A. Background on Chernoff Information

In this section, we provide a brief background on Chernoff bounds and Chernoff information, leading to the derivation of the results under equal priors, i.e., $\pi_0 = \pi_1 = \frac{1}{2}$. We discuss the case of unequal priors in Appendix E.

Consider a detector of the form $T(x) \ge \tau$ for classification between two hypothesis $H_0: X \sim P_0(x)$ and $H_1: X \sim P_1(x)$. Recall that the log-generating functions for this detector are defined as follows:

$$\Lambda_0(u) = \log \mathbb{E}[e^{uT(X)}|H_0], \text{ and } \Lambda_1(u) = \log \mathbb{E}[e^{uT(X)}|H_1].$$
(5)

A.1. Proof of Lemma 1

We first state the Chernoff bound (see Chapter 2.2 in (Boucheron et al., 2013)) here, which is a well-known tight bound for approximating error probabilities. For a random variable T,

$$\Pr\left(T \ge \tau\right) = \Pr\left(e^{uT} \ge e^{u\tau}\right) \le \frac{\mathbb{E}[e^{uT}]}{e^{u\tau}} \quad \forall u > 0.$$
(6)

Proof of Lemma 1. Using the Chernoff bound, we can bound $P_{\rm FP}^{(T)}(au)$ as follows:

$$P_{\rm FP}^{(T)}(\tau) = \Pr\left(T(X) \ge \tau | H_0\right) \le \frac{\mathbb{E}[e^{uT(X)} | H_0]}{e^{u\tau}} = \frac{e^{\Lambda_0(u)}}{e^{u\tau}} \quad \forall u > 0.$$
(7)

Thus, $-\log P_{\text{FP}}^{(T)}(\tau) \ge \sup_{u>0} \left(u\tau - \Lambda_0(u)\right) = E_{\text{FP}}^{(T)}(\tau)$. Similarly, using the Chernoff bound, we have

$$P_{\rm FN}^{(T)}(\tau) = \Pr\left(T(X) < \tau | H_1\right) \le \frac{\mathbb{E}[e^{uT(X)} | H_1]}{e^{u\tau}} = \frac{e^{\Lambda_1(u)}}{e^{u\tau}} \quad \forall u < 0.$$
(8)

Thus, $-\log P_{\text{FN}}^{(T)}(\tau) \ge \sup_{u < 0} \left(u\tau - \Lambda_1(u) \right) = E_{\text{FN}}^{(T)}(\tau).$

A.2. Properties of log-generating functions

Here, we state some useful properties of the log-generating functions that are used later in the other proofs/explanations. **Property 1** (Convexity). The log-generating functions $\Lambda_0(u)$ and $\Lambda_1(u)$ are convex in u.

Proof of Property 1. The proof follows directly using Hölder's inequality. For any u and v, and $\alpha \in [0, 1]$,

$$\mathbb{E}[e^{(\alpha u + (1-\alpha)v)T(X)}|H_0] = \mathbb{E}[e^{\alpha uT(X)}e^{(1-\alpha)vT(X)}|H_0] \le \left(\mathbb{E}[|e^{\alpha uT(X)}|^{\frac{1}{\alpha}}|H_0]\right)^{\alpha} \left(\mathbb{E}[|e^{(1-\alpha)vT(X)}|^{\frac{1}{1-\alpha}}|H_0]\right)^{1-\alpha}.$$
 (9)

This leads to,

$$\Lambda_0(\alpha u + (1 - \alpha)v) = \log \mathbb{E}[e^{(\alpha u + (1 - \alpha)v)T(X)}|H_0] \le \alpha \log \mathbb{E}[e^{uT(X)}|H_0] + (1 - \alpha)\log \mathbb{E}[e^{vT(X)}|H_0] = \alpha \Lambda_0(u) + (1 - \alpha)\Lambda_0(v).$$
(10)

The proof is similar for $\Lambda_1(u)$.

Property 2 (Zero at origin). *The log-generating functions* $\Lambda_0(u)$ *and* $\Lambda_1(u)$ *are both* 0 *at* u = 0.

Proof of Property 2. The proof follows by substituting u = 0 in the expressions of $\Lambda_0(u)$ and $\Lambda_1(u)$.

Next, we prove some properties for the log-generating functions when the detector is *well-behaved*. In general, when using a detector of the form $T(x) \ge \tau$, we would expect T(X) to be high when H_1 is true, and low when H_0 is true. We call a detector *well-behaved* if $\mathbb{E}[T(X)|H_0] < 0$ and $\mathbb{E}[T(X)|H_1] > 0$. The next property provides more intuition on what the log-generating functions look like for *well-behaved* detectors.

Property 3 (Log-generating functions of well-behaved detectors). Suppose that $\mathbb{E}[T(X)|H_0] < 0$ and $\mathbb{E}[T(X)|H_1] > 0$, and $P_0(x)$ and $P_1(x)$ are non-zero for all x. Then, the following holds:

- $\Lambda_0(u)$ and $\Lambda_1(u)$ are strictly convex.
- $\Lambda_0(u) > 0$ if u < 0. $\Lambda_1(u) > 0$ if u > 0.

Proof of Property 3. The convexity of $\Lambda_0(u)$ is proved in Property 1. Now $\Lambda_0(u)$ is strictly convex if, for all distinct reals u and v, and $\alpha \in (0, 1)$, we have,

$$\Lambda_0(\alpha u + (1-\alpha)v) < \alpha \Lambda_0(u) + (1-\alpha)\Lambda_0(v).$$

For the sake of contradiction, let us assume that there exists u and v with v > u such that,

$$\Lambda_0(\alpha u + (1 - \alpha)v) = \alpha \Lambda_0(u) + (1 - \alpha)\Lambda_0(v).$$

This indicates that Hölder's inequality holds with exact equality in (9), which could happen if and only if $ae^{uT(x)} = be^{vT(x)}$ almost everywhere with respect to the probability measure $P_0(x)$ for constants a and b, i.e., $(v - u)T(x) = \log a/b$. Thus,

$$\mathbb{E}[T(X)|H_0] = \frac{1}{(v-u)} \log a/b = \mathbb{E}[T(X)|H_1],$$
(11)

where the last step holds because $P_1(x)$ and $P_0(x)$ are both non-zero everywhere (absolutely continuous with respect to each other). But, this is a contradiction since $\mathbb{E}[T(X)|H_0] < 0 < \mathbb{E}[T(X)|H_1]$. Thus, $\Lambda_0(u)$ is strictly convex. A similar proof can be done for $\Lambda_1(u)$.

For proving the next claim, consider the derivative of $\Lambda_0(u)$.

$$\frac{d\Lambda_0(u)}{du} = \frac{\mathbb{E}[e^{uT(X)}T(X)|H_0]}{e^{\Lambda_0(u)}}.$$
(12)

The derivative of $\Lambda_0(u)$ at u = 0 is given by $\mathbb{E}[T(X)|H_0]$ which is strictly less than 0. Because $\Lambda_0(u)$ is strictly convex in u and $\Lambda_0(0) = 0$, if $\frac{d\Lambda_0(u)}{du}|_{u=0} < 0$, then $\Lambda_0(u) > 0$ for all u < 0.

A similar proof holds for the last claim as well, since the derivative of $\Lambda_1(u)$ at u = 0 is given by $\mathbb{E}[T(X)|H_1]$ which is strictly greater than 0, and $\Lambda_1(0) = 0$.

$$\square$$

Next, we examine the properties of the log-generating functions for likelihood ratio detectors. Consider the likelihood ratio detector $T_0(x) = \log \frac{P_1(x)}{P_0(x)}$. The two conditions $\mathbb{E}[T(X)|H_0] < 0$ and $\mathbb{E}[T(X)|H_1] > 0$ become equivalent to $D(P_0||P_1) > 0$ and $D(P_1||P_0) > 0$ where $D(\cdot||\cdot)$ denotes the Kullback-Leibler (KL) divergence between the two distributions $P_0(x)$ and $P_1(x)$. Thus, a likelihood ratio detector always satisfies these conditions as long as the KL divergences are well-defined and non-zero.

Property 4. (Log-generating functions of likelihood ratio detectors) Let $T_0(x) = \log \frac{P_1(x)}{P_0(x)}$, and $P_0(x)$ and $P_1(x)$ be non-zero for all x with $D(P_0||P_1)$ and $D(P_1||P_0)$ strictly greater than 0. Then, the following properties hold:

- $\Lambda_0(u)$ is 0 at u = 0 and 1, and $\Lambda_1(u)$ is 0 at u = 0 and -1.
- $\Lambda_1(u) = \Lambda_0(u+1).$
- $C(P_0, P_1) > 0.$
- $\Lambda_0(u)$ and $\Lambda_1(u)$ are continuous, differentiable and strictly convex.
- The derivatives of $\Lambda_0(u)$ and $\Lambda_1(u)$ are continuous, monotonically increasing and take all values between $-\infty$ and ∞ .
- $\Lambda_0(u)$ attains its global minima for u in (0, 1).
- $\Lambda_1(u)$ attains its global minima for u in (-1, 0).

