡1 = 1

2 . We discuss the case of unequal priors in Appendix E.

Consider a detector of the form T (x) � ⌧ for classification between two hypothesis H0 : X ⇠ P0(x) and H1 : X ⇠ P1(x).
Recall that the log-generating functions for this detector are defined as follows:

⇤0(u) = logE[euT (X)|H0], and ⇤1(u) = logE[euT (X)|H1]. (5)

A.1. Proof of Lemma 1

We first state the Chernoff bound (see Chapter 2.2 in (Boucheron et al., 2013)) here, which is a well-known tight bound for
approximating error probabilities. For a random variable T ,

Pr (T � ⌧) = Pr (euT � e
u⌧ )  E[euT ]

eu⌧
8u > 0. (6)

Proof of Lemma 1. Using the Chernoff bound, we can bound P
(T )
FP (⌧) as follows:

P
(T )
FP (⌧) = Pr (T (X) � ⌧ |H0) 

E[euT (X)|H0]

eu⌧
=

e
⇤0(u)

eu⌧
8u > 0. (7)

Thus, � log P
(T )
FP (⌧) � supu>0 (u⌧ � ⇤0(u)) = E

(T )
FP (⌧). Similarly, using the Chernoff bound, we have

P
(T )
FN (⌧) = Pr (T (X) < ⌧ |H1) 

E[euT (X)|H1]

eu⌧
=

e
⇤1(u)

eu⌧
8u < 0. (8)

Thus, � log P
(T )
FN (⌧) � supu<0 (u⌧ � ⇤1(u)) = E

(T )
FN (⌧).

A.2. Properties of log-generating functions

Here, we state some useful properties of the log-generating functions that are used later in the other proofs/explanations.

Property 1 (Convexity). The log-generating functions ⇤0(u) and ⇤1(u) are convex in u.

Proof of Property 1. The proof follows directly using Hölder’s inequality. For any u and v, and ↵ 2 [0, 1],

E[e(↵u+(1�↵)v)T (X)|H0] = E[e↵uT (X)
e
(1�↵)vT (X)|H0] 

⇣
E[|e↵uT (X)| 1

↵ |H0]
⌘↵ ⇣

E[|e(1�↵)vT (X)|
1

1�↵ |H0]
⌘1�↵

. (9)

This leads to,

⇤0(↵u + (1 � ↵)v) = logE[e(↵u+(1�↵)v)T (X)|H0]  ↵ logE[euT (X)|H0] + (1 � ↵) logE[evT (X)|H0]

= ↵⇤0(u) + (1 � ↵)⇤0(v). (10)

The proof is similar for ⇤1(u).

Property 2 (Zero at origin). The log-generating functions ⇤0(u) and ⇤1(u) are both 0 at u = 0.

Proof of Property 2. The proof follows by substituting u = 0 in the expressions of ⇤0(u) and ⇤1(u).

Next, we prove some properties for the log-generating functions when the detector is well-behaved. In general, when using
a detector of the form T (x) � ⌧, we would expect T (X) to be high when H1 is true, and low when H0 is true. We call a
detector well-behaved if E[T (X)|H0] < 0 and E[T (X)|H1] > 0. The next property provides more intuition on what the
log-generating functions look like for well-behaved detectors.
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Property 3 (Log-generating functions of well-behaved detectors). Suppose that E[T (X)|H0] < 0 and E[T (X)|H1] > 0,
and P0(x) and P1(x) are non-zero for all x. Then, the following holds:

• ⇤0(u) and ⇤1(u) are strictly convex.

• ⇤0(u) > 0 if u < 0. ⇤1(u) > 0 if u > 0.

Proof of Property 3. The convexity of ⇤0(u) is proved in Property 1. Now ⇤0(u) is strictly convex if, for all distinct reals u

and v, and ↵ 2 (0, 1), we have,
⇤0(↵u + (1 � ↵)v) < ↵⇤0(u) + (1 � ↵)⇤0(v).

For the sake of contradiction, let us assume that there exists u and v with v > u such that,

⇤0(↵u + (1 � ↵)v) = ↵⇤0(u) + (1 � ↵)⇤0(v).

This indicates that Hölder’s inequality holds with exact equality in (9), which could happen if and only if ae
uT (x) = be

vT (x)

almost everywhere with respect to the probability measure P0(x) for constants a and b, i.e., (v � u)T (x) = log a/b. Thus,

E[T (X)|H0] =
1

(v � u)
log a/b = E[T (X)|H1], (11)

where the last step holds because P1(x) and P0(x) are both non-zero everywhere (absolutely continuous with respect to
each other). But, this is a contradiction since E[T (X)|H0] < 0 < E[T (X)|H1]. Thus, ⇤0(u) is strictly convex. A similar
proof can be done for ⇤1(u).

For proving the next claim, consider the derivative of ⇤0(u).

d⇤0(u)

du
=

E[euT (X)
T (X)|H0]

e⇤0(u)
. (12)

The derivative of ⇤0(u) at u = 0 is given by E[T (X)|H0] which is strictly less than 0. Because ⇤0(u) is strictly convex in
u and ⇤0(0) = 0, if d⇤0(u)

du |u=0 < 0, then ⇤0(u) > 0 for all u < 0.

A similar proof holds for the last claim as well, since the derivative of ⇤1(u) at u = 0 is given by E[T (X)|H1] which is
strictly greater than 0, and ⇤1(0) = 0.

Next, we examine the properties of the log-generating functions for likelihood ratio detectors. Consider the likelihood
ratio detector T0(x) = log P1(x)

P0(x) . The two conditions E[T (X)|H0] < 0 and E[T (X)|H1] > 0 become equivalent
to D(P0||P1) > 0 and D(P1||P0) > 0 where D(·||·) denotes the Kullback-Leibler (KL) divergence between the two
distributions P0(x) and P1(x). Thus, a likelihood ratio detector always satisfies these conditions as long as the KL
divergences are well-defined and non-zero.

Property 4. (Log-generating functions of likelihood ratio detectors) Let T0(x) = log P1(x)
P0(x) , and P0(x) and P1(x) be

non-zero for all x with D(P0||P1) and D(P1||P0) strictly greater than 0. Then, the following properties hold:

• ⇤0(u) is 0 at u = 0 and 1, and ⇤1(u) is 0 at u = 0 and �1.

• ⇤1(u) = ⇤0(u + 1).

