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Abstract
In this paper, we introduce a novel form of value
function, Q(s, s′), that expresses the utility of
transitioning from a state s to a neighboring state
s′ and then acting optimally thereafter. In order
to derive an optimal policy, we develop a forward
dynamics model that learns to make next-state
predictions that maximize this value. This formu-
lation decouples actions from values while still
learning off-policy. We highlight the benefits of
this approach in terms of value function trans-
fer, learning within redundant action spaces, and
learning off-policy from state observations gener-
ated by sub-optimal or completely random poli-
cies. Code and videos are available at http://
sites.google.com/view/qss-paper.

1. Introduction
The goal of reinforcement learning is to learn how to act
so as to maximize long-term reward. A solution is usually
formulated as finding the optimal policy, i.e., selecting the
optimal action given a state. A popular approach for finding
this policy is to learn a function that defines values though
actions, Q(s, a), where maxaQ(s, a) is a state’s value and
arg maxaQ(s, a) is the optimal action (Sutton & Barto,
1998). We will refer to this approach as QSA.

Here, we propose an alternative formulation for off-policy
reinforcement learning that defines values solely through
states, rather than actions. In particular, we introduce
Q(s, s′), or simply QSS, which represents the value of tran-
sitioning from one state s to a neighboring state s′ ∈ N(s)
and then acting optimally thereafter:

Q(s, s′) = r(s, s′) + γ max
s′′∈N(s′)

Q(s′, s′′).
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Figure 1. Formulation for (a) Q-learning, or QSA-learning vs. (b)
QSS-learning. Instead of proposing an action, a QSS agent pro-
poses a state, which is then fed into an inverse dynamics model
that determines the action given the current state and next state
proposal. The environment returns the next observation and reward
as usual after following the action.

In this formulation, instead of proposing an action, the agent
proposes a desired next state, which is fed into an inverse
dynamics model that outputs the appropriate action to reach
it (see Figure 1). We demonstrate that this formulation has
several advantages. First, redundant actions that lead to
the same transition are simply folded into one value esti-
mate. Further, by removing actions, QSS becomes easier to
transfer than a traditional Q function in certain scenarios,
as it only requires learning an inverse dynamics function
upon transfer, rather than a full policy or value function.
Finally, we show that QSS can learn policies purely from
observations of (potentially sub-optimal) demonstrations
with no access to demonstrator actions. Importantly, unlike
other imitation from observation approaches, because it is
off-policy, QSS can learn highly efficient policies even from
sub-optimal or completely random demonstrations.

In order to realize the benefits of off-policy QSS, we must
obtain value maximizing future state proposals without per-
forming explicit maximization. There are two problems
one would encounter in doing so. The first is that a set of
neighbors of s are not assumed to be known a priori. This is
unlike the set of actions in discrete QSA which are assumed
to be provided by the MDP. Secondly, for continuous state
and action spaces, the set of neighbors may be infinitely
many, so maximizing over them explicitly is out of the
question. To get around this difficulty, we draw inspiration
from Deep Deterministic Policy Gradient (DDPG) (Lill-
icrap et al., 2015), which learns a policy π(s) → a over
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continuous action spaces that maximizesQ(s, π(s)). We de-
velop the analogous Deep Deterministic Dynamics Gradient
(D3G), which trains a forward dynamics model τ(s)→ s′

to predict next states that maximize Q(s, τ(s)). Notably,
this model is not conditioned on actions, and thus allows us
to train QSS completely off-policy from observations alone.

We begin the next section by formulating QSS, then describe
its properties within tabular settings. We will then outline
the case of using QSS in continuous settings, where we will
use D3G to train τ(s). We evaluate in both tabular problems
and MuJoCo tasks (Todorov et al., 2012).

2. The QSS formulation for RL
We are interested in solving problems specified through a
Markov Decision Process, which consists of states s ∈ S,
actions a ∈ A, rewards r(s, s′) ∈ R, and a transition
model T (s, a, s′) that indicates the probability of transi-
tioning to a specific next state given a current state and
action, P (s′|s, a) (Sutton & Barto, 1998)1. For simplicity,
we refer to all rewards r(s, s′) as r for the remainder of the
paper. Importantly, we assume that the reward function does
not depend on actions, which allows us to formulate QSS
values without any dependency on actions.

Reinforcement learning aims to find a policy π(a|s) that
represents the probability of taking action a in state s. We
are typically interested in policies that maximize the long-
term discounted return R =

PH
k=t γ

k−trk, where γ is a
discount factor that specifies the importance of long-term
rewards and H is the terminal step.

Optimal QSA values express the expected return for taking
action a in state s and acting optimally thereafter:

Q∗(s, a) = E[r + γmax
a′

Q∗(s′, a′)|s, a].