We first introduce the arithmetic mean-geometric mean (AM-GM) inequality.

Lemma 6 (AM-GM inequality). The following inequality is satisfied for $u \in (0, 1)$ and $a, b \ge 0$:

$$a^{1-u}b^{u} \le (1-u)a + ub, \tag{13}$$

where the equality holds if and only if a = b.

Proof of Property 4. The first claim can be verified by direct substitution.

To show that $\Lambda_1(u) = \Lambda_0(u+1)$, observe that,

$$\Lambda_1(u) = -\log \sum_x P_1(x)^{1+u} P_0(x)^u = -\log \sum_x P_1(x)^{1+u} P_0(x)^{1-(1+u)} = \Lambda_0(u+1)$$

Next, we will show that $C(P_0, P_1) > 0$. Observe that, $C(P_0, P_1) = -\log \sum_x P_0(x)^{1-u^*} P_1(x)^{u^*}$ for some $u^* \in (0, 1)$. Now, there is at least one x' with $P_0(x') > 0$ and $P_1(x') > 0$ such that $P_0(x') \neq P_1(x')$ because $D(P_0||P_1) > 0$ and $D(P_1||P_0) > 0$. This leads to a strict AM-GM inequality (Lemma 6) as follows:

$$P_0(x')^{1-u^*}P_1(x')^{u^*} < (1-u^*)P_0(x') + u^*P_1(x').$$

For all other $x \neq x'$,

$$P_0(x)^{1-u^*}P_1(x)^{u^*} \le (1-u^*)P_0(x) + u^*P_1(x).$$

Thus,

$$\sum_{x} P_0(x)^{1-u^*} P_1(x)^{u^*} < \sum_{x} (1-u^*) P_0(x) + u^* P_1(x) = 1$$

$$\implies -\log \sum_{x} P_0(x)^{1-u^*} P_1(x)^{u^*} > 0.$$
 (14)

Thus, $C(P_0, P_1) > 0$. A similar proof extends for continuous distributions as well where the strict inequality holds at least over a set of x's that is not measure 0.

We move on to the next claim. Since both $P_0(x)$ and $P_1(x)$ are strictly greater than 0 for all x, we have $P_0(x)^{1-u}P_1(x)^u$ to be well-defined and continuous for all values of u, including u = 0 and u = 1. Thus, $\Lambda_0(u)$ is continuous over the range $(-\infty, \infty)$.

The derivative of $\Lambda_0(u)$ is given by:

$$\frac{d\Lambda_0(u)}{du} = \frac{\sum_x P_0(x)^{1-u} P_1(x)^u \log \frac{P_1(x)}{P_0(x)}}{e^{\Lambda_0(u)}},\tag{15}$$

which is well-defined for all values of u.

The strict convexity of $\Lambda_0(u)$ can be proved using Property 3, because the two conditions $\mathbb{E}[T(X)|H_0] < 0$ and $\mathbb{E}[T(X)|H_1] > 0$ become equivalent to $D(P_0||P_1) > 0$ and $D(P_1||P_0) > 0$. A similar proof extends to $\Lambda_1(u)$.

Now, we move on to the next claim. Observe from (15) that, the derivative is also continuous for all values of u since both $P_0(x)$ and $P_1(x)$ are strictly greater than 0 for all x. It is monotonically increasing because $\Lambda_0(u)$ is strictly convex. Also note that, as $u \to -\infty$, its derivative tends to $-\infty$. Similarly, as $u \to \infty$, its derivative tends to ∞ . A similar proof extends to $\Lambda_1(u)$.

Lastly, because $\Lambda_0(u)$ is 0 at u = 0 and u = 1, and is a continuous and strictly convex function, it attains its minima for u in (0, 1). A similar proof extends to $\Lambda_1(u)$, validating the last claim as well.

Property 5 (Connection to FL transforms). For well-behaved detectors, the following properties hold:

- If $\tau < \mathbb{E}[T(X)|H_1]$, then $\sup_{u < 0} (u\tau \Lambda_1(u)) = \sup_{u \in \mathbb{R}} (u\tau \Lambda_1(u))$.
- If $\tau > \mathbb{E}[T(X)|H_0]$, then $\sup_{u>0} (u\tau \Lambda_0(u)) = \sup_{u \in \mathbb{R}} (u\tau \Lambda_0(u))$.

Before the proof, we introduce a lemma that will be used in the proof.

Lemma 7 (Supporting line of a strictly convex function). For a strictly convex and differentiable function $f(u) : \mathcal{R} \to \mathcal{R}$,

$$u_a \frac{df(u)}{du}|_{u=u_a} - f(u_a) = \sup_{u \in \mathcal{R}} \left(u \frac{df(u)}{du}|_{u=u_a} - f(u) \right).$$

The proof of Lemma 7 holds from the definition of strict convexity.

Proof of Property 5. In general, $\sup_{u \in \mathcal{R}} (u\tau - \Lambda_1(u)) \ge \sup_{u < 0} (u\tau - \Lambda_1(u))$. But, here again,

$$\sup_{u \in \mathcal{R}} (u\tau - \Lambda_1(u)) \stackrel{(a)}{=} \sup_{u \in \mathcal{R}} \left(u \frac{d\Lambda_1(u)}{du} |_{u=u_a} - \Lambda_1(u) \right) \stackrel{(b)}{=} u_a \frac{d\Lambda_1(u)}{du} |_{u=u_a} - \Lambda_1(u_a)$$

$$\stackrel{(c)}{\leq} \sup_{u < 0} \left(u \frac{d\Lambda_1(u)}{du} |_{u=u_a} - \Lambda_1(u) \right) \stackrel{(d)}{=} \sup_{u < 0} \left(u\tau - \Lambda_1(u) \right). \tag{16}$$

Here (a) holds because the derivative of $\Lambda_1(u)$ is continuous, monotonically increasing and takes all values from $(-\infty, \infty)$ (see Property 4). Thus, for any τ , there exists a single u_a such that $\frac{d\Lambda_1(u)}{du}|_{u=u_a} = \tau$. Next, (b) holds from Lemma 7, whereas (c) holds because $\frac{d\Lambda_1(u)}{du}|_{u=u_a} = \tau < \mathbb{E}[T(X)|H_1] = \frac{d\Lambda_1(u)}{du}|_{u=0}$ and the derivative is monotonically increasing (see Property 4) implying $u_a < 0$. Lastly (d) holds by again substituting $\tau = \frac{d\Lambda_1(u)}{du}|_{u=u_a}$. This proves the first claim.

Similarly, in general, we have $\sup_{u \in \mathcal{R}} (u\tau - \Lambda_0(u)) \ge \sup_{u>0} (u\tau - \Lambda_0(u))$. But, here again,

$$\sup_{u \in \mathcal{R}} (u\tau - \Lambda_0(u)) \stackrel{(a)}{=} \sup_{u \in \mathcal{R}} \left(u \frac{d\Lambda_0(u)}{du} |_{u=u_a} - \Lambda_0(u) \right) \stackrel{(b)}{=} u_a \frac{d\Lambda_0(u)}{du} |_{u=u_a} - \Lambda_0(u_a)$$

$$\stackrel{(c)}{\leq} \sup_{u>0} \left(u \frac{d\Lambda_0(u)}{du} |_{u=u_a} - \Lambda_0(u) \right) \stackrel{(d)}{=} \sup_{u>0} \left(u\tau - \Lambda_0(u) \right). \tag{17}$$

Here (a) holds because the derivative of $\Lambda_0(u)$ is continuous, monotonically increasing and takes all values from $(-\infty, \infty)$ (see Property 4). Thus, for any τ , there exists a single u_a such that $\frac{d\Lambda_0(u)}{du}|_{u=u_a} = \tau$. Next, (b) holds from Lemma 7, whereas (c) holds because $\frac{d\Lambda_0(u)}{du}|_{u=u_a} = \tau > \mathbb{E}[T(X)|H_0] = \frac{d\Lambda_0(u)}{du}|_{u=0}$ and the derivative is monotonically increasing (see Property 4) implying $u_a > 0$. Lastly (d) holds by again substituting $\tau = \frac{d\Lambda_0(u)}{du}|_{u=u_a}$.