• C(P0, P1) > 0.

• ⇤0(u) and ⇤1(u) are continuous, differentiable and strictly convex.

• The derivatives of ⇤0(u) and ⇤1(u) are continuous, monotonically increasing and take all values between �1 and 1.

• ⇤0(u) attains its global minima for u in (0, 1).

• ⇤1(u) attains its global minima for u in (�1, 0).

We first introduce the arithmetic mean-geometric mean (AM-GM) inequality.
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Lemma 6 (AM-GM inequality). The following inequality is satisfied for u 2 (0, 1) and a, b � 0:

a
1�u

b
u  (1 � u)a + ub, (13)

where the equality holds if and only if a = b.

Proof of Property 4. The first claim can be verified by direct substitution.

To show that ⇤1(u) = ⇤0(u + 1), observe that,

⇤1(u) = � log
X

x

P1(x)1+u
P0(x)u = � log

X

x

P1(x)1+u
P0(x)1�(1+u) = ⇤0(u + 1).

Next, we will show that C(P0, P1) > 0. Observe that, C(P0, P1) = � log
P

x P0(x)1�u⇤
P1(x)u⇤

for some u
⇤ 2 (0, 1).

Now, there is at least one x
0 with P0(x0) > 0 and P1(x0) > 0 such that P0(x0) 6= P1(x0) because D(P0||P1) > 0 and

D(P1||P0) > 0. This leads to a strict AM-GM inequality (Lemma 6) as follows:

P0(x
0)1�u⇤

P1(x
0)u⇤

< (1 � u
⇤)P0(x

0) + u
⇤
P1(x

0).

For all other x 6= x
0,

P0(x)1�u⇤
P1(x)u⇤

 (1 � u
⇤)P0(x) + u

⇤
P1(x).

Thus,
X

x

P0(x)1�u⇤
P1(x)u⇤

<

X

x

(1 � u
⇤)P0(x) + u

⇤
P1(x) = 1

=) � log
X

x

P0(x)1�u⇤
P1(x)u⇤

> 0. (14)

Thus, C(P0, P1) > 0. A similar proof extends for continuous distributions as well where the strict inequality holds at least
over a set of x

0s that is not measure 0.

We move on to the next claim. Since both P0(x) and P1(x) are strictly greater than 0 for all x, we have P0(x)1�u
P1(x)u to

be well-defined and continuous for all values of u, including u = 0 and u = 1. Thus, ⇤0(u) is continuous over the range
(�1,1).

The derivative of ⇤0(u) is given by:

d⇤0(u)

du
=

P
x P0(x)1�u

P1(x)u log P1(x)
P0(x)

e⇤0(u)
, (15)

which is well-defined for all values of u.

The strict convexity of ⇤0(u) can be proved using Property 3, because the two conditions E[T (X)|H0] < 0 and
E[T (X)|H1] > 0 become equivalent to D(P0||P1) > 0 and D(P1||P0) > 0. A similar proof extends to ⇤1(u).

Now, we move on to the next claim. Observe from (15) that, the derivative is also continuous for all values of u since both
P0(x) and P1(x) are strictly greater than 0 for all x. It is monotonically increasing because ⇤0(u) is strictly convex. Also
note that, as u ! �1, its derivative tends to �1. Similarly, as u ! 1, its derivative tends to 1. A similar proof extends
to ⇤1(u).

Lastly, because ⇤0(u) is 0 at u = 0 and u = 1, and is a continuous and strictly convex function, it attains its minima for u

in (0, 1). A similar proof extends to ⇤1(u), validating the last claim as well.

Property 5 (Connection to FL transforms). For well-behaved detectors, the following properties hold:

• If ⌧ < E[T (X)|H1], then supu<0 (u⌧ � ⇤1(u)) = supu2R (u⌧ � ⇤1(u)) .

• If ⌧ > E[T (X)|H0], then supu>0 (u⌧ � ⇤0(u)) = supu2R (u⌧ � ⇤0(u)) .
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Before the proof, we introduce a lemma that will be used in the proof.

Lemma 7 (Supporting line of a strictly convex function). For a strictly convex and differentiable function f(u) : R ! R,

ua
df(u)

du
|u=ua�f(ua)= sup

u2R

✓
u

df(u)

du
|u=ua � f(u)

◆
.

The proof of Lemma 7 holds from the definition of strict convexity.

Proof of Property 5. In general, supu2R (u⌧ � ⇤1(u)) � supu<0 (u⌧ � ⇤1(u)) . But, here again,

sup
u2R

(u⌧ � ⇤1(u))
(a)
= sup

u2R

✓
u

d⇤1(u)

du
|u=ua � ⇤1(u)

◆
(b)
= ua

d⇤1(u)

du
|u=ua�⇤1(ua)

(c)
 sup

u<0

✓
u

d⇤1(u)

du
|u=ua � ⇤1(u)

◆
(d)
= sup

u<0
(u⌧ � ⇤1(u)) . (16)

Here (a) holds because the derivative of ⇤1(u) is continuous, monotonically increasing and takes all values from (�1,1)

(see Property 4). Thus, for any ⌧ , there exists a single ua such that d⇤1(u)
du |u=ua = ⌧ . Next, (b) holds from Lemma 7,

whereas (c) holds because d⇤1(u)
du |u=ua = ⌧ < E[T (X)|H1] = d⇤1(u)

du |u=0 and the derivative is monotonically increasing
(see Property 4) implying ua < 0. Lastly (d) holds by again substituting ⌧ = d⇤1(u)

du |u=ua . This proves the first claim.

Similarly, in general, we have supu2R (u⌧ � ⇤0(u)) � supu>0 (u⌧ � ⇤0(u)) . But, here again,

sup
u2R

(u⌧ � ⇤0(u))
(a)
= sup

u2R

✓
u

d⇤0(u)

du
|u=ua � ⇤0(u)

◆
(b)
= ua

d⇤0(u)

du
|u=ua�⇤0(ua)

(c)
 sup

u>0

✓
u

d⇤0(u)

du
|u=ua � ⇤0(u)

◆
(d)
= sup

u>0
(u⌧ � ⇤0(u)) . (17)

Here (a) holds because the derivative of ⇤0(u) is continuous, monotonically increasing and takes all values from (�1,1)

(see Property 4). Thus, for any ⌧ , there exists a single ua such that d⇤0(u)
du |u=ua = ⌧ . Next, (b) holds from Lemma 7,

whereas (c) holds because d⇤0(u)
du |u=ua = ⌧ > E[T (X)|H0] = d⇤0(u)

du |u=0 and the derivative is monotonically increasing
(see Property 4) implying ua > 0. Lastly (d) holds by again substituting ⌧ = d⇤0(u)

du |u=ua .