These values can be approximated using an approach known
as Q-learning (Watkins & Dayan, 1992):

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)].

Finally, QSA learned policies can be formulated as:

π(s) = arg max
a

Q(s, a).

We propose an alternative paradigm for defining optimal
values, Q∗(s, s′), or the value of transitioning from state s
to state s′ and acting optimally thereafter. By analogy with
the standard QSA formulation, we express this quantity as:

Q∗(s, s′) = r + γ max
s′′∈N(s′)

Q∗(s′, s′′). (1)

1We use s and s0 to denote states consecutive in time, which
may alternately be denoted st and st+1.

Although this equation may be applied to any environment,
for it to be a useful formulation, the environment must be
deterministic. To see why, note that in QSA-learning, the
max is over actions, which the agent has perfect control
over, and any uncertainty in the environment is integrated
out by the expectation. In QSS-learning the max is over next
states, which in stochastic environments are not perfectly
predictable. In such environments the above equation does
faithfully track a certain value, but it may be considered the
“best possible scenario value” — the value of a current and
subsequent state assuming that any stochasticity the agent
experiences turns out as well as possible for the agent. Con-
cretely, this means we assume that the agent can transition
reliably (with probability 1) to any state s′ that it is possible
(with probability > 0) to reach from state s.

Of course, this will not hold for stochastic domains in gen-
eral, in which case QSS-learning does not track an action-
able value. While this limitation may seem severe, we will
demonstrate that the QSS formulation affords us a power-
ful tool for use in deterministic environments, which we
develop in the remainder of this article. Henceforth we as-
sume that the transition function is deterministic, and the
empirical results that follow show our approach to succeed
over a wide range of tasks.

2.1. Bellman update for QSS

We first consider the simple setting where we have access
to an inverse dynamics model I(s, s′)→ a that returns an
action a that takes the agent from state s to s′. We also
assume access to a function N(s) that outputs the neighbors
of s. We use this as an illustrative example and will later
formulate the problem without these assumptions.

We define the Bellman update for QSS-learning as:

Q(s, s′)← Q(s, s′) + α[r + γ max
s′′∈N(s)

Q(s′, s′′)−Q(s, s′)].

(2)

Note Q(s, s′) is undefined when s and s′ are not neighbors.
In order to obtain a policy, we define τ(s) as a function that
selects a neighboring state from s that maximizes QSS:

τ(s) = arg max
s′∈N(s)

Q(s, s′). (3)

In words, τ(s) selects states that have large value, and acts
similar to a policy over states. In order to obtain the policy
over actions, we use the inverse dynamics model:

π(s) = I(s, τ(s)). (4)

This approach first finds the state s′ that maximizesQ(s, s′),
and then uses I(s, s′) to determine the action that will take
the agent there. We can rewrite Equation 2 as:

Q(s, s′) = Q(s, s′)+α[r+γQ(s′, τ(s′))−Q(s, s′)]. (5)
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Figure 2. Learned values for tabular Q-learning in an 11x11 grid-
world. The first two figures show a heatmap of Q-values for QSA
and QSS. The final figure represents the fractional difference be-
tween the learned values in QSA and QSS.

2.2. Equivalence of Q(s, a) and Q(s, s′)

Let us now investigate the relation between values learned
using QSA and QSS.

Theorem 2.2.1. QSA and QSS learn equivalent values in
the deterministic setting.

Proof. Consider an MDP with a deterministic state transi-
tion function and inverse dynamics function I(s, s′). QSS
can be thought of as equivalent to using QSA to solve the
sub-MDP containing only the set of actions returned by
I(s, s′) for every state s:

Q(s, s′) = Q(s, I(s, s′))

Because the MDP solved by QSS is a sub-MDP of that
solved by QSA, there must always be at least one action a
for which Q(s, a) ≥ maxs′ Q(s, s′).

The original MDP may contain additional actions not re-
turned by I(s, s′), but following our assumptions, their re-
turn must be less than or equal to that by the action I(s, s′).
Since this is also true in every state following s, we have:

Q(s, a) ≤ max
s′

Q(s, I(s, s′)) for all a

Thus we obtain the following equivalence between QSA
and QSS for deterministic environments:

max
s′

Q(s, s′) = max
a

Q(s, a)

This equivalence will allow us to learn accurate action-
values without dependence on the action space.

3. QSS in tabular settings
In simple settings where the state space is discrete, Q(s, s′)
can be represented by a table. We use this setting to highlight
some of the properties of QSS. In each experiment, we
evaluate within a simple 11x11 gridworld where an agent,
initialized at 〈0, 0〉, navigates in each cardinal direction and
receives a reward of −1 until it reaches the goal.