A.3. Log Generating Functions for Gaussians

Let $P_0(x) \sim \mathcal{N}(\mu_0, \sigma^2 \mathbf{I})$ and $P_1(x) \sim \mathcal{N}(\mu_1, \sigma^2 \mathbf{I})$, where μ_0 and μ_1 are vectors and \mathbf{I} is an identity matrix. We derive the log-generating functions for likelihood ratio detectors corresponding to these two distributions.

$$\Lambda_{0}(u) = \log \int P_{1}(x)^{u} P_{0}(x)^{1-u} dx = \log \int e^{\frac{-u}{2\sigma^{2}}((x-\mu_{1})^{T}(x-\mu_{1})-(x-\mu_{0})^{T}(x-\mu_{0}))} P_{0}(x) dx$$

$$= \log e^{\frac{-u}{2\sigma^{2}}(\mu_{1}^{T}\mu_{1}-\mu_{0}^{T}\mu_{0})} \int e^{\frac{-u}{2\sigma^{2}}(-2x^{T}(\mu_{1}-\mu_{0})))} P_{0}(x) dx$$

$$\stackrel{(a)}{=} \log e^{\frac{-u}{2\sigma^{2}}(\mu_{1}^{T}\mu_{1}-\mu_{0}^{T}\mu_{0})} e^{\frac{-u}{2\sigma^{2}}(-2\mu_{0}^{T}(\mu_{1}-\mu_{0})))} e^{\frac{u^{2}}{2\sigma^{2}}(||\mu_{1}-\mu_{0}||_{2}^{2}))}$$

$$= \log e^{\frac{-u}{2\sigma^{2}}(||\mu_{1}-\mu_{0}||_{2}^{2})} e^{\frac{u^{2}}{2\sigma^{2}}(||\mu_{1}-\mu_{0}||_{2}^{2}))}$$

$$= \frac{1}{2\sigma^{2}} ||\mu_{1}-\mu_{0}||_{2}^{2}u(u-1), \qquad (18)$$

where (a) is derived using the expression of the moment generating function of a Gaussian distribution.

A.4. Proof of Lemma 2

Proof of Lemma 2. Under equal priors $\pi_0 = \pi_1 = \frac{1}{2}$, the detector that minimizes the Bayesian probability of error, i.e., $P_{e,T}(\tau) = \pi_0 P_{\text{FP},T}(\tau) + \pi_1 P_{\text{FN},T}(\tau)$ is the likelihood ratio detector given by $T(x) = \log \frac{P_1(x)}{P_0(x)} \ge 0$ (for $\pi_0 = \pi_1 = \frac{1}{2}$). The proof is available in Theorem 3.1 of (Gallager, 2012).

Here, we will show that the Chernoff exponent of the probability of error for this detector, i.e., $E_{e,T}(0)$ is equal to $C(P_0, P_1) = -\min_{u \in (0,1)} \log \sum_x P_0(x)^{(1-u)} P_1(x)^u$.

Note that,

$$E_{\text{FP},T}(0) = \sup_{u>0} -\Lambda_0(u) = -\min_{u\in(0,1)} \log \sum_x P_0(x)^{(1-u)} P_1(x)^u,$$
(19)

where the last step follows because $\Lambda_0(u)$ attains its minima in the range $u \in (0, 1)$ (see Property 4).

$$E_{\text{FN},T}(0) = \sup_{u<0} -\Lambda_1(u) \stackrel{(a)}{=} -\min_{u\in(-1,0)} \log \sum_x P_0(x)^{(-u)} P_1(x)^{(1+u)}$$
$$= -\min_{u'=u+1\in(0,1)} \log \sum_x P_0(x)^{(1-u')} P_1(x)^{(u')}, \tag{20}$$

where (a) also holds because $\Lambda_1(u)$ attains its minima in the range $u \in (-1, 0)$ (see Property 4). Lastly,

$$E_{e,T}(0) = \min\{E_{FP,T}(0), E_{FN,T}(0)\} = C(P_0, P_1).$$
(21)

B. Appendix to Section 3.1

Before the proofs, we introduce a lemma that will be used in the proofs.

Lemma 8. Let $P_0(x)$ and $P_1(x)$ be non-zero for all x and $D(P_0||P_1)$ and $D(P_1||P_0)$ be strictly greater than 0. For likelihood ratio detectors of the form $T_0(x) = \log \frac{P_1(x)}{P_0(x)} \ge \tau_0$, if $\tau_0 \neq 0$, then one of the following statements is true:

$$E_{\text{FN},T_0}(\tau_0) < C(P_0, P_1) < E_{\text{FP},T_0}(\tau_0), or \ E_{\text{FP},T_0}(\tau_0) < C(P_0, P_1) < E_{\text{FN},T_0}(\tau_0).$$

Proof of Lemma 8. Let us analyze the scenario where $\tau_0 > 0$. Observe that,

$$E_{\text{FP},T_{0}}(\tau_{0}) = \sup_{u>0} (u\tau_{0} - \Lambda_{0}(u)) \ge u_{0}^{*}\tau_{0} - \Lambda_{0}(u_{0}^{*}) \qquad \text{[for any } u_{0}^{*} > 0\text{]}$$
$$> -\Lambda_{0}(u_{0}^{*}) \qquad \text{[since } u_{0}^{*}\tau_{0} > 0\text{]}$$
$$\stackrel{(a)}{=} C(P_{0}, P_{1}), \qquad (22)$$

where (a) follows if we choose $u_0^* = \arg \min \Lambda_0(u)$ (from Property 4, $\Lambda_0(u)$ attains its minima for some $u \in (0, 1)$) and $\Lambda_0(u_0^*) = -C(P_0, P_1)$ (by definition).

Now, we will show that $E_{\text{FN},T_0}(\tau_0) < C(P_0, P_1)$ when $\tau_0 > 0$.

Case 1:
$$au_0 \ge \frac{d\Lambda_1(u)}{du}|_{u=0} = D(P_1||P_0)$$

$$E_{\text{FN},T_{0}}(\tau_{0}) = \sup_{u < 0} (u\tau_{0} - \Lambda_{1}(u)) \leq \sup_{u < 0} (u\text{D}(P_{1}||P_{0}) - \Lambda_{1}(u)) \text{ [since } \tau_{0} \geq \text{D}(P_{1}||P_{0})\text{]}$$
$$\leq \sup_{u \in \mathcal{R}} (u\text{D}(P_{1}||P_{0}) - \Lambda_{1}(u))$$
$$\stackrel{(a)}{=} (0 \cdot \text{D}(P_{1}||P_{0}) - \Lambda_{1}(0)) \stackrel{(b)}{=} 0 \stackrel{(c)}{<} \text{C}(P_{0}, P_{1}), \tag{23}$$

where (a) holds from Lemma 7 because $\frac{d\Lambda_1(u)}{du}|_{u=0} = D(P_1||P_0)$, and (b) and (c) hold from Property 4 since $\Lambda_1(0) = 0$ and $C(P_0, P_1) > 0$.

$$\begin{aligned} \mathbf{Case } \mathbf{2:} \ 0 < \tau_0 < \frac{d\Lambda_1(u)}{du}|_{u=0} = \mathrm{D}(P_1||P_0) \\ E_{\mathrm{FN},T_0}(\tau_0) &= \sup_{u < 0} (u\tau_0 - \Lambda_1(u)) \leq \sup_{u \in \mathcal{R}} (u\tau_0 - \Lambda_1(u)) \\ &\stackrel{(a)}{=} \sup_{u \in \mathcal{R}} (u\tau_0 - \Lambda_1(u)) \text{ [where } \frac{d\Lambda_1(u)}{du}|_{u=u_a} = \tau_0] \\ &\stackrel{(b)}{=} u_a \tau_0 - \Lambda_1(u_a) \\ &\stackrel{(c)}{\leq} -\Lambda_1(u_a) \text{ [since } u_a \tau_0 < 0] \\ &\leq -\min_u \Lambda_1(u) \\ &\stackrel{(d)}{=} -\min_u \Lambda_1(u) = \mathrm{C}(P_0, P_1) \end{aligned}$$
(24)

Here, (a) holds because the derivative of $\Lambda_1(u)$ is continuous, monotonically increasing and takes all values from $-\infty$ to ∞ (see Property 4). Thus, for any τ_0 , there exists a single u_a such that $\frac{d\Lambda_1(u)}{du}|_{u=u_a} = \tau_0$. Next, (b) holds from Lemma 7, (c) holds because $\frac{d\Lambda_1(u)}{du}|_{u=u_a} = \tau_0 < \frac{d\Lambda_1(u)}{du}|_{u=0}$, and the derivative is monotonically increasing, implying $u_a < 0$. Lastly (d) holds because $\Lambda_1(u)$ attains its minima in the range $u \in (-1, 0)$ (see Property 4).

Thus, for $\tau_0 > 0$, we get $E_{\text{FN},T_0}(\tau_0) < C(P_0, P_1) < E_{\text{FP},T_0}(\tau_0)$.