A.3. Log Generating Functions for Gaussians

Let P0(x) ⇠ N (µ0, �
2I) and P1(x) ⇠ N (µ1, �

2I), where µ0 and µ1 are vectors and I is an identity matrix. We derive the
log-generating functions for likelihood ratio detectors corresponding to these two distributions.

⇤0(u) = log

Z
P1(x)u

P0(x)1�u
dx = log

Z
e

�u
2�2 ((x�µ1)

T (x�µ1)�(x�µ0)
T (x�µ0))

P0(x)dx

= log e
�u
2�2 (µT

1 µ1�µT
0 µ0)

Z
e

�u
2�2 (�2xT (µ1�µ0)))

P0(x)dx

(a)
= log e

�u
2�2 (µT

1 µ1�µT
0 µ0)

e
�u
2�2 (�2µT

0 (µ1�µ0)))
e

u2

2�2 (||µ1�µ0||22))

= log e
�u
2�2 (||µ1�µ0||22)e

u2

2�2 (||µ1�µ0||22))

=
1

2�2
||µ1 � µ0||22u(u � 1), (18)

where (a) is derived using the expression of the moment generating function of a Gaussian distribution.
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A.4. Proof of Lemma 2

Proof of Lemma 2. Under equal priors ⇡0 = ⇡1 = 1
2 , the detector that minimizes the Bayesian probability of error, i.e.,

Pe,T (⌧) = ⇡0PFP,T (⌧) + ⇡1PFN,T (⌧) is the likelihood ratio detector given by T (x) = log P1(x)
P0(x) � 0 (for ⇡0 = ⇡1 = 1

2 ).
The proof is available in Theorem 3.1 of (Gallager, 2012).

Here, we will show that the Chernoff exponent of the probability of error for this detector, i.e., Ee,T (0) is equal to
C(P0, P1) = �minu2(0,1) log

P
x P0(x)(1�u)

P1(x)u.

Note that,

EFP,T (0) = sup
u>0

�⇤0(u) = � min
u2(0,1)

log
X

x

P0(x)(1�u)
P1(x)u

, (19)

where the last step follows because ⇤0(u) attains its minima in the range u 2 (0, 1) (see Property 4).

EFN,T (0) = sup
u<0

�⇤1(u)
(a)
= � min

u2(�1,0)
log

X

x

P0(x)(�u)
P1(x)(1+u)

= � min
u0=u+12(0,1)

log
X

x

P0(x)(1�u0)
P1(x)(u

0)
, (20)

where (a) also holds because ⇤1(u) attains its minima in the range u 2 (�1, 0) (see Property 4). Lastly,

Ee,T (0) = min{EFP,T (0), EFN,T (0)} = C(P0, P1). (21)

B. Appendix to Section 3.1
Before the proofs, we introduce a lemma that will be used in the proofs.

Lemma 8. Let P0(x) and P1(x) be non-zero for all x and D(P0||P1) and D(P1||P0) be strictly greater than 0. For
likelihood ratio detectors of the form T0(x) = log P1(x)

P0(x) � ⌧0, if ⌧0 6= 0, then one of the following statements is true:

EFN,T0(⌧0) < C(P0, P1) < EFP,T0(⌧0), or EFP,T0(⌧0) < C(P0, P1) < EFN,T0(⌧0).

Proof of Lemma 8. Let us analyze the scenario where ⌧0 > 0. Observe that,

EFP,T0(⌧0) = sup
u>0

(u⌧0 � ⇤0(u)) � u
⇤
0⌧0 � ⇤0(u

⇤
0) [for any u

⇤
0 > 0]

> �⇤0(u
⇤
0) [since u

⇤
0⌧0 > 0]

(a)
= C(P0, P1), (22)

where (a) follows if we choose u
⇤
0 = arg min ⇤0(u) (from Property 4, ⇤0(u) attains its minima for some u 2 (0, 1)) and

⇤0(u⇤
0) = �C(P0, P1) (by definition).

Now, we will show that EFN,T0(⌧0)<C(P0, P1) when ⌧0 > 0.

Case 1: ⌧0 � d⇤1(u)
du |u=0 = D(P1||P0)

EFN,T0(⌧0) = sup
u<0

(u⌧0 � ⇤1(u))  sup
u<0

(uD(P1||P0) � ⇤1(u)) [since ⌧0 � D(P1||P0)]

 sup
u2R

(uD(P1||P0) � ⇤1(u))

(a)
= (0 · D(P1||P0) � ⇤1(0))

(b)
= 0

(c)
< C(P0, P1), (23)
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where (a) holds from Lemma 7 because d⇤1(u)
du |u=0 = D(P1||P0), and (b) and (c) hold from Property 4 since ⇤1(0) = 0

and C(P0, P1) > 0.

Case 2: 0 < ⌧0 <
d⇤1(u)

du |u=0 = D(P1||P0)

EFN,T0(⌧0) = sup
u<0

(u⌧0 � ⇤1(u))  sup
u2R

(u⌧0 � ⇤1(u))

(a)
= sup

u2R
(u⌧0 � ⇤1(u)) [where

d⇤1(u)

du
|u=ua = ⌧0]

(b)
= ua⌧0 � ⇤1(ua)

(c)
< �⇤1(ua) [since ua⌧0 < 0]

 �min
u

⇤1(u)

(d)
= � min

u2(�1,0)
⇤1(u) = C(P0, P1) (24)

Here, (a) holds because the derivative of ⇤1(u) is continuous, monotonically increasing and takes all values from �1 to 1
(see Property 4). Thus, for any ⌧0, there exists a single ua such that d⇤1(u)

du |u=ua = ⌧0. Next, (b) holds from Lemma 7, (c)
holds because d⇤1(u)

du |u=ua = ⌧0 <
d⇤1(u)

du |u=0, and the derivative is monotonically increasing, implying ua < 0. Lastly (d)
holds because ⇤1(u) attains its minima in the range u 2 (�1, 0) (see Property 4).

