Estimating Q(s,s’) with Deep Deterministic Dynamics Gradients

Appendices

A. QSS Experiments

We ran all experiments in an 11x11 gridworld. The state
was the agent’s (z, y) location on the grid. The agent was
initialized to (0,0) and received a reward of —1 until it
reached the goal at (10, 10) and obtained a reward of 1 and
was reset to the initial position. The episode automatically
reset after 500 steps.

We used the same hyperparameters for QSA and QSS. We
initialized the Q-values to .001. The learning rate o was set
to .01 and the discount factor was set to .99. The agent fol-
lowed an e-greedy policy. Epsilon was set to 1 and decayed
to .1 by subtracting 9e-6 every time step.

A.1. Additional stochastic experiments

— QSA — Q@SS — QSA — Q@SS — QSA — Qss

rage Episodic Reward

Average Episodic Reward

Episode Episode Episode

(a) 25% (b) 50% (c) 75%

Figure 9. Stochastic experiments in an 11x11 gridworld. The first
three experiments demonstrate the effect of stochastic actions on
the average return. Before each episode, we evaluated the learned
policy and averaged the return over 10 trials. All experiments were
averaged over 10 seeds with 95% confidence intervals.

— QSA — Q@ss

Average Success

&1 G

CIiff

2000 30000
Episode

Figure 10. Stochastic experiments in cliffworld. This experiment
measures the effect of stochastic actions on the average success
rate. Before each episode, we evaluated the learned policy and
averaged the return over 10 trials. All experiments were averaged
over 10 seeds with 95% confidence intervals.

We were interested in measuring the impact of stochastic
transitions on learning using QSS. To investigate this prop-
erty, we add a probability of slipping to each transition,
where the agent takes a random action (i.e. slips into an
unintended next state) some percentage of time. Curiously,
QSS solves this task quicker than QSA, even though it learns
incorrect values (Figure 9). One hypothesis is that the slip-
page causes the agent to stumble into the goal state, which

is beneficial for QSS because it directly updates values
based on state transitions. The correct action that enables
this transition is known using the given inverse dynamics
model. QSA, on the other hand, would need to learn how the
stochasticity of the environment affects the selected action’s
outcome and so the values may propagate more slowly.

We additionally study the case when stochasticity may lead
to negative effects for QSS. We modify the gridworld to
include a cliff along the bottom edge similar to the example
in Sutton & Barto (1998). The agent is initialized on top
of the cliff, and if it attempts to step down, it falls off and
the episode is reset. Furthermore, the cliff is “windy”, and
the agent has a 0.5 probability of falling off the edge while
walking next to it. The reward here is 0 everywhere except
the goal, which has a reward of 1. Here, we see the effect of
stochasticity is detrimental to QSS (Figure 10), as it does not
account for falling and instead expects to transition towards
the goal.

A.2. Additional transfer experiment

—— QSA transfer

100 —— QSS transfer

-200

-300

Average Episodic Reward

-400

~500

0 2000 4000 6000 8000 10000
Episode

Figure 11. Transfer experiments within 11x11 gridworld. The ex-
periment represents how well QSS and QSA transfer to a gridworld
with permuted actions. We now include an additional action that
transports the agent back to the start. All experiments shown were
averaged over 50 random seeds with 95% confidence intervals

We trained QSA and QSS in a gridworld with an addi-
tional transport action that moved the agent back to the
start. We then transferred the learned values to an envi-
ronment where the action labels were shuffled. Incorrectly
taking the transport action would have a larger impact on the
average return than the other actions. QSS is able to learn
much more quickly than QSA, as it only needs to relearn
the inverse dynamics and avoids the negative impacts of the
incorrectly labeled transport action.