The proof is similar for the scenario where $\tau_0 < 0$, and leads to $E_{\text{FP},T_0}(\tau_0) < C(P_0, P_1) < E_{\text{FN},T_0}(\tau_0)$.

B.1. Proof of Lemma 3

Proof of Lemma 3. Suppose there exists two likelihood ratio detectors for the two groups such that, $E_{\text{FN},T_0}(\tau_0) = E_{\text{FN},T_1}(\tau_1)$. Since $C(P_0, P_1) < C(Q_0, Q_1)$, at most one of the two exponents $E_{\text{FN},T_0}(\tau_0)$ and $E_{\text{FN},T_1}(\tau_1)$ can be equal to their corresponding Chernoff information $C(P_0, P_1)$ or $C(Q_0, Q_1)$. Without loss of generality, we may assume that $E_{\text{FN},T_0}(\tau_0) \neq C(P_0, P_1)$. This implies that $\tau_0 \neq 0$ because in the proof of Lemma 2, we already showed that when $\tau_0 = 0$, we always have $E_{\text{FN},T_0}(0) = E_{\text{FP},T_0}(0) = C(P_0, P_1)$. Since $\tau_0 \neq 0$, using Lemma 8, we either have $E_{\text{FN},T_0}(\tau_0) < C(P_0, P_1) < E_{\text{FP},T_0}(\tau_0) < C(P_0, P_1)$. Thus,

$$E_{e,T_0}(\tau_0) = \min\{E_{\text{FP},T_0}(\tau_0), E_{\text{FN},T_0}(\tau_0)\} < C(P_0, P_1).$$
(25)

B.2. Proof of Theorem 1

Proof of Theorem 1. The first claim follows directly from Lemma 2 by choosing the likelihood ratio detectors for the two groups with thresholds $\tau_0 = \tau_1 = 0$, i.e., the Bayes optimal detector under equal priors.

Now, we prove the second claim. Suppose that we choose the Bayes optimal classifiers $T_0(x) \ge \tau_0$ and $T_1(x) \ge \tau_1$ for the two groups. Then, we have $E_{\text{FN},T_0}(\tau_0) = C(P_0, P_1)$ and $E_{\text{FN},T_1}(\tau_1) = C(Q_0, Q_1)$ which are not equal. Thus, $|E_{\text{FN},T_0}(\tau_0) - E_{\text{FN},T_1}(\tau_1)| \ne 0$.

Assume (for the sake of contradiction) that there is a likelihood ratio detector such that $E_{e,T_0}(\tau_0) > C(P_0, P_1)$.

Now, if $\tau_0 = 0$, then we have $E_{e,T_0}(\tau_0) = C(P_0, P_1)$ (from Lemma 2). Alternately, if $\tau_0 \neq 0$, then we either have $E_{FN,T_0}(\tau_0) < C(P_0, P_1) < E_{FP,T_0}(\tau_0)$ or $E_{FP,T_0}(\tau_0) < C(P_0, P_1) < E_{FN,T_0}(\tau_0)$ (from Lemma 8). Thus,

$$E_{e,T_0}(\tau_0) = \min\{E_{\text{FP},T_0}(\tau_0), E_{\text{FN},T_0}(\tau_0)\} < \mathcal{C}(P_0, P_1).$$
(26)

For both cases, we have a contradiction, implying that $E_{e,T_0}(\tau_0) \leq C(P_0, P_1) < C(Q_0, Q_1)$ for all likelihood ratio detectors.

B.3. Proofs of Lemma 4 and Lemma 5

Proof of Lemma 4. Let $\tau_0^* = 0$. Using Lemma 2, this ensures,

$$E_{\text{FN},T_0}(0) = E_{\text{FP},T_0}(0) = C(P_0, P_1).$$

Now, we will show that the only value of τ_1^* that will satisfy $E_{FN,T_1}(\tau_1^*) = E_{FN,T_0}(0)$ is a $\tau_1^* > 0$ such that $E_{FN,T_1}(\tau_1^*) = C(P_0, P_1)$. To prove that such a τ_1^* exists, consider the function:

$$g(u) = u \frac{d\Lambda_1(u)}{d(u)} - \Lambda_1(u),$$

where $\Lambda_1(u)$ is the log-generating transform for z = 1. The function g(u) is continuous. At u = 0, g(u) = 0 and at $u = u_1^*$ (where $u_1^* = \arg \min \Lambda_1(u)$ and lies in (-1, 0) from Property 4) we have $g(u) = C(Q_0, Q_1)$. Because g(u) is continuous, there exists a $u_a \in (u_1^*, 0)$ such that $g(u_a) = C(P_0, P_1)$ which lies between 0 and $C(Q_0, Q_1)$. If we set $\tau_1^* = \frac{d\Lambda_1(u)}{d(u)}|_{u=u_a}$, we have,

$$C(P_0, P_1) = g(u_a) \stackrel{\text{Lemma 7}}{=} \sup_{u \in \mathcal{R}} (u\tau_1^* - \Lambda_1(u)).$$

Now, in general, $\sup_{u<0}(u\tau_1^* - \Lambda_1(u)) \leq \sup_{u\in\mathcal{R}}(u\tau_1^* - \Lambda_1(u)) = g(u_a)$. But again, $\sup_{u<0}(u\tau_1^* - \Lambda_1(u)) \geq u_a\tau_1^* - \Lambda_1(u_a) = g(u_a)$ since $u_a \in (u_1^*, 0)$. Thus,

$$E_{\text{FN},T_0}(\tau_1^*) = \sup_{u < 0} (u\tau_1^* - \Lambda_1(u)) = g(u_a) = \mathcal{C}(P_0, P_1).$$

Also note that $\tau_1^* > 0$ because the derivative of $\Lambda_1(u)$ is monotonically increasing and $u_a > u_1^*$, leading to $\tau_1^* = \frac{d\Lambda_1(u)}{d(u)}|_{u=u_a} > \frac{d\Lambda_1(u)}{d(u)}|_{u=u_1^*} = 0.$

Now that we have a τ_1^* such that $E_{\text{FN},T_1}(\tau_1^*) = C(P_0, P_1)$ which is strictly less that $C(Q_0, Q_1)$, we must have $E_{\text{FP},T_1}(\tau_1^*) > C(Q_0, Q_1)$ (from Lemma 8).

This leads to,

$$\min\{E_{\text{FP},T_0}(0), E_{\text{FN},T_0}(0), E_{\text{FP},T_1}(\tau_1^*), E_{\text{FN},T_1}(\tau_1^*)\} = C(P_0, P_1)$$

For any other choice of $\tau_0^* \neq 0$, we either have $E_{\text{FP},T_0}(\tau_0^*) < C(P_0, P_1) < E_{\text{FN},T_0}(\tau_0^*)$, or $E_{\text{FN},T_0}(\tau_0^*) < C(P_0, P_1) < E_{\text{FP},T_0}(\tau_0^*)$, implying

$$\min\{E_{\mathrm{FP},T_0}(\tau_0^*), E_{\mathrm{FN},T_0}(\tau_0^*), E_{\mathrm{FP},T_1}(\tau_1^*), E_{\mathrm{FN},T_1}(\tau_1^*)\} < \mathcal{C}(P_0, P_1).$$

Proof of Lemma 5. We are given that,

$$E_{\text{FN},T_1}(\tau_1) = E_{\text{FP},T_1}(\tau_1) = C(Q_0,Q_1).$$

Now, we will show that the only value of τ_0^* that will satisfy $E_{FN,T_0}(\tau_0^*) = C(Q_0, Q_1)$ is a $\tau_0^* < 0$. To prove that such a τ_0^* exists, consider the function

$$g(u) = u \frac{d\Lambda_1(u)}{d(u)} - \Lambda_1(u),$$

where $\Lambda_1(u)$ is the log-generating transform for z = 0. The function g(u) is continuous. At $u = u_1^*$ (where $u_1^* = \arg \min \Lambda_1(u)$ and lies in (-1, 0) from Property 4), we have $g(u_1^*) = C(P_0, P_1)$ and as $u \to -\infty$, we have $g(u) \to \infty$. Because g(u) is continuous, there exists a $u_a \in (-\infty, u_1^*)$ such that $g(u_a) = C(Q_0, Q_1)$ which lies between $C(P_0, P_1)$ and ∞ . If we set $\tau_0^* = \frac{d\Lambda_1(u)}{d(u)}|_{u=u_a}$, we have,

$$C(Q_0, Q_1) = g(u_a) \stackrel{\text{Lemma 7}}{=} \sup_{u \in \mathcal{R}} (u\tau_0^* - \Lambda_1(u)).$$

Now, in general, $\sup_{u<0}(u\tau_0^* - \Lambda_1(u)) \leq \sup_{u\in\mathcal{R}}(u\tau_0^* - \Lambda_1(u)) = g(u_a)$. But again, $\sup_{u<0}(u\tau_0^* - \Lambda_1(u)) \geq u_a\tau_0^* - \Lambda_1(u_a) = g(u_a)$ since $u_a < u_1^* < 0$. Thus,

$$E_{\text{FN},T_0}(\tau_0^*) = \sup_{u < 0} (u\tau_0^* - \Lambda_1(u)) = g(u_a) = \mathcal{C}(Q_0, Q_1).$$

This τ_0^* is less than 0 because the derivative of $\Lambda_1(u)$ is monotonically increasing and $u_a < u_1^*$, leading to $\tau_0^* = \frac{\Lambda_1(u)}{d(u)}|_{u=u_a} < \frac{\Lambda_1(u)}{d(u)}|_{u=u_1^*} = 0.$

Now that we have a τ_0^* such that $E_{\text{FN},T_0}(\tau_0^*) = C(Q_0,Q_1)$ which is strictly greater that $C(P_0,P_1)$, we must have $E_{\text{FP},T_0}(\tau_0^*) < C(P_0,P_1)$ (from Lemma 8).