Thus, for ⌧0 > 0, we get EFN,T0(⌧0) < C(P0, P1) < EFP,T0(⌧0).

The proof is similar for the scenario where ⌧0 < 0, and leads to EFP,T0(⌧0) < C(P0, P1) < EFN,T0(⌧0).

B.1. Proof of Lemma 3

Proof of Lemma 3. Suppose there exists two likelihood ratio detectors for the two groups such that, EFN,T0(⌧0) =
EFN,T1(⌧1). Since C(P0, P1) < C(Q0, Q1), at most one of the two exponents EFN,T0(⌧0) and EFN,T1(⌧1) can be
equal to their corresponding Chernoff information C(P0, P1) or C(Q0, Q1). Without loss of generality, we may assume
that EFN,T0(⌧0) 6= C(P0, P1). This implies that ⌧0 6= 0 because in the proof of Lemma 2, we already showed that
when ⌧0 = 0, we always have EFN,T0(0) = EFP,T0(0) = C(P0, P1). Since ⌧0 6= 0, using Lemma 8, we either have
EFN,T0(⌧0) < C(P0, P1) < EFP,T0(⌧0) or EFP,T0(⌧0) < C(P0, P1) < EFN,T0(⌧0). Thus,

Ee,T0(⌧0) = min{EFP,T0(⌧0), EFN,T0(⌧0)}<C(P0, P1). (25)

B.2. Proof of Theorem 1

Proof of Theorem 1. The first claim follows directly from Lemma 2 by choosing the likelihood ratio detectors for the two
groups with thresholds ⌧0 = ⌧1 = 0, i.e., the Bayes optimal detector under equal priors.

Now, we prove the second claim. Suppose that we choose the Bayes optimal classifiers T0(x) � ⌧0 and T1(x) � ⌧1

for the two groups. Then, we have EFN,T0(⌧0) = C(P0, P1) and EFN,T1(⌧1) = C(Q0, Q1) which are not equal. Thus,
|EFN,T0(⌧0) � EFN,T1(⌧1)| 6= 0.

Assume (for the sake of contradiction) that there is a likelihood ratio detector such that Ee,T0(⌧0) > C(P0, P1).

Now, if ⌧0 = 0, then we have Ee,T0(⌧0) = C(P0, P1) (from Lemma 2). Alternately, if ⌧0 6= 0, then we either have
EFN,T0(⌧0) < C(P0, P1) < EFP,T0(⌧0) or EFP,T0(⌧0) < C(P0, P1) < EFN,T0(⌧0) (from Lemma 8). Thus,

Ee,T0(⌧0) = min{EFP,T0(⌧0), EFN,T0(⌧0)} < C(P0, P1). (26)

For both cases, we have a contradiction, implying that Ee,T0(⌧0)  C(P0, P1) < C(Q0, Q1) for all likelihood ratio
detectors.
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B.3. Proofs of Lemma 4 and Lemma 5

Proof of Lemma 4. Let ⌧
⇤
0 = 0. Using Lemma 2, this ensures,

EFN,T0(0) = EFP,T0(0) = C(P0, P1).

Now, we will show that the only value of ⌧
⇤
1 that will satisfy EFN,T1(⌧

⇤
1 ) = EFN,T0(0) is a ⌧

⇤
1 >0 such that EFN,T1(⌧

⇤
1 ) =

C(P0, P1). To prove that such a ⌧
⇤
1 exists, consider the function:

g(u) = u
d⇤1(u)

d(u)
� ⇤1(u),

where ⇤1(u) is the log-generating transform for z = 1. The function g(u) is continuous. At u = 0, g(u) = 0 and at u = u
⇤
1

(where u
⇤
1 = arg min ⇤1(u) and lies in (�1, 0) from Property 4) we have g(u) = C(Q0, Q1). Because g(u) is continuous,

there exists a ua 2 (u⇤
1, 0) such that g(ua) = C(P0, P1) which lies between 0 and C(Q0, Q1). If we set ⌧

⇤
1 = d⇤1(u)

d(u) |u=ua ,

we have,
C(P0, P1) = g(ua)

Lemma 7
= sup

u2R
(u⌧

⇤
1 � ⇤1(u)).

Now, in general, supu<0(u⌧
⇤
1 � ⇤1(u))  supu2R(u⌧

⇤
1 � ⇤1(u)) = g(ua). But again, supu<0(u⌧

⇤
1 � ⇤1(u)) �

ua⌧
⇤
1 � ⇤1(ua) = g(ua) since ua 2 (u⇤

1, 0). Thus,

EFN,T0(⌧
⇤
1 ) = sup

u<0
(u⌧

⇤
1 � ⇤1(u)) = g(ua) = C(P0, P1).

Also note that ⌧
⇤
1 > 0 because the derivative of ⇤1(u) is monotonically increasing and ua > u

⇤
1, leading to ⌧

⇤
1 =

d⇤1(u)
d(u) |u=ua >

d⇤1(u)
d(u) |u=u⇤

1
= 0.

Now that we have a ⌧
⇤
1 such that EFN,T1(⌧

⇤
1 ) = C(P0, P1) which is strictly less that C(Q0, Q1), we must have EFP,T1(⌧

⇤
1 ) >

C(Q0, Q1) (from Lemma 8).

This leads to,
min{EFP,T0(0), EFN,T0(0), EFP,T1(⌧

⇤
1 ), EFN,T1(⌧

⇤
1 )}=C(P0, P1).

For any other choice of ⌧
⇤
0 6= 0, we either have EFP,T0(⌧

⇤
0 ) < C(P0, P1) < EFN,T0(⌧

⇤
0 ), or EFN,T0(⌧

⇤
0 ) < C(P0, P1) <

EFP,T0(⌧
⇤
0 ), implying

min{EFP,T0(⌧
⇤
0 ), EFN,T0(⌧

⇤
0 ), EFP,T1(⌧

⇤
1 ), EFN,T1(⌧

⇤
1 )}<C(P0, P1).

Proof of Lemma 5. We are given that,

EFN,T1(⌧1) = EFP,T1(⌧1) = C(Q0, Q1).

