
Training Linear Neural Networks:
Non-Local Convergence and Complexity Results

Armin Eftekhari 1

Abstract

Linear networks provide valuable insights into
the workings of neural networks in general. This
paper identifies conditions under which the gradi-
ent flow provably trains a linear network, in spite
of the non-strict saddle points present in the op-
timization landscape. This paper also provides
the computational complexity of training linear
networks with gradient flow. To achieve these re-
sults, this work develops a machinery to provably
identify the stable set of gradient flow, which then
enables us to improve over the state of the art in
the literature of linear networks (Bah et al., 2019;
Arora et al., 2018a). Crucially, our results appear
to be the first to break away from the lazy train-
ing regime which has dominated the literature of
neural networks. This work requires the network
to have a layer with one neuron, which subsumes
the networks with a scalar output, but extending
the results of this theoretical work to all linear
networks remains a challenging open problem.

1. Introduction and Overview
Consider the training samples and their labels {xi, yi}mi=1 ⊂
Rdx ×Rdy , respectively. By concatenating {xi}i and {yi}i,
we form the data matrices

X ∈ Rdx×m, Y ∈ Rdy×m. (1)

Consider also a linear network, i.e., a neural network where
the nonlinear activation functions are replaced with the iden-
tity map. To be specific, with N layers and the correspond-
ing weight matrices {Wi}Ni=1, this network is characterized

1Department of Mathematics and Mathematical Statistics,
Umea University, Sweden. AE is indebted to Holger Rauhut,
Ulrich Terstiege and Gongguo Tang for insightful discussions.
Correspondence to: Armin Eftekhari <armin.eftekhari@umu.se>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

by the linear map

Rdx → Rdy

x→Wx, (2)

and the matrix W ∈ Rdy×dx in (2) is itself specified with
the nonlinear (and often over-parametrized) map

Rd1×d0 × · · · × RdN×dN−1 −→ Rdy×dx

(W1, · · · ,WN) −→W := WN · · ·W1, (3)

where we set d0 = dx and dN = dy for consistency.

In foregoing the full generality of nonlinear neural networks,
linear networks afford us a level of insight and technical
rigor that is out of the reach for nonlinear networks, at least
with our current technical tools (Arora et al., 2018b; Yan
et al., 1994; Kawaguchi, 2016; Chitour et al., 2018; Trager
et al., 2019; Saxe et al., 2013; Lu & Kawaguchi, 2017; Yun
et al., 2017).

Indeed, despite the absence of activation functions, matrix
W in the linear network (2,3) is a nonlinear function of
{Wi}i, and training this linear network thus involves solving
a nonconvex optimization problem in {Wi}i, which shares
many interesting features of the nonlinear neural networks.
Simply put, we cannot claim to understand neural networks
in general without understanding linear networks.

Training the linear network (2,3) with the data (X,Y) in (1)
can be cast as the optimization problem{

min
W1,··· ,WN

1
2‖Y −WNWN−1 · · ·W1X‖2F

subject to Wj ∈ Rdj×dj−1 ∀j ∈ [N],
(4)

which is nonconvex when N ≥ 2. Above, [N] =
{1, · · · , N}. Let us introduce the shorthand

WN := (W1, · · · ,WN)

∈ Rd1×d0 × · · · × RdN×dN−1 =: RdN , (5)

which allows us to rewrite problem (4) more compactly as

min
WN

LN (WN) subject to WN ∈ RdN , (6)

where LN (WN) := 1
2‖Y − WN · · ·W1X‖2F . With this

setup and before turning to the details, let us highlight the
contributions of this paper, in the order of appearance.

Training Linear Neural Networks

• Theorem 2.8 in Section 2 provides a new analysis of
the optimization landscape of linear networks, where
we uncover a previously-unknown link to the celebrated
Eckart-Young-Mirsky theorem and the geometry of the
principal component analysis (PCA).

• Theorem 3.8 in Section 3 identifies the conditions under
which gradient flow successfully trains a linear network,
despite the presence of non-strict saddle points in the
optimization landscape.

Theorem 3.8 thus improves the state of the art in (Bah
et al., 2019) as the first convergence result outside of the
lazy training regime, reviewed later. This improvement is
achieved with a new argument that provably identifies the
stable set of gradient flow, in the language of dynamical
systems theory.

Theorem 3.8 applies to linear networks that have a layer
with a single neuron, see Assumption 3.6. This case
corresponds to the popular spiked covariance model in
statistics, and subsumes networks with a scalar output.
Extension of Theorem 3.8 to all linear networks remains
a challenging open problem, as there is no natural notion
of stable set in general. We will however speculate about
how Theorem 3.8 might serve as the natural building
block for a more general result in the future.

• Theorem 4.4 in Section 4 quantifies the computational
complexity of training a linear network by establishing
non-local convergence rates for gradient flow. This re-
sult also quantifies for the first time how the (faraway)
convergence rate benefits from increasing the network
depth.

Theorem 4.4 presents the first convergence rate for lin-
ear networks outside of the lazy training regime, thus
improving the state of the art in (Arora et al., 2018a).

Indeed, of the dozens of related works, virtually all belong
to this lazy regime, to the best of our knowledge, thus sig-
nifying the importance of this breakthrough. Theorem 4.4
also corresponds to the spiked covariance model.

2. Landscape of Linear Networks
The landscape of nonconvex program (6) has been widely
studied in the literature, with contributions from (Arora
et al., 2018b;a; Chitour et al., 2018; Bartlett et al., 2019;
Saxe et al., 2013; Hardt & Ma, 2016; Laurent, 2018; Trager
et al., 2019; Baldi & Hornik, 1989; Zhu et al., 2019; He
et al., 2016; Nguyen, 2019). The state of the art here is
Proposition 31 in (Bah et al., 2019), reviewed in Appendix E,
which itself improves over Theorem 2.3 in (Kawaguchi,
2016).