This leads to,

$$\min\{E_{\mathrm{FP},T_0}(\tau_0^*), E_{\mathrm{FN},T_0}(\tau_0^*)\} < \mathrm{C}(P_0, P_1).$$

C. Appendix to Section 3.2

Proof of Theorem 2. From Lemma 5, there exists a likelihood ratio detector of the form $T_0(x) = \log \frac{P_1(x)}{P_0(x)} \ge \tau_0^*$ such that

$$E_{\text{FN},T_0}(\tau_0^*) = \mathcal{C}(Q_0, Q_1).$$
 (27)

In the proof of Lemma 5, we showed that this $\tau_0^* < 0$.

Now, we will show that there exists $\widetilde{P}_0(x)$ and $\widetilde{P}_1(x)$ such that their optimal detector $\widetilde{T}_0(x) = \log \frac{\widetilde{P}_1(x)}{\widetilde{P}_0(x)} \ge 0$ is equivalent to the detector $T_0(x) \ge \tau_0^*$.

Let $\widetilde{P}_0(x) = \frac{P_0(x)^{(1-w)}P_1(x)^w}{\sum_x P_0(x)^{(1-w)}P_1(x)^w}$ and $\widetilde{P}_1(x) = \frac{P_0(x)^{(1-v)}P_1(x)^v}{\sum_x P_0(x)^{(1-v)}P_1(x)^v}$ for some $w, v \in \mathcal{R}$ with $w \neq v$. Observe that,

$$\widetilde{T_0}(x) = \log \frac{\widetilde{P}_1(x)}{\widetilde{P}_0(x)} = (v - w) \log \frac{P_1(x)}{P_0(x)} + \log \frac{\sum_x P_0(x)^{(1-w)} P_1(x)^w}{\sum_x P_0(x)^{(1-v)} P_1(x)^v} = (v - w) \log \frac{P_1(x)}{P_0(x)} + \Lambda_0(w) - \Lambda_0(v) = (v - w) \left(\log \frac{P_1(x)}{P_0(x)} - \frac{\Lambda_0(v) - \Lambda_0(w)}{v - w} \right).$$
(28)

Because $\Lambda_0(u)$ is strictly convex with its derivative taking all values from $-\infty$ to ∞ , one can always find a tangent to $\Lambda_0(u)$ that has a slope τ_0^* at (say) $u = u_a$. Thus, one can always find pairs of points (w, v) on either sides of $u = u_a$ such that $\tau_0^* = \frac{\Lambda_0(v) - \Lambda_0(w)}{v - w}$, which are essentially pairs of points (w, v) at which a straight line with slope τ_0^* cuts $\Lambda_0(u)$. In particular, we can fix v = 1 and always find a w < 0 such that

$$\tau_0^* = \frac{\Lambda_0(v) - \Lambda_0(w)}{v - w} = \frac{-\Lambda_0(w)}{1 - w},$$
(29)

because $\Lambda_0(u)$ is continuous taking values 0 at u = 0 and u = 1, and takes all values from $(0, \infty)$ in the range $(-\infty, 0)$. Thus, the first claim is proved.

Now, we calculate $C(\tilde{P}_0, \tilde{P}_1)$.

$$C(\widetilde{P}_{0},\widetilde{P}_{1}) = \max_{u \in (0,1)} -\log \sum_{x} \widetilde{P}_{0}(x)^{1-u} \widetilde{P}_{1}(x)^{u} \stackrel{(a)}{=} \max_{u \in \mathcal{R}} -\log \sum_{x} \widetilde{P}_{0}(x)^{1-u} \widetilde{P}_{1}(x)^{u} \\ \stackrel{(b)}{=} \max_{u \in \mathcal{R}} -\log \sum_{x} P_{0}(x)^{(1-w)(1-u)} P_{1}(x)^{w(1-u)+u} + (1-u)\Lambda_{0}(w)$$

$$\stackrel{(c)}{=} \max_{u \in \mathcal{R}} -\log \sum_{x} P_{0}(x)^{(1-w)(1-u)} P_{1}(x)^{w(1-u)+u} + (1-u)(w-1)\tau_{0}^{*}$$

$$\stackrel{(d)}{=} \max_{u \in \mathcal{R}} (1-u)(w-1)\tau_{0}^{*} - \Lambda_{1}((1-u)(w-1))$$

$$\stackrel{(e)}{=} \sup_{u' \in \mathcal{R}} (u'\tau_{0}^{*} - \Lambda_{1}(u')) \quad [u' = (1-u)(w-1)]$$

$$\stackrel{(f)}{=} \sup_{u' < 0} (u'\tau_{0}^{*} - \Lambda_{1}(u')) \quad [u' = (1-u)(w-1)]$$

$$\stackrel{(g)}{=} C(Q_{0}, Q_{1}).$$

$$(30)$$

Here (a) holds because the log-generating function $-\log \sum_x \tilde{P}_0(x)^{1-u} \tilde{P}_1(x)^u$ of a likelihood ratio detector attains its global minima at (0,1) (see Property 4) and (b) holds by substituting $\tilde{P}_0(x) = \frac{P_0(x)^{(1-w)}P_1(x)^w}{\sum_x P_0(x)^{(1-w)}P_1(x)^v}$ and $\tilde{P}_1(x) = \frac{P_0(x)^{(1-v)}P_1(x)^v}{\sum_x P_0(x)^{(1-v)}P_1(x)^v}$ with v = 1. Next, (c) holds by using $\tau_0^* = \frac{\Lambda_0(v) - \Lambda_0(w)}{v - w} = \frac{-\Lambda_0(w)}{1 - w}$ (see (29)), (d) holds from the definition of $\Lambda_1((1-u)(w-1))$, (e) holds by a change of variable u' = (1-u)(w-1), (f) holds because $\tau_0^* < 0 \le D(\tilde{P}_1||\tilde{P}_0) = \mathbb{E}[\tilde{T}_0(X)|\tilde{H}_1]$ and the detector is well-behaved (see Property 5), and lastly (g) holds because $E_{\text{FN},T_0}(\tau_0^*) = C(Q_0, Q_1)$ (see (27)).

D. Appendix to Section 3.3

D.1. Proof of Theorem 3

Proof of Theorem 3. We remind the readers that,

$$\frac{W_0(x,x')}{P_0(x)} = \Pr\left(X' = x' | X = x, Z = 0, Y = 0\right), \text{ and } \frac{W_1(x,x')}{P_1(x)} = \Pr\left(X' = x' | X = x, Z = 0, Y = 1\right).$$
(31)

First, we would like to prove: $I(X'; Y|X, Z = 0) > 0 \implies C(W_0, W_1) > C(P_0, P_1).$

Suppose that X' is not independent of Y given X and Z = 0, i.e., I(X'; Y|X, Z = 0) > 0. This implies that there exists at least one $X = x_a$ such that the distributions of $X'|_{X=x_a,Z=0,Y=0}$ and $X'|_{X=x_a,Z=0,Y=1}$ are different. Therefore, there exists at least one pair $(x', x) = (x'_a, x_a)$ for which the following AM-GM inequality (Lemma 6) holds with strict inequality for all $u \in (0, 1)$, i.e,

$$\left(\frac{W_0(x_a, x_a')}{P_0(x_a)}\right)^{1-u} \left(\frac{W_1(x_a, x_a')}{P_1(x_a)}\right)^u < (1-u)\frac{W_0(x_a, x_a')}{P_0(x_a)} + u\frac{W_1(x_a, x_a')}{P_1(x_a)}.$$
(32)