Now, we will show that the only value of ⌧
⇤
0 that will satisfy EFN,T0(⌧

⇤
0 ) = C(Q0, Q1) is a ⌧

⇤
0 < 0. To prove that such a ⌧

⇤
0

exists, consider the function

g(u) = u
d⇤1(u)

d(u)
� ⇤1(u),

where ⇤1(u) is the log-generating transform for z = 0. The function g(u) is continuous. At u = u
⇤
1 (where u

⇤
1 =

arg min ⇤1(u) and lies in (�1, 0) from Property 4), we have g(u⇤
1) = C(P0, P1) and as u ! �1, we have g(u) ! 1.

Because g(u) is continuous, there exists a ua 2 (�1, u
⇤
1) such that g(ua) = C(Q0, Q1) which lies between C(P0, P1) and

1. If we set ⌧
⇤
0 = d⇤1(u)

d(u) |u=ua , we have,

C(Q0, Q1) = g(ua)
Lemma 7

= sup
u2R

(u⌧
⇤
0 � ⇤1(u)).
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Now, in general, supu<0(u⌧
⇤
0 � ⇤1(u))  supu2R(u⌧

⇤
0 � ⇤1(u)) = g(ua). But again, supu<0(u⌧

⇤
0 � ⇤1(u)) �

ua⌧
⇤
0 � ⇤1(ua) = g(ua) since ua < u

⇤
1 < 0. Thus,

EFN,T0(⌧
⇤
0 ) = sup

u<0
(u⌧

⇤
0 � ⇤1(u)) = g(ua) = C(Q0, Q1).

This ⌧
⇤
0 is less than 0 because the derivative of ⇤1(u) is monotonically increasing and ua < u

⇤
1, leading to ⌧

⇤
0 =

⇤1(u)
d(u) |u=ua <

⇤1(u)
d(u) |u=u⇤

1
= 0.

Now that we have a ⌧
⇤
0 such that EFN,T0(⌧

⇤
0 ) = C(Q0, Q1) which is strictly greater that C(P0, P1), we must have

EFP,T0(⌧
⇤
0 ) < C(P0, P1) (from Lemma 8).

This leads to,
min{EFP,T0(⌧

⇤
0 ), EFN,T0(⌧

⇤
0 )} < C(P0, P1).

C. Appendix to Section 3.2

Proof of Theorem 2. From Lemma 5, there exists a likelihood ratio detector of the form T0(x) = log P1(x)
P0(x) � ⌧

⇤
0 such that

EFN,T0(⌧
⇤
0 ) = C(Q0, Q1). (27)

In the proof of Lemma 5, we showed that this ⌧
⇤
0 < 0.

Now, we will show that there exists eP0(x) and eP1(x) such that their optimal detector fT0(x) = log
eP1(x)
eP0(x)

� 0 is equivalent
to the detector T0(x) � ⌧

⇤
0 .

Let eP0(x) = P0(x)(1�w)P1(x)wP
x P0(x)(1�w)P1(x)w

and eP1(x) = P0(x)(1�v)P1(x)vP
x P0(x)(1�v)P1(x)v

for some w, v 2 R with w 6= v. Observe that,

fT0(x) = log
eP1(x)
eP0(x)

= (v � w) log
P1(x)

P0(x)
+ log

P
x P0(x)(1�w)

P1(x)w

P
x P0(x)(1�v)P1(x)v

= (v � w) log
P1(x)

P0(x)
+ ⇤0(w) � ⇤0(v)

= (v � w)

✓
log

P1(x)

P0(x)
� ⇤0(v) � ⇤0(w)

v � w

◆
. (28)

Because ⇤0(u) is strictly convex with its derivative taking all values from �1 to 1, one can always find a tangent to
⇤0(u) that has a slope ⌧

⇤
0 at (say) u = ua. Thus, one can always find pairs of points (w, v) on either sides of u = ua such

that ⌧
⇤
0 = ⇤0(v)�⇤0(w)

v�w , which are essentially pairs of points (w, v) at which a straight line with slope ⌧
⇤
0 cuts ⇤0(u). In

particular, we can fix v = 1 and always find a w < 0 such that

⌧
⇤
0 =

⇤0(v) � ⇤0(w)

v � w
=

�⇤0(w)

1 � w
, (29)

because ⇤0(u) is continuous taking values 0 at u = 0 and u = 1, and takes all values from (0,1) in the range (�1, 0).
Thus, the first claim is proved.

Now, we calculate C( eP0,
eP1).

C( eP0,
eP1) = max

u2(0,1)
� log

X

x

eP0(x)1�u eP1(x)u (a)
= max

u2R
� log

X

x

eP0(x)1�u eP1(x)u

(b)
= max

u2R
� log

X

x

P0(x)(1�w)(1�u)
P1(x)w(1�u)+u + (1 � u)⇤0(w)
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(c)
= max

u2R
� log

X

x

P0(x)(1�w)(1�u)
P1(x)w(1�u)+u + (1 � u)(w � 1)⌧⇤

0

(d)
= max

u2R
(1 � u)(w � 1)⌧⇤

0 � ⇤1((1 � u)(w � 1))

(e)
= sup

u02R
(u0

⌧
⇤
0 � ⇤1(u

0)) [u0 = (1 � u)(w � 1)]

(f)
= sup

u0<0
(u0

⌧
⇤
0 � ⇤1(u

0)) [u0 = (1 � u)(w � 1)]

(g)
= C(Q0, Q1). (30)

Here (a) holds because the log-generating function � log
P

x
eP0(x)1�u eP1(x)u of a likelihood ratio detector attains its

global minima at (0, 1) (see Property 4) and (b) holds by substituting eP0(x) = P0(x)(1�w)P1(x)wP
x P0(x)(1�w)P1(x)w

and eP1(x) =

P0(x)(1�v)P1(x)vP
x P0(x)(1�v)P1(x)v

with v = 1. Next, (c) holds by using ⌧
⇤
0 = ⇤0(v)�⇤0(w)

v�w = �⇤0(w)
1�w (see (29)), (d) holds from

the definition of ⇤1((1 � u)(w � 1)), (e) holds by a change of variable u
0 = (1 � u)(w � 1), (f) holds because

⌧
⇤
0 < 0  D( eP1|| eP0) = E[fT0(X)|fH1] and the detector is well-behaved (see Property 5), and lastly (g) holds because

EFN,T0(⌧
⇤
0 ) = C(Q0, Q1) (see (27)).