The main result of this section, Theorem 2.8 below, is a
variation of Proposition 31 in (Bah et al., 2019) with an ad-

ditional assumption. In Section 3, we will use Theorem 2.8
to improve the state of art for training linear networks, under
this new assumption.

Crucially, the proof of Theorem 2.8 uncovers a previously-
unknown link to the celebrated Eckart-Young-Mirsky theo-
rem (Eckart & Young, 1936; Mirsky, 1966) and the geome-
try of PCA.

To begin, let us concretely define the notion of optimality
for problem (6).

Definiton 2.1 (First-order stationarity for (6)). We say that
WN ∈ RdN is a first-order stationary point (FOSP) of
problem (6) if

∇LN (WN) = 0, (7)

where ∇LN (WN) is the gradient of LN at WN.

Definiton 2.2 (Second-order stationarity for (6)). We say
that WN ∈ RdN is a second-order stationary point (SOSP)
of problem (6) if, in addition to (7), it holds that

∇2LN (WN)[∆N] ≥ 0, ∀∆N ∈ RdN , (8)

where∇2LN (WN)[∆N] is the second derivative of LN at
WN along the direction ∆N.

Definiton 2.3 (Strict saddles of (6)). Any FOSP of prob-
lem (6), which is not an SOSP, is a strict saddle point of (6).

Any SOSP of problem (6) is either a local minimizer of (6),
or a non-strict saddle point of problem (6). Unlike a non-
strict saddle point, there always exists a descent direction
to escape from a strict saddle point (Lee et al., 2017). To
continue, let

r := min
j≤N

dj , (smallest width of the network) (9)

denote the smallest width of the linear network (2,3). As
shown in Appendix A, we can reformulate problem (6) as

min
WN

LN (WN)

=

{
min
W

1
2‖Y −WX‖2F =: L1(W)

subject to rank(W) ≤ r
(10a)

=

{
min
P,Q

1
2‖Y − PQX‖

2
F =: L2(P,Q)

subject to P ∈ Rdy×r, Q ∈ Rr×dx .
(10b)

In particular, the notion of optimality for problem (10b)
is defined similar to Definitions 2.1-2.3. There is a corre-
spondence between the stationary points of problems (6)
and (10b), proved in Appendix B.

Lemma 2.4 (Pairwise correspondence between SOSPs).
Any FOSP WN = (W 1, · · · ,WN) of problem (6) cor-
responds to an FOSP (P ,Q) of problem (10b), provided

Training Linear Neural Networks

that W = WN · · ·W 1 is rank-r. Moreover, any SOSP WN

of problem (6) corresponds to an SOSP (P ,Q) of prob-
lem (10b), provided that rank(W) = r.

Let PX := X†X and PX⊥ := Im −PX denote the orthog-
onal projections onto the row span of X and its orthogonal
complement, respectively. Here, X† is the pseudo-inverse
of X and Im ∈ Rm×m is the identity matrix. Using the
decomposition Y = Y PX + Y PX⊥ , we can in turn rewrite
problem (10b) as

min
P,Q

L2(P,Q)

=
1

2
‖Y PX⊥‖2F +

{
min
P,Q,Q′

1
2‖Y PX − PQ

′‖2F
subject to Q′ = QX

≥ 1

2
‖Y PX⊥‖2F + min

P,Q′

1

2
‖Y PX − PQ′‖2F . (11)

The relaxation above is tight, and there is a correspondence
between the stationary points, proved in Appendix C.

Lemma 2.5 (Pairwise correspondence between SOSPs).
Suppose that XX> is invertible. Then it holds that

− 1

2
‖Y PX⊥‖2F + min

P,Q
L2(P,Q)

=

{
min
P,Q′

1
2‖Y PX − PQ

′‖2F =: L′2(P,Q′)

subject to P ∈ Rdy×r, Q′ ∈ Rr×m.
(12)

Any FOSP (P ,Q) of problem (10b) corresponds to an
FOSP (P ,Q

′
) of problem (12). Moreover, any SOSP (P ,Q)

of problem (10b) corresponds to an SOSP (P ,Q
′
) of prob-

lem (12).

Note that solving problem (12) involves finding a best rank-
r approximation of Y PX or, equivalently, finding r lead-
ing principal components of Y PX (Murphy, 2012). By
combining Lemmas 2.4 and 2.5, we immediately reach the
following conclusion.

Lemma 2.6 (Pairwise correspondence between SOSPs).
Suppose that XX> is invertible. Then any FOSP WN

of problem (6) corresponds to an FOSP (P ,Q
′
) of prob-

lem (12), provided that W = WN · · ·W 1 is rank-r. More-
over, any SOSP WN of problem (6) corresponds to an
SOSP (P ,Q

′
) of (12), provided that rank(W) = r.

We next recall a variant of the celebrated EYM theo-
rem (Eckart & Young, 1936; Mirsky, 1966; Hauser &
Eftekhari, 2018; Hauser et al., 2018), which specifies the
landscape of the PCA problem (12).

Theorem 2.7 (EYM theorem). Any SOSP (P ,Q
′
) of the

PCA problem (12) is also a global minimizer of prob-
lem (12).

With Lemma 2.6 at hand, we invoke Theorem 2.7 to uncover
the landscape of problem (6), see Appendix D for the proof.

Theorem 2.8 (Landscape of linear networks). Suppose that
XX> is invertible and that rank(Y X†X) ≥ r. Then any
SOSP WN = (W 1, · · · ,WN) of problem (6) is a global
minimizer of problem (6), provided that WN · · ·W 1 is a
rank-r matrix.

In words, Theorem 2.8 identifies certain SOSPs of prob-
lem (6) which are global minimizers of problem (6). A
few important remarks are in order: 1 The proof of The-
orem 2.8 establishes a pairwise correspondence with the
stationary points and the geometry of the PCA problem.
This connection was previously unknown, to the best of our
knowledge.