For all other $(x', x) \neq (x'_a, x_a)$, we have (from the AM-GM inequality in Lemma 6):

$$\left(\frac{W_0(x,x')}{P_0(x)}\right)^{1-u} \left(\frac{W_1(x,x')}{P_1(x)}\right)^u \le (1-u)\frac{W_0(x,x')}{P_0(x)} + u\frac{W_1(x,x')}{P_1(x)}.$$
(33)

Using (32) and (33),

$$\sum_{x'} \left(\frac{W_0(x_a, x')}{P_0(x_a)}\right)^{1-u} \left(\frac{W_1(x_a, x')}{P_1(x_a)}\right)^u < \sum_{x'} \left((1-u)\frac{W_0(x_a, x')}{P_0(x_a)} + u\frac{W_1(x_a, x')}{P_1(x_a)}\right) = 1.$$
(34)

This leads to,

$$\sum_{x'} W_0(x_a, x')^{1-u} W_1(x_a, x')^u < P_0(x_a)^{1-u} P_1(x_a)^u.$$
(35)

For all other $x \neq x_a$, we have (using (33) alone),

$$\sum_{x'} \left(\frac{W_0(x,x')}{P_0(x)}\right)^{1-u} \left(\frac{W_1(x,x')}{P_1(x)}\right)^u \le \sum_{x'} \left((1-u)\frac{W_0(x,x')}{P_0(x)} + u\frac{W_1(x,x')}{P_1(x)}\right) = 1,$$
(36)

leading to

$$\sum_{x'} W_0(x, x')^{1-u} W_1(x, x')^u \le P_0(x)^{1-u} P_1(x)^u.$$
(37)

Lastly, using (35) and (37),

$$\sum_{x} \sum_{x'} W_0(x, x')^{1-u} W_1(x, x')^u < \sum_{x} P_0(x)^{1-u} P_1(x)^u,$$
(38)

leading to the claim:

$$C(W_0, W_1) = -\min_{u \in (0,1)} \log \sum_x \sum_{x'} W_0(x, x')^{1-u} W_1(x, x')^u > -\min_{u \in (0,1)} \log \sum_x P_0(x)^{1-u} P_1(x)^u = C(P_0, P_1).$$
(39)

We would now like to prove:

 $C(W_0, W_1) > C(P_0, P_1) \implies I(X'; Y | X, Z = 0) > 0, \text{ or, } I(X'; Y | X, Z = 0) = 0 \implies C(W_0, W_1) \not > C(P_0, P_1).$

First note that, from the previous proof, $C(W_0, W_1) \ge C(P_0, P_1)$ always holds using the AM-GM inequality. Thus, $C(W_0, W_1) \ge C(P_0, P_1)$ is same as $C(W_0, W_1) = C(P_0, P_1)$.

Suppose that X' is independent of Y given X and Z = 0, i.e., I(X'; Y|X, Z = 0) = 0. This implies that,

$$\Pr(X' = x' | X, Z = 0, Y = 0) = \Pr(X' = x' | X, Z = 0, Y = 1) \ \forall x'$$

$$\Rightarrow \frac{W_0(x, x')}{P_0(x)} = \frac{W_1(x, x')}{P_1(x)} \ \forall x', x$$

$$\Rightarrow \sum_{x'} \left(\frac{W_0(x, x')}{P_0(x)}\right)^{1-u} \left(\frac{W_1(x, x')}{P_1(x)}\right)^u = 1 \ \forall x$$

$$\Rightarrow \sum_{x} \sum_{x'} W_0(x, x')^{1-u} W_1(x, x')^u = \sum_{x} P_0(x)^{1-u} P_1(x)^u.$$
(40)

This leads to

$$C(W_0, W_1) = -\min_{u \in (0,1)} \log \sum_x \sum_{x'} W_0(x, x')^{1-u} W_1(x, x')^u = -\min_{u \in (0,1)} \log \sum_x P_0(x)^{1-u} P_1(x)^u = C(P_0, P_1).$$
(41)

E.1. Unequal Priors on Y but Equal Priors on Z

When the prior probabilities are unequal, we can write $P_{e,T_z}(\tau_z)$ as:

$$P_{e,T_z}(\tau_z) = \frac{1}{2} (2\pi_0 P_{\text{FP},T_z}(\tau_z)) + \frac{1}{2} (2\pi_1 P_{\text{FN},T_z}(\tau_z)),$$

and define the Chernoff exponent of $P_{e,T_z}(\tau_z)$, i.e., $E_{e,T_z}(\tau_z)$ more generally as follows:

$$\min\{E_{\text{FP},T_z}(\tau_z) - \log 2\pi_0, E_{\text{FN},T_z}(\tau_z) - \log 2\pi_1\}.$$

Lemma 9. Let the absolute continuity and distinct hypotheses assumptions of Section 2 hold, and $T_z(x)$ be the likelihood ratio detector for the group Z = z. Then, the value of τ_z that maximizes $E_{e,T_z}(\tau_z)$, i.e.,

$$\max_{\tau_z} \min\{E_{\text{FP},T_z}(\tau_z) - \log 2\pi_0, E_{\text{FN},T_z}(\tau_z) - \log 2\pi_1\},\$$

is given by $\tau_z^* = \log \frac{\pi_0}{\pi_1}$, which is the same as the value of τ_z that minimizes $P_{e,T_z}(\tau_z)$, i.e.,

$$\min_{\tau_z} \pi_0 P_{\mathrm{FP},T_z}(\tau_z) + \pi_1 P_{\mathrm{FN},T_z}(\tau_z).$$

This likelihood ratio detector $T_z(x) \ge \log \frac{\pi_0}{\pi_1}$ is the Bayes optimal detector for the group.

Before we proceed to the proof, we discuss another result. Observe that,

$$u\tau_0 - \Lambda_0(u) - \log 2\pi_0 = u(\tau_0 - \log \frac{\pi_0}{\pi_1}) + u\log \frac{\pi_0}{\pi_1} - \Lambda_0(u) - \log 2\pi_0 = u\tau' - \tilde{\Lambda}_0(u) - \log 2,$$
(42)

where $\tau' = \tau_0 - \log \frac{\pi_0}{\pi_1}$, and $\widetilde{\Lambda}_0(u) = \Lambda_0(u) - u \log \frac{\pi_0}{\pi_1} + \log \pi_0$. Similarly,

$$u\tau_0 - \Lambda_1(u) - \log 2\pi_1 = u(\tau_0 - \log \frac{\pi_0}{\pi_1}) + u\log \frac{\pi_0}{\pi_1} - \Lambda_1(u) - \log 2\pi_1 = u\tau' - \tilde{\Lambda}_1(u) - \log 2,$$
(43)

where $\tau' = \tau_0 - \log \frac{\pi_0}{\pi_1}$, and $\widetilde{\Lambda}_1(u) = \Lambda_1(u) - u \log \frac{\pi_0}{\pi_1} + \log \pi_1$.

We first derive some properties of $\widetilde{\Lambda}_0(u)$ and $\widetilde{\Lambda}_1(u)$.

Lemma 10. Let $P_0(x)$ and $P_1(x)$ be strictly greater than 0 everywhere and $D(P_0||P_1)$ and $D(P_1||P_0)$ be strictly greater than 0 and π_0 and π_1 lie in (0,1). Then, the following properties hold:

- $\widetilde{\Lambda}_0(u)$ and $\widetilde{\Lambda}_1(u)$ are continuous, differentiable and strictly convex.
- The derivatives of $\widetilde{\Lambda}_0(u)$ and $\widetilde{\Lambda}_1(u)$ are continuous, monotonically increasing, and take all values from $-\infty$ to ∞ .
- $\widetilde{\Lambda}_1(u) = \widetilde{\Lambda}_0(u+1).$

Proof of Lemma 10. Note that, $\tilde{\Lambda}_0(u)$ is the sum of $\Lambda_0(u)$ and an affine function $-u \log \frac{\pi_0}{\pi_1} + \log \pi_0$. Because $\Lambda_0(u)$ is continuous, differentiable and strictly convex (from Property 4), $\tilde{\Lambda}_0(u)$ also satisfies those properties. The second claim also holds for the same reason because the derivative of $\Lambda_0(u)$ satisfies all these properties (from Property 4).

Lastly,

$$\widetilde{\Lambda}_{0}(u+1) = \Lambda_{0}(u+1) - (u+1)\log\frac{\pi_{0}}{\pi_{1}} + \log\pi_{0} = \Lambda_{0}(u+1) - u\log\frac{\pi_{0}}{\pi_{1}} + \log\pi_{1}$$

$$\stackrel{(a)}{=} \Lambda_{1}(u) - u\log\frac{\pi_{0}}{\pi_{1}} + \log\pi_{1} = \widetilde{\Lambda}_{1}(u), \quad (44)$$

where (a) holds because $\Lambda_1(u) = \Lambda_0(u+1)$ from Property 4.