(a) max
a

Q(s, a) (b) max
s′

Q(s, s0) (c) Value distance

Figure 3. Learned values for tabular Q-learning in an 11x11 grid-
world with stochastic transitions. The first two figures show a
heatmap of Q-values for QSA and QSS in a gridworld with 100%
slippage. The final figure represents the euclidean distance between
the learned values in QSA and QSS as the transitions become more
stochastic (averaged over 10 seeds with 95% confidence intervals).

3.1. Example of equivalence of QSA and QSS

We first examine the values learned by QSS (Figure 2).
The output of QSS increases as the agent gets closer to the
goal, which indicates that QSS learns meaningful values
for this task. Additionally, the difference in value between
maxaQ(s, a) and maxs′ Q(s, s′) approaches zero as the
values of QSS and QSA converge. Hence, QSS learns simi-
lar values as QSA in this deterministic setting.

3.2. Example of QSS in a stochastic setting

The next experiment measures the impact of stochastic tran-
sitions on learned QSS values. To investigate this property,
we add a probability of slipping to each transition, where the
agent takes a random action (i.e. slips into an unintended
next state) some percentage of time. First, we notice that the
values learned by QSS when transitions have 100% slippage
(completely random actions) are quite different from those
learned by QSA (Figure 3a-b). In fact, the values learned by
QSS are similar to the previous experiment when there was
no stochasticity in the environment (Figure 2b). As the tran-
sitions become more stochastic, the distance between values
learned by QSA and QSS vastly increases (Figure 3c). This
provides evidence that the formulation of QSS assumes the
best possible transition will occur, thus causing the values to
be overestimated in stochastic settings. We include further
experiments in the appendix that measure how stochastic
transitions affect the average episodic return.

3.3. QSS handles redundant actions

One benefit of training QSS is that the transitions from one
action can be used to learn values for another action. Con-
sider the setting where two actions in a given state transition
to the same next state. QSA would need to make updates
for both actions in order to learn their values. But QSS
only updates the transitions, thus ignoring any redundancy
in the action space. We further investigate this property
in a gridworld with redundant actions. Suppose an agent
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(a) QSA (b) QSS (c) QSS + inverse dynamics (d) Transfer of permuted actions

Figure 4. Tabular experiments in an 11x11 gridworld. The first three experiments demonstrate the effect of redundant actions in QSA,
QSS, and QSS with learned inverse dynamics. The final experiment represents how well QSS and QSA transfer to a gridworld with
permuted actions. All experiments shown were averaged over 50 random seeds with 95% confidence intervals.

has four underlying actions, up, down, left, and right, but
these actions are duplicated a number of times. As the num-
ber of redundant actions increases, the performance of QSA
deteriorates, whereas QSS remains unaffected (Figure 4a-b).

We also evaluate how QSS is impacted when the inverse
dynamics model I is learned rather than given (Figure 4c).
We instantiate I(s, s′) as a set that is updated when an action
a is reached. We sample from this set anytime I is called,
and return a random sampling over all redundant actions if
I(s, s′) = ∅. Even in this setting, QSS is able to perform
well because it only needs to learn about a single action that
transitions from s to s′.

3.4. QSS enables value function transfer of permuted
actions

The final experiment in the tabular setting considers the sce-
nario of transferring to an environment where the meaning
of actions has changed. We imagine this could be useful
in environments where the physics are similar but the ac-
tions have been labeled differently. In this case, QSS values
should directly transfer, but not the inverse dynamics, which
would need to be retrained from scratch. We trained QSA
and QSS in an environment where the actions were labeled
as 0, 1, 2, and 3, then transferred the learned values to an
environment where the labels were shuffled. We found that
QSS was able to learn much more quickly in the transferred
environment than QSA (Figure 4d). Hence, we were able to
retrain the inverse dynamics model more quickly than the
values for QSA. Interestingly, QSA also learns quickly with
the transferred values. This is likely because the Q-table is
initialized to values that are closer to the true values than a
uniformly initialized value. We include an additional exper-
iment in the appendix where taking the incorrect action has
a larger impact on the return.

4. Extending to the continuous domain with
D3G

In contrast to domains where the state space is discrete and
both QSA and QSS can represent relevant functions with
a table, in continuous settings or environments with large
state spaces we must approximate values with function ap-
proximation. One such approach is Deep Q-learning, which
uses a deep neural network to approximate QSA (Mnih
et al., 2013; Mnih et al., 2015). The loss is formulated as:
Lθ = ‖y −Qθ(s, a)‖, where y = r + γmaxa′ Qθ′(s

′, a′).

Here, θ′ is a target network that stabilizes training. Training
is further improved by sampling experience from a replay
buffer s, a, r, s′ ∼ D to decorrelate the sequential data
observed in an episode.