2 Any rank-degenerate SOSP of problem (6) is excluded
from Theorem 2.8, i.e., any SOSP WN = (W 1, · · · ,WN)
such that rank(WN · · ·W 1) < r is excluded from our re-
sult. For example, the zero matrix is a spurious SOSP of
problem (6) when the network depth N ≥ 2, as observed
in (Bah et al., 2019; Kawaguchi, 2016; Trager et al., 2019).
The landscape of problem (6) in general is therefore more
complicated than the special case of N = 2, corresponding
to the Eckart-Young-Mirsky theorem, see Theorem 2.7.

3 Theorem 2.8 is a variation of Proposition 31 in (Bah
et al., 2019) with a new assumption on Y X†X , which will
be necessary shortly. Similar assumptions have been used
in the context of PCA, for example in (Helmke & Shayman,
1995). 4 For completeness, we also prove Theorem 2.8
using Proposition 31 in (Bah et al., 2019) as the starting
point, see Appendix E.

3. Convergence of Gradient Flow
In view of Theorem 2.8 above, even though nonconvex, the
landscape of problem (6) has certain favourable properties.
On the other hand, problem (6) fails to satisfy the strict
saddle property that enables first-order algorithms to avoid
saddle points (Lee et al., 2016; Ge et al., 2015). For example,
the zero matrix is a non-strict saddle point of problem (6)
when the network depth N ≥ 2, as discussed earlier.

Against this mixed background, it is natural to ask if first-
order algorithms can successfully train linear neural net-
works. This fundamental question has remained unanswered
in the literature, to our knowledge. Indeed, outside the lazy
training regime, reviewed in Section 4, it is not known if
gradient flow can successfully solve problem (6).

In fact, the state of the art here, Theorem 35(a) in (Bah
et al., 2019), guarantees the convergence of gradient flow to
a minimizer of LN , when restricted to one of few regions
in RdN . Even though these regions are known in advance,
their result cannot predict which region would contain the

Training Linear Neural Networks

limit point of gradient flow, for a given initialization.

In other words, Theorem 35(a) in (Bah et al., 2019) does
not guarantee the convergence of gradient flow to a global
minimzer of problem (6), and gradient flow might indeed
converge to a spurious SOSP of problem (6), such as the
zero matrix. For completeness, Theorem 35(a) in (Bah et al.,
2019) is reviewed in Appendix F.

In an important setting, this section answers the open ques-
tion of convergence of gradient flow for training linear net-
works. This is achieved with a new argument, which enables
us to provably identify the stable set of gradient flow, in the
language of dynamical systems theory. Let us begin with
the necessary preparations.

Consider gradient flow applied to program (6), specified as

Ẇj(t) =
dWj(t)

dt
= −∇Wj

LN (WN(t)) ,

∀j ∈ [N], ∀t ≥ 0, (gradient flow) (13)

and initialized at WN,0 ∈ RdN . Above, ∇WjLN is the
gradient of LN with respect to Wj , the weight matrix for
the jth layer of the linear network, see (4,5,6).

A consequence of the Lojasiewicz’ theorem is the following
convergence result for the gradient flow. See Appendix G
for the proof, similar to Theorem 11 in (Bah et al., 2019).

Lemma 3.1 (Convergence, uninformative). If XX> is in-
vertible, then gradient flow (13) converges. Moreover, the
limit point is an SOSP WN ∈ RdN of problem (6), for al-
most every initialization WN,0 with respect to the Lebesgue
measure in RdN .

To study this limit point WN, we focus here on a common
initialization technique for linear networks (Hardt & Ma,
2016; Bartlett et al., 2019; Arora et al., 2018a;b).

Definiton 3.2 (Balanced initialization). For gradient
flow (13), we call WN,0 = (W1,0, · · · ,WN,0) ∈ RdN a
balanced initialization if

W>j+1,0Wj+1,0 = Wj,0W
>
j,0, ∀j ∈ [N − 1]. (14)

Claim 4 in (Arora et al., 2018a) underscores the necessity of
a (nearly) balanced initialization for linear networks. More
generally, (Sutskever et al., 2013) highlights the importance
of initialization in deep neural networks. The main result of
this section, Theorem 3.8 below, thus requires an (exactly)
balanced initialization.

Assuming exact balanced-ness in (14) is sufficient here be-
cause the focus of this theoretical work is continuous-time
optimization. More generally, approximate balanced-ness
is necessary for discretized algorithms, such as gradient
descent (Arora et al., 2018a). We avoid this additional layer

of complexity here as it does not seem to add any key theo-
retical insights to this paper.

A useful observation is that, if the initialization is balanced,
gradient flow remains balanced afterwards, see for example
Lemma 2 in (Bah et al., 2019). More formally, gradient
flow (13) satisfies

W>j+1,0Wj+1,0 = Wj,0W
>
j,0, ∀j ∈ [N − 1]

=⇒Wj+1(t)>Wj+1(t) = Wj(t)Wj(t)
>, (15)

for every j ∈ [N − 1] and every t ≥ 0. Above, the weight
matrix Wj(t) is the jth component of WN(t), see (5).

Alongside gradient flow (13), it is convenient to introduce
another flow (Bah et al., 2019; Arora et al., 2018a), which
dictates the evolution of the end-to-end product of the
weight matrices of the linear network.