D. Appendix to Section 3.3
D.1. Proof of Theorem 3

Proof of Theorem 3. We remind the readers that,

W0(x, x
0)

P0(x)
= Pr (X 0 = x

0|X = x, Z = 0, Y = 0), and
W1(x, x

0)

P1(x)
= Pr (X 0 = x

0|X = x, Z = 0, Y = 1). (31)

First, we would like to prove: I(X 0; Y |X, Z = 0) > 0 =) C(W0, W1) > C(P0, P1).

Suppose that X
0 is not independent of Y given X and Z = 0, i.e., I(X 0; Y |X, Z = 0) > 0. This implies that there exists at

least one X = xa such that the distributions of X
0|X=xa,Z=0,Y =0 and X

0|X=xa,Z=0,Y =1 are different. Therefore, there
exists at least one pair (x0

, x) = (x0
a, xa) for which the following AM-GM inequality (Lemma 6) holds with strict inequality

for all u 2 (0, 1), i.e,
✓

W0(xa, x
0
a)

P0(xa)

◆1�u ✓
W1(xa, x

0
a)

P1(xa)

◆u

< (1 � u)
W0(xa, x

0
a)

P0(xa)
+ u

W1(xa, x
0
a)

P1(xa)
. (32)

For all other (x0
, x) 6= (x0

a, xa), we have (from the AM-GM inequality in Lemma 6):
✓

W0(x, x
0)

P0(x)

◆1�u ✓
W1(x, x

0)

P1(x)

◆u

 (1 � u)
W0(x, x

0)

P0(x)
+ u

W1(x, x
0)

P1(x)
. (33)

Using (32) and (33),

X

x0

✓
W0(xa, x

0)

P0(xa)

◆1�u ✓
W1(xa, x

0)

P1(xa)

◆u

<

X

x0

✓
(1 � u)

W0(xa, x
0)

P0(xa)
+ u

W1(xa, x
0)

P1(xa)

◆
= 1. (34)

This leads to,
X

x0

W0(xa, x
0)1�u

W1(xa, x
0)u

< P0(xa)1�u
P1(xa)u

. (35)

For all other x 6= xa, we have (using (33) alone),
X

x0

�W0(x, x
0)

P0(x)

�1�u�W1(x, x
0)

P1(x)

�u 
X

x0

�
(1 � u)

W0(x, x
0)

P0(x)
+ u

W1(x, x
0)

P1(x)

�
= 1, (36)
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leading to
X

x0

W0(x, x
0)1�u

W1(x, x
0)u  P0(x)1�u

P1(x)u
. (37)

Lastly, using (35) and (37),
X

x

X

x0

W0(x, x
0)1�u

W1(x, x
0)u

<

X

x

P0(x)1�u
P1(x)u

, (38)

leading to the claim:

C(W0, W1) = � min
u2(0,1)

log
X

x

X

x0

W0(x, x
0)1�u

W1(x, x
0)u

> � min
u2(0,1)

log
X

x

P0(x)1�u
P1(x)u = C(P0, P1). (39)

We would now like to prove:
C(W0, W1) > C(P0, P1) =) I(X 0; Y |X,Z = 0) > 0, or, I(X 0; Y |X, Z = 0)=0 =) C(W0, W1)⇧C(P0, P1).

First note that, from the previous proof, C(W0, W1) � C(P0, P1) always holds using the AM-GM inequality. Thus,
C(W0, W1)⇧C(P0, P1) is same as C(W0, W1)=C(P0, P1).

Suppose that X
0 is independent of Y given X and Z = 0, i.e., I(X 0; Y |X, Z = 0) = 0. This implies that,

Pr(X 0 = x
0|X, Z = 0, Y = 0) = Pr(X 0 = x

0|X, Z = 0, Y = 1) 8x
0

) W0(x, x
0)

P0(x)
=

W1(x, x
0)

P1(x)
8x

0
, x

)
X

x0

�W0(x, x
0)

P0(x)

�1�u�W1(x, x
0)

P1(x)

�u
= 1 8x

)
X

x

X

x0

W0(x, x
0)1�u

W1(x, x
0)u =

X

x

P0(x)1�u
P1(x)u

. (40)

This leads to

C(W0, W1) = � min
u2(0,1)

log
X

x

X

x0

W0(x, x
0)1�u

W1(x, x
0)u = � min

u2(0,1)
log

X

x

P0(x)1�u
P1(x)u = C(P0, P1). (41)

E. Unequal Priors
E.1. Unequal Priors on Y but Equal Priors on Z

When the prior probabilities are unequal, we can write Pe,Tz (⌧z) as:

Pe,Tz (⌧z)=
1

2
(2⇡0PFP,Tz (⌧z))+

1

2
(2⇡1PFN,Tz (⌧z)),

and define the Chernoff exponent of Pe,Tz (⌧z), i.e., Ee,Tz (⌧z) more generally as follows:

min{EFP,Tz (⌧z)� log 2⇡0, EFN,Tz (⌧z)� log 2⇡1}.

Lemma 9. Let the absolute continuity and distinct hypotheses assumptions of Section 2 hold, and Tz(x) be the likelihood
ratio detector for the group Z = z. Then, the value of ⌧z that maximizes Ee,Tz (⌧z), i.e.,

max
⌧z

min{EFP,Tz (⌧z) � log 2⇡0, EFN,Tz (⌧z) � log 2⇡1},

is given by ⌧
⇤
z = log ⇡0

⇡1
, which is the same as the value of ⌧z that minimizes Pe,Tz (⌧z), i.e.,

min
⌧z

⇡0PFP,Tz (⌧z) + ⇡1PFN,Tz (⌧z).
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This likelihood ratio detector Tz(x)� log ⇡0
⇡1

is the Bayes optimal detector for the group.

Before we proceed to the proof, we discuss another result. Observe that,

u⌧0 � ⇤0(u) � log 2⇡0 = u(⌧0 � log
⇡0

⇡1
) + u log

⇡0

⇡1
� ⇤0(u) � log 2⇡0 = u⌧

0 � e⇤0(u) � log 2, (42)

where ⌧
0 = ⌧0 � log ⇡0

⇡1
, and e⇤0(u) = ⇤0(u) � u log ⇡0

⇡1
+ log ⇡0. Similarly,

u⌧0 � ⇤1(u) � log 2⇡1 = u(⌧0 � log
⇡0

⇡1
) + u log

⇡0

⇡1
� ⇤1(u) � log 2⇡1 = u⌧

0 � e⇤1(u) � log 2, (43)

where ⌧
0 = ⌧0 � log ⇡0

⇡1
, and e⇤1(u) = ⇤1(u) � u log ⇡0

⇡1
+ log ⇡1.