4.1. Deep Deterministic Policy Gradients

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2015) applies Deep Q-learning to problems with continuous
actions. Instead of computing a max over actions for the
target y, it uses the output of a policy that is trained to
maximize a critic Q: y = r+γQθ′(s, πψ′(s)). Here, πψ(s)
is known as an actor and trained using the following loss:

Lψ = −Qθ(s, πψ(s)).

This approach uses a target network θ′ that is moved slowly
towards θ by updating the parameters as θ′ ← ηθ + (1 −
η)θ′, where η determines how smoothly the parameters are
updated. A target policy network ψ′ is also used when
training Q, and is updated similarly to θ′.

4.2. Twin Delayed DDPG

Twin Delayed DDPG (TD3) is a more stable variant of
DDPG (Fujimoto et al., 2018). One improvement is to delay
the updates of the target networks and actor to be slower
than the critic updates by a delay parameter d. Additionally,
TD3 utilizes Double Q-learning (Hasselt, 2010) to reduce
overestimation bias in the critic updates. Instead of training
a single critic, this approach trains two and uses the one that
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Algorithm 1 D3G algorithm

1: Inputs: Demonstrations or replay bufferD
2: Randomly initializeQ� 1 ; Q� 2 ; �  ; I ! ; f �

3: Initialize target networks� 0
1  � 1; � 0

2  � 2;  0   
4: for t 2 T do
5: if imitation then
6: Sample from demonstration buffers; r; s0 � D
7: else
8: Take actiona � I (s; � (s)) + �
9: Observe reward and next state

10: Store experience inD
11: Sample from replay buffers; a; r; s0 � D
12: end if
13:
14: Computey = r +  min

i =1 ;2
Q� 0

i
(s0; C(s0; �  0(s0)))

15: // Update critic parameters:
16: Minimize L � =

P
i ky � Q� i (s; s0)k

17:
18: if t modd then
19: // Update model parameters:
20: Computes0

f = C(s; �  (s))
21: Minimize L  = � Q� 1 (s; s0

f ) + � k�  (s) � s0
f )k

22: // Update target networks:
23: � 0  �� + (1 � � )� 0

24:  0  � + (1 � � ) 0

25: end if
26:
27: if imitation then
28: // Update forward dynamics parameters:
29: Minimize L � = kf � (s; Q� 0

1
(s; s0)) � s0k

30: else
31: // Update forward dynamics parameters:
32: Minimize L � = kf � (s; a) � s0k
33: // Update inverse dynamics parameters:
34: Minimize L ! = kI ! (s; s0) � ak
35: end if
36: end for

minimizes the output ofy:

y = r +  min
i =1 ;2

Q� 0
i
(s0; �  0(s0)) :

The loss for the critics becomes:

L � =
X

i

ky � Q� i (s; a)k:

Finally, Gaussian noise� � N (0; 0:1) is added to the policy
when sampling actions. We use each of these techniques in
our own approach.

4.3. Deep Deterministic Dynamics Gradients (D3G)

A clear dif�culty with training QSS in continuous settings
is that it is not possible to iterate over an in�nite state space

Algorithm 2 Cycle

1: function C(s; s0
� )

2: if imitation then
3: q = Q� (s; s0

� )
4: s0

f = f � (s; q)
5: else
6: a = I ! (s; s0

� )
7: s0

f = f � (s; a)
8: end if
9: end function

to �nd a maximizing neighboring state. Instead, we pro-
pose training a model to directly output the state that max-
imizes QSS. We introduce an analogous approach to TD3
for training QSS, Deep Deterministic Dynamics Gradients
(D3G). Like the deterministic policy gradient formulation
Q(s; �  (s)) , D3G learns a model�  (s) ! s0 that makes
predictions that maximizeQ(s; �  (s)) . To train the critic,
we specify the loss as:

L � =
X

i

ky � Q� i (s; s0)k: (6)

Here, the targety is speci�ed as:

y = r +  min
i =1 ;2

Q� 0
i
(s0; �  0(s0))] : (7)

Similar to TD3, we utilize two critics to stabilize training
and a target network for Q.

We train� to maximize the expected return,J , starting from
any states:

r  J = E[r  Q(s; s0)s0� �  (s) ] (8)

= E[r s0Q(s; s0)r  �  (s)] [using chain rule]

This can be accomplished by minimizing the following loss:

L  = � Q� (s; �  (s)) :

We discuss in the next section how this formulation alone
may be problematic. We additionally use a target network
for � , which is updated as 0  � + (1 � � ) for stability.
As in the tabular case,�  (s) acts as a policy over states that
aims to maximizeQ, except now it is being trained to do so
using gradient descent. To obtain the necessary action, we
apply an inverse dynamics modelI as before:

� (s) = I ! (s; �  (s)) : (9)

Now, I is trained using a neural network with data
hs; a; s0i � D . The loss is:

L ! = kI ! (s; s0) � ak: (10)