Concretely, for a matrix W ∈ Rdy×dx , consider the linear
operator AW specified as

AW :Rdy×dx → Rdy×dx

∆→
N∑
j=1

(WW>)
N−j
N ∆(W>W)

j−1
N . (16)

For a balanced initialization WN,0 = (W1,0, · · · ,WN,0),
gradient flow (13) in RdN induces a flow in Rdy×dx , ini-
tialized at W0 = WN,0 · · ·W1,0 ∈ Rdy×dx and specified
as

Ẇ (t) = −AW (t) (∇L1(W (t))) ∀t ≥ 0,

= −AW (t)(W (t)XX> − Y X>) (see (10a))
(induced flow) (17)

see for example Equation (26) in (Bah et al., 2019). Above,

W (t) = WN (t) · · ·W1(t) ∈ Rdy×dx . (18)

We will refer to (17) as the induced flow, which governs the
evolution of the end-to-end product of the weight matrices
of the linear network.

It is known that induced flow (17) admits an analytic singu-
lar value decomposition (SVD), see for example Lemma 1
and Theorem 3 in (Arora et al., 2019a) or (Illashenko &
Yakovenko, 2008). More specifically, it holds that

W (t)
SVD
= Ũ(t)S̃(t)Ṽ (t)>, ∀t ≥ 0, (19)

provided that the network depth N ≥ 2. In (19),
Ũ(t), Ṽ (t), S̃(t) are analytic functions of t (Parks & Krantz,
1992). Moreover, Ũ(t) ∈ Rdy×dy , Ṽ (t) ∈ Rdx×dx are or-
thonormal bases, and S̃(t) ∈ Rdy×dx contains the singular
values of W (t) in no specific order.

Training Linear Neural Networks

The evolution of the singular values of W (t) in (19) is also
known (Arora et al., 2019a; Townsend, 2016). In particular,
the following byproduct about the rank ofW (t) is important
for us, see Appendix H for the proof.
Lemma 3.3 (Rank-invariance). For induced flow (17),
rank(W (t)) = rank(W0) for all t ≥ 0, provided thatXX>

is invertible and the network depth N ≥ 2.

Let us henceforth assume that XX> is invertible, and that
gradient flow (13) is initialized at WN,0 ∈MN,r, where

MN,r :=
{
WN : rank(WN · · ·W1) = r

}
⊂ RdN , (20)

see (5). We now make the following observations about the
setMN,r, proved in Appendix I.
Lemma 3.4 (Propeties ofMN,r). 1 MN,r is not a closed
subset of RdN . 2 The complement ofMN,r in RdN has
Lebesgue measure zero. (In particular, MN,r is a dense
subset of RdN .)

In view of Lemma 3.4, almost every initialization WN,0 ∈
RdN of gradient flow (13) falls into the setMN,r, i.e.,

WN,0 ∈MN,r, almost surely. (21)

Moreover, once initialized in MN,r with a balanced ini-
tialization, induced flow (17) remains rank-r at all times
by (18,20) and Lemma 3.3. Consequently, gradient flow (13)
remains inMN,r at all times, see again (18,20). We com-
bine this last observation with (21) to conclude that

WN(t) ∈MN,r, ∀t ≥ 0, almost surely, (22)

over the choice of balanced initialization WN,0 ∈ RdN .
Despite (22), the limit point WN of gradient flow (13)
might not belong to MN,r because MN,r is not closed,
see Lemma 3.4.

That is, even though the limit point WN of gradient flow is
almost surely an SOSP of problem (6) by Lemma 3.1, we
cannot apply Theorem 2.8 and WN might be an spurious
SOSP of problem (6), such as the zero matrix. Indeed, Re-
mark 39 in (Bah et al., 2019) constructs an example where
WN /∈MN,r, see also (Yan et al., 1994). To avoid this un-
wanted behaviour, it is necessary to restrict the initialization
of the gradient flow and impose additional assumptions.

Our first assumption is that the data is statistically whitened,
which is common in the analysis of linear networks (Arora
et al., 2018a; Bartlett et al., 2019).
Definiton 3.5 (Whitened data). We say that the data matrix
X ∈ Rdx×m is whitened if

XX>

m
=

1

m

m∑
i=1

xix
>
i = Idx , (23)

where Idx ∈ Rdx×dx is the identity matrix.

Our second assumption is that r = 1 in (9). This case is sig-
nificant as it corresponds to the popular spiked covariance
model in statistics and signal processing (Eftekhari et al.,
2019; Johnstone et al., 2001; Vershynin, 2012; Berthet et al.,
2013; Deshpande & Montanari, 2014), to name a few.

Moreover, r = 1 subsumes the important case of networks
with a scalar output.

Lastly, the case r = 1 appears to be the natural building
block for the case r > 1 via a deflation argument (Mackey,
2009; Zhang & Ghaoui, 2011). Indeed, gradient flow (13)
moves orthogonal to the principal directions that it has pre-
viously discovered or “peeled”. Extending our results to the
case r > 1 remains a challenging open problem.

From (10a) with r = 1, recall that problem (6) for training
a linear neural network is closely related to the problem

min
W

1

2
‖Y PX −WX‖2F subject to rank(W) ≤ r = 1

= min
W

m

2
‖Z −W‖2F subject to rank(W) ≤ 1, (24)

where the second line above is obtained using (23), and

Z :=
Y X>

m
. (25)

We are in position to collect all the assumptions made in
this section in one place.

Assumption 3.6. In this section, we assume that the linear
network (2,3) has depth N ≥ 2, and one of the layers has
only one neuron, i.e., r = 1 in (9). Moreover, the data
matrix X in (1) is whitened as in (23), and Z = 1

mY X
>

in (25) satisfies

rank(Z) ≥ r = 1, γZ :=
sZ,2
sZ

< 1, (26)

where sZ and sZ,2 are the two largest singular values of Z.
Lastly, we assume that the initialization of gradient flow (13)
is balanced, see Definition 3.2.

In view of (26), let us define

Z1 = uZ · sZ · v>Z (target matrix) (27)

to be the best rank-1 approximation of Z, obtained via SVD.
Here, ‖uZ‖2 = ‖vZ‖2 = 1, and sZ appeared in (26).