Proof of Lemma 9. We specifically consider the case where $\pi_0 \neq \pi_1$ in this proof because the case of equal priors $\pi_0 = \pi_1$ can be proved using Lemma 2 and Lemma 8.

Without loss of generality, we assume $\pi_0 > \pi_1$. Thus, $\log \frac{\pi_0}{\pi_1} > 0$.

Case 1: $\frac{d\tilde{\Lambda}_1(u)}{du}|_{u=0} = D(P_1||P_0) - \log \frac{\pi_0}{\pi_1} > 0.$

Observe that, $\frac{d\tilde{\Lambda}_1(u)}{du}|_{u=-1} = -D(P_0||P_1) - \log \frac{\pi_0}{\pi_1} < 0$ and $\frac{d\tilde{\Lambda}_1(u)}{du}|_{u=0} = D(P_1||P_0) - \log \frac{\pi_0}{\pi_1} > 0$. Thus, the strictly convex function $\tilde{\Lambda}_1(u)$ attains its minima in (-1,0) (using Lemma 10). Next, using $\tilde{\Lambda}_0(u+1) = \tilde{\Lambda}_1(u)$ (also from Lemma 10), we have $\tilde{\Lambda}_0(u)$ attaining its minima in (0,1).

For $\tau' = 0$ (equivalently $\tau_0 = \log \frac{\pi_0}{\pi_1}$), we have

$$E_{\text{FP},T_0}(\log \frac{\pi_0}{\pi_1}) - \log 2\pi_0 \stackrel{(a)}{=} \sup_{u>0} (u \cdot 0 - \tilde{\Lambda}_0(u) - \log 2) \stackrel{(b)}{=} - \min_u \tilde{\Lambda}_0(u) - \log 2$$
$$\stackrel{(c)}{=} - \min_u \tilde{\Lambda}_1(u) - \log 2$$
$$\stackrel{(d)}{=} \sup_{u<0} (u \cdot 0 - \tilde{\Lambda}_1(u) - \log 2)$$
$$\stackrel{(e)}{=} E_{\text{FN},T_0}(\log \frac{\pi_0}{\pi_1}) - \log 2\pi_1.$$
(45)

Here, (a) holds from (42), (b) holds because $\widetilde{\Lambda}_0(u)$ attains its minima in (0, 1), (c) holds from $\widetilde{\Lambda}_0(u+1) = \widetilde{\Lambda}_1(u)$ (see Lemma 10), (d) holds because $\widetilde{\Lambda}_1(u)$ attains its minima in (-1, 0), and (e) holds from (43).

Next, we will show that, for any other value of $\tau' \neq 0$ ($\tau_0 \neq \log \frac{\pi_0}{\pi_1}$), we either have

$$E_{\text{FP},T_{0}}(\tau_{0}) - \log 2\pi_{0} < E_{\text{FP},T_{0}}(\log \frac{\pi_{0}}{\pi_{1}}) - \log 2\pi_{0} < E_{\text{FN},T_{0}}(\tau_{0}) - \log 2\pi_{1}, \text{ or}$$

$$E_{\text{FN},T_{0}}(\tau_{0}) - \log 2\pi_{1} < E_{\text{FP},T_{0}}(\log \frac{\pi_{0}}{\pi_{1}}) - \log 2\pi_{0} < E_{\text{FP},T_{0}}(\tau_{0}) - \log 2\pi_{0}.$$
(46)

Let $\tau' > 0$. Then,

$$E_{\text{FP},T_{0}}(\tau_{0}) - \log 2\pi_{0} \stackrel{(a)}{=} \sup_{u>0} (u\tau' - \tilde{\Lambda}_{0}(u) - \log 2) \stackrel{(b)}{\geq} (u_{0}^{*}\tau' - \tilde{\Lambda}_{0}(u_{0}^{*}) - \log 2) \stackrel{(c)}{>} -\tilde{\Lambda}_{0}(u_{0}^{*}) - \log 2$$
$$\stackrel{(d)}{=} E_{\text{FP},T_{0}}(\log \frac{\pi_{0}}{\pi_{1}}) - \log 2\pi_{0}. \quad (47)$$

Here (a) holds from (42), (b) holds for any $u_0^* > 0$, (c) holds because $u_0\tau' > 0$, and (d) holds if we set $u_0^* = \arg \min \widetilde{\Lambda}_0(u)$ since $\widetilde{\Lambda}_0(u)$ attains its minima in (0, 1).

Sub-case 1a: $\tau' \geq \frac{d\tilde{\Lambda}_1(u)}{du}|_{u=0} = D(P_1||P_0) - \log \frac{\pi_0}{\pi_1}$

$$E_{\mathrm{FN},T_{0}}(\tau_{0}) - \log 2\pi_{1} = \sup_{u<0} (u\tau' - \widetilde{\Lambda}_{1}(u) - \log 2) \overset{(a)}{\leq} \sup_{u<0} (u\frac{d\Lambda_{1}(u)}{du}|_{u=0} - \widetilde{\Lambda}_{1}(u) - \log 2)$$

$$\leq \sup_{u\in\mathcal{R}} (u\frac{d\widetilde{\Lambda}_{1}(u)}{du}|_{u=0} - \widetilde{\Lambda}_{1}(u) - \log 2)$$

$$\overset{(b)}{=} (0\frac{d\widetilde{\Lambda}_{1}(u)}{du}|_{u=0} - \widetilde{\Lambda}_{1}(0) - \log 2)$$

$$= (-\widetilde{\Lambda}_{1}(0) - \log 2)$$

$$\overset{(c)}{\leq} - \min_{u} \widetilde{\Lambda}_{1}(u) - \log 2$$

$$\overset{(d)}{=} E_{\mathrm{FP},T_{0}}(\log \frac{\pi_{0}}{\pi_{1}}) - \log 2\pi_{0}, \qquad (48)$$

where (a) holds because $\tau' \geq \frac{d\tilde{\Lambda}_1(u)}{du}|_{u=0}$, (b) holds from Lemma 7, (c) holds from the strict convexity of $\tilde{\Lambda}_1(u)$ because it attains its minima in (-1, 0), and (d) holds from (45).

Sub-case 1b: $0 < \tau' < \frac{d\tilde{\Lambda}_1(u)}{du}|_{u=0}$

$$E_{\mathrm{FN},T_{0}}(\tau_{0}) - \log 2\pi_{0} = \sup_{u<0} (u\tau' - \widetilde{\Lambda}_{1}(u) - \log 2) \leq \sup_{u\in\mathcal{R}} (u\tau' - \widetilde{\Lambda}_{1}(u) - \log 2)$$

$$\stackrel{(a)}{=} u_{a}\tau' - \widetilde{\Lambda}_{1}(u_{a}) - \log 2$$

$$\stackrel{(b)}{<} - \widetilde{\Lambda}_{1}(u_{a}) - \log 2 \quad [\text{since } u_{a}\tau' < 0]$$

$$\leq -\min_{u} \Lambda_{1}(u) - \log 2$$

$$\stackrel{(c)}{=} E_{\mathrm{FP},T_{0}}(\log\frac{\pi_{0}}{\pi_{1}}) - \log 2\pi_{0} \quad (49)$$

Here, (a) holds from Lemma 7 because $\tilde{\Lambda}_1(u)$ is a strictly convex and differentiable function, and its derivative is also continuous, monotonically increasing and takes all values from $-\infty$ to ∞ (see Lemma 10). Thus, there exists a single u_a such that $\frac{d\tilde{\Lambda}_1(u)}{du}|_{u=u_a} = \tau'$. Next, (b) holds because $\frac{d\tilde{\Lambda}_1(u)}{du}|_{u=u_a} = \tau' < \frac{d\tilde{\Lambda}_1(u)}{du}|_{u=0}$, and the derivative is monotonically increasing, implying $u_a < 0$. Lastly (c) holds from (45).

Thus,

$$E_{\text{FN},T_0}(\tau_0) - \log 2\pi_1 < E_{\text{FP},T_0}(\log \frac{\pi_0}{\pi_1}) - \log 2\pi_0 < E_{\text{FP},T_0}(\tau_0) - \log 2\pi_0.$$
(50)

For $\tau' < 0$, a similar proof holds, leading to

$$E_{\text{FP},T_0}(\tau_0) - \log 2\pi_0 < E_{\text{FP},T_0}(\log \frac{\pi_0}{\pi_1}) - \log 2\pi_0 < E_{\text{FN},T_0}(\tau_0) - \log 2\pi_1,$$
(51)

Then, the value of τ_0 that maximizes the Chernoff exponent $E_{e,T_0}(\tau_0)$, i.e.,

$$\max_{\tau_0} \min\{E_{\text{FP},T_0}(\tau_0) - \log 2\pi_0, E_{\text{FN},T_0}(\tau_0) - \log 2\pi_1\},\$$

is given by $\tau_0^* = \log \frac{\pi_0}{\pi_1} \ (\tau' = 0).$

This matches with the detector that minimizes the Bayesian probability of error under unequal priors (see Theorem 3.1 in (Gallager, 2012)).