We first derive some properties of e⇤0(u) and e⇤1(u).
Lemma 10. Let P0(x) and P1(x) be strictly greater than 0 everywhere and D(P0||P1) and D(P1||P0) be strictly greater
than 0 and ⇡0 and ⇡1 lie in (0, 1). Then, the following properties hold:

• e⇤0(u) and e⇤1(u) are continuous, differentiable and strictly convex.

• The derivatives of e⇤0(u) and e⇤1(u) are continuous, monotonically increasing, and take all values from �1 to 1.

• e⇤1(u) = e⇤0(u + 1).

Proof of Lemma 10. Note that, e⇤0(u) is the sum of ⇤0(u) and an affine function �u log ⇡0
⇡1

+ log ⇡0. Because ⇤0(u) is
continuous, differentiable and strictly convex (from Property 4), e⇤0(u) also satisfies those properties. The second claim also
holds for the same reason because the derivative of ⇤0(u) satisfies all these properties (from Property 4).

Lastly,

e⇤0(u + 1) = ⇤0(u + 1) � (u + 1) log
⇡0

⇡1
+ log ⇡0 = ⇤0(u + 1) � u log

⇡0

⇡1
+ log ⇡1

(a)
= ⇤1(u) � u log

⇡0

⇡1
+ log ⇡1 = e⇤1(u), (44)

where (a) holds because ⇤1(u) = ⇤0(u + 1) from Property 4.

Proof of Lemma 9. We specifically consider the case where ⇡0 6= ⇡1 in this proof because the case of equal priors ⇡0 = ⇡1

can be proved using Lemma 2 and Lemma 8.

Without loss of generality, we assume ⇡0 > ⇡1. Thus, log ⇡0
⇡1

> 0.

Case 1: de⇤1(u)
du |u=0 = D(P1||P0) � log ⇡0

⇡1
> 0.

Observe that, de⇤1(u)
du |u=�1 = �D(P0||P1) � log ⇡0

⇡1
< 0 and de⇤1(u)

du |u=0 = D(P1||P0) � log ⇡0
⇡1

> 0. Thus, the strictly
convex function e⇤1(u) attains its minima in (�1, 0) (using Lemma 10). Next, using e⇤0(u + 1) = e⇤1(u) (also from
Lemma 10), we have e⇤0(u) attaining its minima in (0, 1).

For ⌧
0 = 0 (equivalently ⌧0 = log ⇡0

⇡1
), we have

EFP,T0(log
⇡0

⇡1
) � log 2⇡0

(a)
= sup

u>0
(u · 0 � e⇤0(u) � log 2)

(b)
= �min

u
e⇤0(u) � log 2

(c)
= �min

u
e⇤1(u) � log 2

(d)
= sup

u<0
(u · 0 � e⇤1(u) � log 2)

(e)
= EFN,T0(log

⇡0

⇡1
) � log 2⇡1. (45)
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Here, (a) holds from (42), (b) holds because e⇤0(u) attains its minima in (0, 1), (c) holds from e⇤0(u + 1) = e⇤1(u) (see
Lemma 10), (d) holds because e⇤1(u) attains its minima in (�1, 0), and (e) holds from (43).

Next, we will show that, for any other value of ⌧
0 6= 0 (⌧0 6= log ⇡0

⇡1
), we either have

EFP,T0(⌧0) � log 2⇡0 < EFP,T0(log
⇡0

⇡1
) � log 2⇡0 < EFN,T0(⌧0) � log 2⇡1, or

EFN,T0(⌧0) � log 2⇡1 < EFP,T0(log
⇡0

⇡1
) � log 2⇡0 < EFP,T0(⌧0) � log 2⇡0. (46)

Let ⌧
0
> 0. Then,

EFP,T0(⌧0) � log 2⇡0
(a)
= sup

u>0
(u⌧

0 � e⇤0(u) � log 2)
(b)
� (u⇤

0⌧
0 � e⇤0(u

⇤
0) � log 2)

(c)
> �e⇤0(u

⇤
0) � log 2

(d)
= EFP,T0(log

⇡0

⇡1
) � log 2⇡0. (47)

Here (a) holds from (42), (b) holds for any u
⇤
0 > 0, (c) holds because u0⌧

0
> 0, and (d) holds if we set u

⇤
0 = arg min e⇤0(u)

since e⇤0(u) attains its minima in (0, 1).

Sub-case 1a: ⌧
0 � de⇤1(u)

du |u=0 = D(P1||P0) � log ⇡0
⇡1

EFN,T0(⌧0) � log 2⇡1 = sup
u<0

(u⌧
0 � e⇤1(u) � log 2)

(a)
 sup

u<0
(u

de⇤1(u)

du
|u=0 � e⇤1(u) � log 2)

 sup
u2R

(u
de⇤1(u)

du
|u=0 � e⇤1(u) � log 2)

(b)
= (0

de⇤1(u)

du
|u=0 � e⇤1(0) � log 2)

= (�e⇤1(0) � log 2)

(c)
< �min

u
e⇤1(u) � log 2

(d)
= EFP,T0(log

⇡0

⇡1
) � log 2⇡0, (48)

where (a) holds because ⌧
0 � de⇤1(u)

du |u=0, (b) holds from Lemma 7, (c) holds from the strict convexity of e⇤1(u) because it
attains its minima in (�1, 0), and (d) holds from (45).