Note that Z1 is the unique solution of problem (24), because
Z has a nontrivial spectral gap in (26), see for example
Section 1 of (Golub et al., 1987).

Let us fix α ∈ [γZ , 1). To exclude the zero matrix as the
limit point of gradient flow (13), the key is to restrict the
initialization to a particular subset of the feasible set of

Training Linear Neural Networks

problem (6) with r = 1, specified as

NN,α :=
{
WN = (W1, · · · ,WN) :

WN · · ·W1
tSVD
= uW · sW · v>W ,

sW > (α− γZ)sZ , u
>
WZ1vW > αsZ

}
⊂ RdN , (28)

where sZ , γZ were defined in (26). Above, tSVD stands for
the thin SVD. A simple observation is that the setNN,α has
infinite Lebesgue measure in RdN .

Such restriction of the feasible set of problem (6) is nec-
essary as described earlier, see also the negative example
constructed in Remark 39 of (Bah et al., 2019). Crucially,
note that the end-to-end matrices in NN,α are positively
correlated with Z1, and also bounded away from the origin.

An important observation is that, once initialized in NN,α,
gradient flow (13) avoids the zero matrix, see Appendix J.

Lemma 3.7 (Stable set). For gradient flow (13) initialized
at WN,0 ∈ NN,α, the limit point exists and satisfies WN ∈
MN,1. Above, α ∈ (γZ , 1), and Assumption 3.6 and its
notation are in force, see also (20,28).

Combining Lemma 3.7 with Lemma 3.1, we find that the
limit point WN ∈MN,1 of gradient flow (13) is an SOSP
of problem (6), for every balanced initialization WN,0 ∈
NN,α outside a subset with Lebesgue measure zero.

We finally invoke Theorem 2.8 to conclude that this SOSP
WN ∈ MN,1 is in fact a global minimizer of LN in RdN .
This conclusion is summarized below.

Theorem 3.8 (Convergence). Gradient flow (13) converges
to a global minimizer of problem (6) from every balanced
initialization in NN,α ⊂ RdN , outside of a subset with
Lebesgue measure zero, see (28). Above, α ∈ (γZ , 1), and
Assumption 3.6 and its notation are in force.

A few important remarks are in order. 1 Outside the lazy
training regime reviewed in Section 4, to our knowledge,
Theorem 3.8 is the first convergence result for linear net-
works, answering the fundamental question of when gradi-
ent flow successfully trains a linear network.

2 Indeed, under Assumption 3.6, Theorem 3.8 improves
over Theorem 35 in (Bah et al., 2019) which does not guar-
antee the convergence of gradient flow (13) to a solution of
problem (6), and discussed earlier and in Appendix F.

3 This improvement was achieved by provably restricting
the gradient flow (13) to its stable set NN,α in (28), and
such a restriction is indeed necessary as detailed earlier.

4 Note that Theorem 3.8 sheds light on the theoretical
aspects of the training of neural networks, and should not be
viewed as an initialization technique for linear networks. In

turn, linear networks only serve to improve our theoretical
understanding of neural networks in general.

Let us also examine the content of Assumption 3.6. 1 The
case r = 1 in (9) corresponds to the spiked covariance
model in statistics, and covers the important case of net-
works with a scalar output. Lastly, r = 1 appears to be
the natural building block for extension to r > 1, which
remains an open problem, see the discussion after (23).

2 The assumption of whitened data in (23) is commonly
used in the context of linear networks, see for exam-
ple (Arora et al., 2018a; Bartlett et al., 2019). 3 The
requirement that rank(Z) = rank(Y PX) ≥ r = 1 in As-
sumption 3.6 is evidently necessary to avoid the limit point
of zero.

4 Finally, it is known that the induced flow (17) for an
unbalanced initialization deviates rapidly from its balanced
counterpart. It is therefore not clear if an unbalanced flow
would provably avoid rank-degenerate limit points. How-
ever, we suspect that any disadvantage of an unbalanced
initialization will disappear asymptotically as the network
depth N grows larger, see Equation 8 in (Bah et al., 2019).

4. Convergence Rate of Gradient Flow
In view of Theorem 3.8, it is natural to ask how fast we
can train a linear network with gradient flow. However,
Theorem 3.8 is notably silent about the convergence rate of
gradient flow (13) to a solution of problem (6). In short, is it
possible for gradient flow to efficiently solve problem (6)?

As we review now, this fundamental question has not been
answered in the literature beyond the lazy training regime.
Indeed, several works have contributed to our understanding
here, including (Shamir, 2018; Bartlett et al., 2019; Du &
Hu, 2019; Wu et al., 2019; Hu et al., 2020; Wu et al., 2019),
and (Gunasekar et al., 2017; Soudry et al., 2018; Ji & Tel-
garsky, 2018; Arora et al., 2019a; Rahaman et al., 2018; Du
et al., 2018a) in the related area of implicit regularization.

For our purposes, (Arora et al., 2018a) exemplifies the cur-
rent state of the art and its shortcomings. Loosely speaking,
Theorem 1 in (Arora et al., 2018a) states that, when the
initial loss is small, gradient flow (13) solves problem (6) to
an accuracy of ε > 0 in the order of

C−(1−
1
N) log(1/ε) (29)

time units, where C is independent of the depth N of the
linear network. For completeness, Theorem 1 in (Arora
et al., 2018a) is reviewed in Appendix K.

Theorem 1 in (Arora et al., 2018a) might disappoint the re-
searchers. For one, (29) suggests that increasing the network
depth N only marginally speeds up the training.