Case 2:
$$\frac{d\Lambda_1(u)}{du}|_{u=0} = D(P_1||P_0) - \log \frac{\pi_0}{\pi_1} \le 0.$$

For this case, note that, both $\widetilde{\Lambda}_1(u)$ and $\widetilde{\Lambda}_0(u)$ attain their minima in $u \in [0, \infty)$.

For $\tau' = 0$ (equivalently $\tau_0 = \log \frac{\pi_0}{\pi_1}$), we have

$$E_{\text{FN},T_0}(\log\frac{\pi_0}{\pi_1}) - \log 2\pi_1 = \sup_{u<0} (u \cdot 0 - \widetilde{\Lambda}_1(u) - \log 2) = -\widetilde{\Lambda}_1(0) - \log 2.$$
(52)

And,

$$E_{\text{FP},T_0}(\log \frac{\pi_0}{\pi_1}) - \log 2\pi_0 = \sup_{u>0} (u \cdot 0 - \widetilde{\Lambda}_0(u) - \log 2) = -\min_u \widetilde{\Lambda}_0(u) - \log 2$$
$$= -\min_u \widetilde{\Lambda}_1(u) - \log 2$$
$$\ge -\widetilde{\Lambda}_1(0) - \log 2. \tag{53}$$

Thus,

$$\min\{E_{\mathrm{FP},T_0}(\log\frac{\pi_0}{\pi_1}) - \log 2\pi_0, E_{\mathrm{FN},T_0}(\log\frac{\pi_0}{\pi_1}) - \log 2\pi_1\} = -\widetilde{\Lambda}_1(0) - \log 2.$$
(54)

Now, we will show that any other value of $\tau' \neq 0$ (equivalently $\tau_0 \neq \log \frac{\pi_0}{\pi_1}$) cannot increase the Chernoff exponent of the probability of error beyond $-\tilde{\Lambda}_1(0) - \log 2$.

Sub-case 2a: $\tau' \geq \frac{d\tilde{\Lambda}_1(u)}{du}|_{u=0} = D(P_1||P_0) - \log \frac{\pi_0}{\pi_1}$

$$E_{\mathrm{FN},T_{0}}(\tau_{0}) - \log 2\pi_{1} = \sup_{u<0} (u\tau' - \widetilde{\Lambda}_{1}(u) - \log 2) \overset{(a)}{\leq} \sup_{u<0} (u\frac{d\widetilde{\Lambda}_{1}(u)}{du}|_{u=0} - \widetilde{\Lambda}_{1}(u) - \log 2)$$
$$\leq \sup_{u\in\mathcal{R}} (u\frac{d\widetilde{\Lambda}_{1}(u)}{du}|_{u=0} - \widetilde{\Lambda}_{1}(u) - \log 2)$$
$$\overset{(b)}{=} (0\frac{d\widetilde{\Lambda}_{1}(u)}{du}|_{u=0} - \widetilde{\Lambda}_{1}(0) - \log 2)$$
$$= (-\widetilde{\Lambda}_{1}(0) - \log 2), \tag{55}$$

where (a) holds because $\tau' \ge \frac{d\tilde{\Lambda}_1(u)}{du}|_{u=0}$ and (b) holds from Lemma 7. Thus,

$$\min\{E_{\text{FP},T_0}(\tau_0) - \log 2\pi_0, E_{\text{FN},T_0}(\tau_0) - \log 2\pi_1\} \le -\tilde{\Lambda}_1(0) - \log 2.$$
(56)

Sub-case 2b: $\tau' < \frac{d\tilde{\Lambda}_1(u)}{du}|_{u=0} = D(P_1||P_0) - \log \frac{\pi_0}{\pi_1}$

$$E_{\text{FP},T_{0}}(\tau_{0}) - \log 2\pi_{0} = \sup_{u>0} (u\tau' - \tilde{\Lambda}_{0}(u) - \log 2) \stackrel{(a)}{\leq} \sup_{u>0} (u\frac{d\tilde{\Lambda}_{1}(u)}{du}|_{u=0} - \tilde{\Lambda}_{0}(u) - \log 2)$$

$$\stackrel{(b)}{\leq} \sup_{u>0} (u\frac{d\tilde{\Lambda}_{0}(u)}{du}|_{u=1} - \tilde{\Lambda}_{0}(u) - \log 2)$$

$$\stackrel{(c)}{\leq} \sup_{u\in\mathcal{R}} (u\frac{d\tilde{\Lambda}_{0}(u)}{du}|_{u=1} - \tilde{\Lambda}_{0}(u) - \log 2)$$

$$\stackrel{(d)}{=} \frac{d\tilde{\Lambda}_{0}(u)}{du}|_{u=1} - \tilde{\Lambda}_{0}(1) - \log 2$$

$$\stackrel{(e)}{\leq} -\tilde{\Lambda}_{0}(1) - \log 2$$

$$\stackrel{(f)}{=} -\tilde{\Lambda}_{1}(0) - \log 2. \tag{57}$$

(...)

Here (a) holds because $\tau' < \frac{d\tilde{\Lambda}_1(u)}{du}|_{u=0}$, (b) holds from Lemma 10 since $\tilde{\Lambda}_1(u) = \tilde{\Lambda}_0(u+1)$, (c) holds because the supremum is taken over a larger superset, (d) holds from Lemma 7, (e) holds because $\frac{d\tilde{\Lambda}_0(u)}{du}|_{u=1} = \frac{d\tilde{\Lambda}_1(u)}{du}|_{u=0} = D(P_1||P_0) - \log \frac{\pi_0}{\pi_1} \le 0$, and (f) holds again from from Lemma 10 since $\tilde{\Lambda}_1(u) = \tilde{\Lambda}_0(u+1)$. Thus,

$$\max_{\tau_0} \min\{E_{\text{FP},T_0}(\tau_0) - \log 2\pi_0, E_{\text{FN},T_0}(\tau_0) - \log 2\pi_1\} = -\tilde{\Lambda}_1(0) - \log 2,$$
(58)

which is attained at $\tau_0 = \log \frac{\pi_0}{\pi_1}$.

E.2. Unequal priors on both Z and Y

Here we discuss a modification of optimization (2) proposed in Section 3.1 to account for the case of unequal priors on both Z and Y.

Let $\Pr(Z = 0) = \lambda_0$ and $\Pr(Z = 1) = \lambda_1$. Also let, $\Pr(Y = 0 | Z = 0) = \pi_{00}$, $\Pr(Y = 1 | Z = 0) = \pi_{10}$, $\Pr(Y=0|Z=1) = \pi_{01}$ and $\Pr(Y=1|Z=1) = \pi_{11}$.

Then, the overall probability of error considering both groups together is given by:

$$\lambda_{0} P_{e}^{T_{0}}(\tau_{0}) + \lambda_{1} P_{e}^{T_{1}}(\tau_{1}) = \frac{1}{2} (2\lambda_{0}) P_{e}^{T_{0}}(\tau_{0}) + \frac{1}{2} (2\lambda_{1}) P_{e}^{T_{1}}(\tau_{1}) = \frac{1}{4} (4\lambda_{0}\pi_{00}) P_{\text{FP},T_{0}}(\tau_{0}) + \frac{1}{4} (4\lambda_{0}\pi_{10}) P_{\text{FN},T_{0}}(\tau_{0}) + \frac{1}{4} (4\lambda_{1}\pi_{01}) P_{\text{FP},T_{1}}(\tau_{1}) + \frac{1}{4} (4\lambda_{1}\pi_{11}) P_{\text{FN},T_{1}}(\tau_{1}).$$
(59)

Then, the error exponent of the overall probability of error considering both groups is defined as:

$$\min\{E_{\text{FP},T_0}(\tau_0) - 4\pi_{00}\lambda_0, E_{\text{FN},T_0}(\tau_0) - 4\pi_{10}\lambda_0, E_{\text{FP},T_1}(\tau_1) - 4\pi_{01}\lambda_1, E_{\text{FN},T_1}(\tau_1) - 4\pi_{11}\lambda_1\}.$$
(60)

These log-generating functions can be plotted, and the intercepts made by their tangents can be examined again to obtain the error exponents, leading to the optimal detector.