B. D3G Experiments

We used the TD3 implementation from https://
github.com/sfujim/TD3 for our experiments. We
also used the “OurDDPG” implementation of DDPG. We
built our own implementation of D3G from this codebase.
We used the default hyperparameters for all of our experi-

Estimating Q(s,s’) with Deep Deterministic Dynamics Gradients

) D3G TD3 DDPG BCO
Critic Ir 3e-4 3e-4 3e-4 -
Actor Ir - 3e-4 3e-4 -
BCIr - - - 3e-4
7(s) Ir 3e-4 - - -
f(s,)Ir 3e-4 - - -
I(s,s")Ir 3e4 - - 3e-4
B 1.0 - - -

n 0.005 0.005 0.005 -
Optimizer Adam Adam Adam Adam
Batch Size 256 256 256 256
vy 0.99 0.99 0.99 -
Delay (d) 2 2 - -

Table 2. Hyperparameters © for D3G experiments.

ments, as described in Table 2. The replay buffer was filled
for 10000 steps before learning. All continuous experiments
added noise € ~ N(0,0.1) for exploration. In gridworld,
the agent followed an e-greedy policy. Epsilon was set to 1
and decayed to .1 by subtracting 9e-6 every time step.

B.1. Gridworld task

We ran these experiments in an 11x11 gridworld. The state
was the agent’s (z, y) location on the grid. The agent was
initialized to (0,0) and received a reward of —1 until it
reached the goal at (10, 10) and obtained a reward of 0 and
was reset to the initial position. The episode automatically
reset after 500 steps.

B.2. MuJoCo tasks

We ran these experiments in the OpenAl Gym MuJoCo en-
vironment https://github.com/openai/gym. We
used gym==0.14.0 and mujoco-py==2.0.2. The agent’s state
was a vector from the MuJoCo simulator.

B.3. Learning from Observation Experiments

We used TD3 to train an expert and used the learned policy
to obtain demonstrations D for learning from observation.
We collected 1e6 samples using the learned policy and took
a random action either 0, 25, 50, 75, or 100 percent of the
time, depending on the experiment. The samples consisted
of the state, reward, next state, and done condition.

We trained BCO with D for 100 iterations. During each
iteration, we collected 1000 samples from the environment
using a Behavioral Cloning (BC) policy with added noise
e ~ N(0,0.1), then trained an inverse dynamics model for
10000 steps, labeled the observational data using this model,
then finally trained the BC policy with this labeled data for
10000 steps.

We trained D3G with D for 1e6 time steps without any en-

vironment interactions. This allowed us to learn the model
7(s) which informed the agent of what state it should reach.
Similarly to BCO, we used some environment interactions
to train an inverse dynamics model for D3G. We ran this
training loop for 100 iterations as well. During each itera-
tion, we collected 1000 samples from the environment using
the inverse dynamics policy I(s, m(s)) with added noise
e ~ N(0,0.1), then trained this model for 10000 steps.

C. Architectures

D3G Model 7(s):

s — fease = relu — fease — relu = feien(s)
D3G Forward Dynamics Model:

(s,a) = fease — relu — fease — relu — feien(s)
D3G Forward Dynamics Model (Imitation):

(5,q) = fease — relu — fease — relu — feien(s)
D3G Inverse Dynamics Model (Continuous):

(s,8") = fease — relu — feose — relu — feiena) —
tanh- max action

D3G Inverse Dynamics Model (Discrete):

(s5,8") = fcase = relu — feose — relu — feiena) —
softmax

D3G Critic: (s, s’) — fease — relu — fease — relu —
fa
TD3 Actor:

s — fease — relu — fease — relu = feen) —
tanh- max action

TD3 Critic:
(s,a) = fease — relu — feose — relu — fe
DDPG Actor:

s — fewo — relu — fezoo — relu = feren) —
tanh- max action

DDPG Ceritic:
(s,a) = feqoo — relu — fezoo — relu — fo
BCO Behavioral Cloning Model:

s = fease — relu — fease — relu — feena) —
tanh- max action

BCO Inverse Dynamics Model:

(s,8") = fcase — relu — feose — relu — feiena) —
tanh- max action