Training Linear Neural Networks

More concerning is that Theorem 1 in (Arora et al., 2018a)
requires a close initialization, which is not necessary for
convergence, see Theorem 3.8. Indeed, Theorem 1 in (Arora
et al., 2018a) hinges on a perturbation argument, whereby
the initialization WN,0 of gradient flow (13) must satisfy

LN (WN,0) = sufficiently small. (see (6)) (30)

In this sense, (Arora et al., 2018a) joins the growing body
of literature that quantifies the behavior of neural networks
when the learning trajectory is short (Du et al., 2018b;
Li & Liang, 2018; Allen-Zhu et al., 2018b;a; Zou et al.,
2018; Arora et al., 2019b; Tian, 2017; Brutzkus & Glober-
son, 2017; Brutzkus et al., 2017; Du & Lee, 2018; Zhong
et al., 2017; Zhang et al., 2018; Wu et al., 2019; Shin & Kar-
niadakis, 2019; Zhang et al., 2019; Su & Yang, 2019; Cao
& Gu, 2019; Chen et al., 2019; Oymak & Soltanolkotabi,
2018), to name a few.

To be sure, restricting the initialization is necessary for
successful training (Sutskever et al., 2013). For example,
gradient flow would stall when initialized at a saddle point.

However, it is widely-believed that first-order algorithms
can successfully train neural networks far beyond the lazy
training regime considered by (Arora et al., 2018a) and
others, and the line of research exemplified by (Arora et al.,
2018a) is, while valuable, highly over-represented in the
literature.

Indeed, the learning trajectory of neural networks is in gen-
eral not short, and the learning is often not local. We refer
to (Chizat et al., 2019; Yehudai & Shamir, 2019) for a de-
tailed critique of lazy training, see also Appendix K.

Let us dub this more general regime non-local training.
Quantifying the non-local convergence rate of linear net-
works is a vital step towards understanding the non-local
training of neural networks in general.

In an important setting, this section indeed quantifies the
non-local training of linear networks, and addresses both of
the shortcomings of Theorem 1 in (Arora et al., 2018a).

More specifically, for the case r = 1 in (9), Theorem 4.4
below quantifies the convergence rate of gradient flow (13)
to a solution of problem (6), even when (30) is violated.

Moreover, Theorem 4.4 establishes that the faraway con-
vergence rate of gradient flow improves by increasing the
network depth. All assumptions for this section are collected
in Assumption 3.6. Let us turn to the details now.

Instead of the convergence rate of gradient flow (13) to
a solution of problem (6), we equivalently study the con-
vergence rate of induced flow (17), as detailed next. The
following result is a consequence of Theorem 3.8, proved
in Appendix L.

Lemma 4.1 (Convergence of induced flow). In the setting
of Theorem 3.8, if gradient flow (13) converges to a solution
of problem (6), then induced flow (17) converges to the
solution Z1 of problem (24). Here, Z1 was defined in (27).

To quantify the convergence rate of induced flow (17), let
us define the new loss function

L1,1(W) :=
1

2
‖Z1 −W‖2F . (see (27)) (31)

In this section, we often opt for subscripts to compactly
show the dependence of variables on time t, for example,Wt

as a shorthand for the induced flowW (t). With r = 1, recall
that induced flow (17) satisfies rank(Wt) ≤ 1, see (9,18).
Assuming that rank(W0) = 1 at initialization, the induced
flow remains rank-1 by Lemma 3.3. Recall also the analytic
SVD of the induced flow in (19). The induced flow thus
admits the analytic thin SVD

Wt
tSVD
= ut · st · v>t , ∀t ≥ 0, (32)

where ut ∈ Rdy and vt ∈ Rdx have unit-norm, and st > 0
is the only nonzero singular value of Wt.

A simple calculation using (32), deferred to Appendix M,
upper bounds the loss function L1,1 in (31) as

L1,1(Wt) ≤

T1,t︷ ︸︸ ︷
1

2
(st − u>t Z1vt)

2

+ sZ(sZ − u>t Z1vt)︸ ︷︷ ︸
T2,t

. (33)

Roughly speaking, T1,t above gauges the error in estimat-
ing the (only) nonzero singular value sZ of the target Z1,
whereas T2,t gauges the misalignment between Wt and Z1.
Both T1,t, T2,t are nonnegative for all t ≥ 0, see (27,32).

To quantify the convergence rate of induced flow (17) to the
global minimizer Z1 of problem (24), we next write down
the evolution of the loss function L1,1 in (31) as

dL1,1(Wt)

dt

=
〈
∇L1,1(Wt), Ẇt

〉
(chain rule)

= −m 〈Wt − Z1,AWt(Wt − Z)〉 , (see (17,25)) (34)

where the last line also uses the whitened data in (23). Start-
ing with the definition of AWt in (16), we can bound the
last line of (34), see in Appendix N for the proof.

Lemma 4.2 (Evolution of loss). For induced flow (17) and

Training Linear Neural Networks

the loss function L1,1 in (31), it holds that

dL1,1(Wt)

dt

≤ −2mNs
2− 2

N
t T1,t − 2ms

2− 2
N

t (u>t Z1vt)T2,t

+
√

2mNs
2− 2

N
t γZ

√
T1,tT2,t + 2ms

2− 2
N

t sZ,2T2,t, (35)

see (26,32,33) for the notation involved.

Loosely speaking, the two nonpositive terms on the right-
hand side of (35) are the contribution of the target matrix Z1

in (27), whereas the two nonnegative terms there are the
contribution of the residual matrix Z − Z1. The (unwanted)
nonnegative terms in (35) vanish if Z = Z1 is rank-1 and,
consequently, γZ = sZ,2 = 0, see (26). In view of (33,35),
we make two observations:

1 Both T1,t and T2,t in (33) appear with negative factors
in the dynamics of (35). For loss L1,1 to reduce rapidly, we
must ensure that st and u>t Z1vt both remain bounded away
from zero for all t ≥ 0.

2 T1,t has a large negative factor of −N in the evolution
of loss function in (35), and is therefore expected to reduce
much faster with time for deeper linear networks.