Sub-case 1b: 0 < ⌧
0
<

de⇤1(u)
du |u=0

EFN,T0(⌧0) � log 2⇡0 = sup
u<0

(u⌧
0 � e⇤1(u) � log 2)  sup

u2R
(u⌧

0 � e⇤1(u) � log 2)

(a)
= ua⌧

0 � e⇤1(ua) � log 2

(b)
< �e⇤1(ua) � log 2 [since ua⌧

0
< 0]

 �min
u

⇤1(u) � log 2

(c)
= EFP,T0(log

⇡0

⇡1
) � log 2⇡0 (49)

Here, (a) holds from Lemma 7 because e⇤1(u) is a strictly convex and differentiable function, and its derivative is also
continuous, monotonically increasing and takes all values from �1 to 1 (see Lemma 10). Thus, there exists a single ua

such that de⇤1(u)
du |u=ua = ⌧

0
. Next, (b) holds because de⇤1(u)

du |u=ua = ⌧
0
<

de⇤1(u)
du |u=0, and the derivative is monotonically

increasing, implying ua < 0. Lastly (c) holds from (45).
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Thus,

EFN,T0(⌧0) � log 2⇡1 < EFP,T0(log
⇡0

⇡1
) � log 2⇡0 < EFP,T0(⌧0) � log 2⇡0. (50)

For ⌧
0
< 0, a similar proof holds, leading to

EFP,T0(⌧0) � log 2⇡0 < EFP,T0(log
⇡0

⇡1
) � log 2⇡0 < EFN,T0(⌧0) � log 2⇡1, (51)

Then, the value of ⌧0 that maximizes the Chernoff exponent Ee,T0(⌧0), i.e.,

max
⌧0

min{EFP,T0(⌧0) � log 2⇡0, EFN,T0(⌧0) � log 2⇡1},

is given by ⌧
⇤
0 = log ⇡0

⇡1
(⌧ 0 = 0).

This matches with the detector that minimizes the Bayesian probability of error under unequal priors (see Theorem 3.1 in
(Gallager, 2012)).

Case 2: de⇤1(u)
du |u=0 = D(P1||P0) � log ⇡0

⇡1
 0.

For this case, note that, both e⇤1(u) and e⇤0(u) attain their minima in u 2 [0,1).

For ⌧
0 = 0 (equivalently ⌧0 = log ⇡0

⇡1
), we have

EFN,T0(log
⇡0

⇡1
) � log 2⇡1 = sup

u<0
(u · 0 � e⇤1(u) � log 2) = �e⇤1(0) � log 2. (52)

And,

EFP,T0(log
⇡0

⇡1
) � log 2⇡0 = sup

u>0
(u · 0 � e⇤0(u) � log 2) = �min

u
e⇤0(u) � log 2

= �min
u

e⇤1(u) � log 2

� �e⇤1(0) � log 2. (53)

Thus,

min{EFP,T0(log
⇡0

⇡1
) � log 2⇡0, EFN,T0(log

⇡0

⇡1
) � log 2⇡1} = �e⇤1(0) � log 2. (54)

Now, we will show that any other value of ⌧
0 6= 0 (equivalently ⌧0 6= log ⇡0

⇡1
) cannot increase the Chernoff exponent of the

probability of error beyond �e⇤1(0) � log 2.

Sub-case 2a: ⌧
0 � de⇤1(u)

du |u=0 = D(P1||P0) � log ⇡0
⇡1

EFN,T0(⌧0) � log 2⇡1 = sup
u<0

(u⌧
0 � e⇤1(u) � log 2)

(a)
 sup

u<0
(u

de⇤1(u)

du
|u=0 � e⇤1(u) � log 2)

 sup
u2R

(u
de⇤1(u)

du
|u=0 � e⇤1(u) � log 2)

(b)
= (0

de⇤1(u)

du
|u=0 � e⇤1(0) � log 2)

= (�e⇤1(0) � log 2), (55)

where (a) holds because ⌧
0 � de⇤1(u)

du |u=0 and (b) holds from Lemma 7. Thus,

min{EFP,T0(⌧0) � log 2⇡0, EFN,T0(⌧0) � log 2⇡1}  �e⇤1(0) � log 2. (56)
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Sub-case 2b: ⌧
0
<

de⇤1(u)
du |u=0 = D(P1||P0) � log ⇡0

⇡1

EFP,T0(⌧0) � log 2⇡0 = sup
u>0

(u⌧
0 � e⇤0(u) � log 2)

(a)
 sup

u>0
(u

de⇤1(u)

du
|u=0 � e⇤0(u) � log 2)

(b)
 sup

u>0
(u

de⇤0(u)

du
|u=1 � e⇤0(u) � log 2)

(c)
 sup

u2R
(u

de⇤0(u)

du
|u=1 � e⇤0(u) � log 2)

(d)
=

de⇤0(u)

du
|u=1 � e⇤0(1) � log 2

(e)
 �e⇤0(1) � log 2

(f)
= �e⇤1(0) � log 2. (57)

Here (a) holds because ⌧
0

<
de⇤1(u)

du |u=0, (b) holds from Lemma 10 since e⇤1(u) = e⇤0(u + 1), (c) holds because the

supremum is taken over a larger superset, (d) holds from Lemma 7, (e) holds because de⇤0(u)
du |u=1 = de⇤1(u)

du |u=0 =

D(P1||P0) � log ⇡0
⇡1

 0, and (f) holds again from from Lemma 10 since e⇤1(u) = e⇤0(u + 1). Thus,

max
⌧0

min{EFP,T0(⌧0) � log 2⇡0, EFN,T0(⌧0) � log 2⇡1} = �e⇤1(0) � log 2, (58)

which is attained at ⌧0 = log ⇡0
⇡1

.

E.2. Unequal priors on both Z and Y

Here we discuss a modification of optimization (2) proposed in Section 3.1 to account for the case of unequal priors on both
Z and Y .

Let Pr(Z = 0) = �0 and Pr(Z = 1) = �1. Also let, Pr(Y = 0|Z = 0) = ⇡00, Pr(Y = 1|Z = 0) = ⇡10,
Pr(Y = 0|Z = 1) = ⇡01 and Pr(Y = 1|Z = 1) = ⇡11.

Then, the overall probability of error considering both groups together is given by:

�0P
T0
e (⌧0) + �1P

T1
e (⌧1)

=
1

2
(2�0)P

T0
e (⌧0) +

1

2
(2�1)P

T1
e (⌧1)

=
1

4
(4�0⇡00)PFP,T0(⌧0) +

1

4
(4�0⇡10)PFN,T0(⌧0) +

1

4
(4�1⇡01)PFP,T1(⌧1) +

1

4
(4�1⇡11)PFN,T1(⌧1). (59)

Then, the error exponent of the overall probability of error considering both groups is defined as:

min{EFP,T0(⌧0) � 4⇡00�0, EFN,T0(⌧0) � 4⇡10�0, EFP,T1(⌧1) � 4⇡01�1, EFN,T1(⌧1) � 4⇡11�1}. (60)

These log-generating functions can be plotted, and the intercepts made by their tangents can be examined again to obtain the
error exponents, leading to the optimal detector.