Let us fix α ∈ [γZ , 1) and β > 1. Given the first observation
above, it is natural to restrict the initialization of gradient
flow to a subset of the feasible set of problem (24), specified
as

Nα,β(Z1) :=
{
W

tSVD
= uW · sW · v>W :

(α− γZ)sZ < sW < βsZ ,

u>WZ1vW > αsZ

}
⊂ Rdy×dx , (36)

where sZ , γZ were defined in (26).

The necessity of such a restriction was discussed after (28),
and the (new) upper bound on sW in (36) controls the (un-
wanted) positive terms in (35). Note that Nα,β(Z1) is a
neighborhood of Z1, i.e., Z1 ∈ Nα,β(Z1) by (27).

Once initialized in Nα,β(Z1), induced flow (17) remains in
Nα,β(Z1), see Appendix O, closely related to Lemma 3.7.

Lemma 4.3 (Stable set). Fix α ∈ [γZ , 1) and β > 1. For
induced flow (17), W0 ∈ Nα,β(Z1) implies that Wt ∈
Nα,β(Z1) for all t ≥ 0. Above, Assumption 3.6 and the
notation therein are in force.

In view of Lemma 4.3, we can now use (36) to bound st and
u>t Z1vt in (35). We can then distinguish two regimes (fast
and slow convergence) in the dynamics of the loss function
in (35) depending on the dominant term on the right-hand
side of (33). The remaining technical details are deferred to
Appendix P and we finally arrive at the following result.

Theorem 4.4 (Convergence rate). With Assumption 3.6 and
its notation in force, fix α ∈ (γZ , 1) and β > 1. Suppose
that the inverse spectral gap γZ is small enough so that the
exponents below are both negative.

Consider gradient flow (13) with the balanced initializa-
tion WN,0 = (W1,0, · · · ,WN,0) ∈ RdN such that W0 :=
WN,0 · · ·W1,0 ∈ Rdy×dx satisfies

rank(W0) = 1, W0
tSVD
= u0s0v

>
0 ,

(α− γZ)sZ < s0 < βsZ , u>0 Z1v0 > αsZ . (37)

Let WN(t) = (W1(t), · · · ,WN (t)) be the output of gradi-
ent flow (13) at time t, and set W (t) := WN (t) · · ·W1(t),
which satisfies rank(W (t)) = 1 for every t ≥ 0.

Let τ ≥ 0 be the first time when s(τ) ≤
√

6sZ , where s(τ)
is the (only) nonzero singular value of W (τ). Then the
distance to the target matrix Z1 in (27) evolves as

∀t ≤ τ, ‖Z1 −W (t)‖2F ≤ ‖Z1 −W0‖2F (38a)

· e−mNs
2− 2

N
Z

(
(α−γZ)2−

2
N −2γZβ2− 2

N

)
t
.

∀t ≥ τ, ‖Z1 −W (t)‖2F ≤ ‖Z1 −W (τ)‖2F (38b)

· e−ms
2− 2

N
Z

(
α(α−γZ)2−

2
N −2γZNβ2− 2

N

)
(t−τ)

.

Under Assumption 3.6, Theorem 4.4 states that gradient
flow successfully trains a linear network with linear rate,
when initialized in the stable set.

As we will see shortly, Theorem 4.4 is the first result to
quantify the convergence rate of gradient flow beyond the
widely-studied lazy training regime. The remarks after The-
orem 3.8 again apply here about Assumption 3.6 and the
case r > 1. A few additional remarks are in order.

1 Rephrasing (38), gradient flow (13) solves problem (6)
to an accuracy of ε > 0 in the order of

1
mNs2Z

(
(α− γZ)2 − 2γZβ

2
)−1

log(C/ε) ε > ε0
1

ms2Z

(
α(α− γZ)2 − 2γZNβ

2
)−1

log(C/ε)

−τ
(
N (α−γZ)2−2γZβ2

α(α−γZ)2−2γZNβ2 − 1
)

ε ≤ ε0

time units. Above, ε0 is the right-hand side of (38b), evalu-
ated at t = τ .

2 In Theorem 4.4, the end-to-end initialization matrix W0

in (37) is positively correlated with the target matrix Z1,
and away from the origin, see our earlier discussions for
the necessity of such restricted initialization. Note also that
(37) should not be seen as an initialization scheme but as a
theoretical result.

3 The faraway convergence rate in (38) improves with
increasing the network depth N , whereas the nearby con-
vergence rate does not appear to benefit from increasing

Training Linear Neural Networks

N . This improved faraway convergence rate should be con-
trasted with Arora’s result in (29).

4 Crucially, the lazy training results fail to apply here. To
see this, with the initialization WN,0 = (W1,0, · · · ,WN,0),
Claim 1 in (Arora et al., 2018a) uses a perturbation argu-
ment, which requires that

‖Z −WN,0 · · ·W1,0‖F < smin(Z), (39)

which is impossible unless trivially rank(Z) ≤ r. Indeed,
the network architecture forces that rank(WN,0 · · ·W1,0) ≤
r, see (9).

In contrast, Theorem 4.4 applies even when (39) is violated,
as it does away entirely with the limitations of a perturbation
argument. Theorem 4.4 thus ventures beyond the reach of
the lazy training regime in (Arora et al., 2018a), which has
dominated the recent literature of neural networks, thus
signifying the importance of this breakthrough.

Thorough numerics for linear networks are abound, see for
example (Bah et al., 2019; Arora et al., 2018a;b), and we
refrain from lengthy simulations and only provide a numeri-
cal example in Figure 1. to visualize the (gradual) change of
regimes from fast to slow convergence, see (38a,38b). This
example also suggests new research questions about linear
networks.

0 2 4 6

10-1

100

Figure 1. Suppose that the sample size is m = 50, and consider a
randomly-generated whitened training dataset

(X,Y) ∈ Rdx×m × Rdy×m,

with dx = 5 and dy = 1. For this dataset, the above figure
depicts the distance from induced flow (17) to the target vector
Z1 = Z = Y X>/m in (25,27), plotted versus time t, for training
a linear network with dx inputs and dy outputs, as the network
depth N varies.

The direction of the initial end-to-end vector W0 ∈ Rdy×dx is
obtained by randomly rotating the direction of the target vector
Z1 by about 30 degrees. We also set ‖W0‖2 = 10‖Z‖2. Instead
of induced flow (17), we implemented the discretization of (17)
obtained from the explicit (or forward) Euler method with a step
size of 10−6 with 105 steps.

This simple numerical example visualizes the (gradual) slow-down
in the convergence rate of gradient flow with time, see (38), and
also shows the faster faraway convergence rate for deeper networks,
see Theorem 4.4.

The above figure also suggests that the nearby convergence rate of
gradient flow (13) might actually be slower for deeper networks.
It is however difficult to theoretically infer this from Theorem 4.4,
because (38b) is an upper bound for the nearby error. The precise
nearby convergence rates of linear networks (and any trade-offs
associated with the network depth) thus remain as open questions.
Note also that the local analysis of (Arora et al., 2018a) cannot be
applied here, as discussed after Theorem 4.4.

Training Linear Neural Networks

References
Absil, P.-A., Mahony, R., and Andrews, B. Convergence of

the iterates of descent methods for analytic cost functions.
SIAM Journal on Optimization, 16(2):531–547, 2005.

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and generaliza-
tion in overparameterized neural networks, going beyond
two layers. arXiv preprint arXiv:1811.04918, 2018a.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. arXiv preprint
arXiv:1811.03962, 2018b.

Arora, S., Cohen, N., Golowich, N., and Hu, W. A conver-
gence analysis of gradient descent for deep linear neural
networks. arXiv preprint arXiv:1810.02281, 2018a.

Arora, S., Cohen, N., and Hazan, E. On the optimization of
deep networks: Implicit acceleration by overparameteri-
zation. arXiv preprint arXiv:1802.06509, 2018b.

Arora, S., Cohen, N., Hu, W., and Luo, Y. Implicit regu-
larization in deep matrix factorization. arXiv preprint
arXiv:1905.13655, 2019a.

Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R. Fine-
grained analysis of optimization and generalization for
overparameterized two-layer neural networks. arXiv
preprint arXiv:1901.08584, 2019b.

Bah, B., Rauhut, H., Terstiege, U., and Westdickenberg,
M. Learning deep linear neural networks: Riemannian
gradient flows and convergence to global minimizers.
arXiv preprint arXiv:1910.05505, 2019.

Baldi, P. and Hornik, K. Neural networks and principal
component analysis: Learning from examples without
local minima. Neural networks, 2(1):53–58, 1989.

Bartlett, P. L., Helmbold, D. P., and Long, P. M. Gradi-
ent descent with identity initialization efficiently learns
positive-definite linear transformations by deep residual
networks. Neural computation, 31(3):477–502, 2019.

Berthet, Q., Rigollet, P., et al. Optimal detection of sparse
principal components in high dimension. The Annals of
Statistics, 41(4):1780–1815, 2013.

Brutzkus, A. and Globerson, A. Globally optimal gradient
descent for a convnet with gaussian inputs. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 605–614. JMLR. org, 2017.

Brutzkus, A., Globerson, A., Malach, E., and Shalev-
Shwartz, S. Sgd learns over-parameterized networks
that provably generalize on linearly separable data. arXiv
preprint arXiv:1710.10174, 2017.

Cao, Y. and Gu, Q. Generalization bounds of stochastic
gradient descent for wide and deep neural networks. In
Advances in Neural Information Processing Systems, pp.
10835–10845, 2019.

Chen, Z., Cao, Y., Zou, D., and Gu, Q. How much over-
parameterization is sufficient to learn deep relu networks?
arXiv preprint arXiv:1911.12360, 2019.

Chitour, Y., Liao, Z., and Couillet, R. A geometric approach
of gradient descent algorithms in neural networks. arXiv
preprint arXiv:1811.03568, 2018.

Chizat, L., Oyallon, E., and Bach, F. On lazy training in
differentiable programming. 2019.

Deshpande, Y. and Montanari, A. Information-theoretically
optimal sparse pca. In 2014 IEEE International Sym-
posium on Information Theory, pp. 2197–2201. IEEE,
2014.

Du, S. S. and Hu, W. Width provably matters in opti-
mization for deep linear neural networks. arXiv preprint
arXiv:1901.08572, 2019.

Du, S. S. and Lee, J. D. On the power of over-
parametrization in neural networks with quadratic ac-
tivation. arXiv preprint arXiv:1803.01206, 2018.

Du, S. S., Hu, W., and Lee, J. D. Algorithmic regularization
in learning deep homogeneous models: Layers are auto-
matically balanced. In Advances in Neural Information
Processing Systems, pp. 384–395, 2018a.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. arXiv preprint arXiv:1810.02054, 2018b.

Eckart, C. and Young, G. The approximation of one matrix
by another of lower rank. Psychometrika, 1:211–218,
1936. doi: 10.1007/BF02288367.

Eftekhari, A., Hauser, R., and Grammenos, A. Moses: A
streaming algorithm for linear dimensionality reduction.
IEEE transactions on pattern analysis and machine intel-
ligence, 2019.

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from
saddle points—online stochastic gradient for tensor de-
composition. In Conference on Learning Theory, pp.
797–842, 2015.

Golub, G. H., Hoffman, A., and Stewart, G. W. A general-
ization of the eckart-young-mirsky matrix approximation
theorem. Linear Algebra and its applications, 88:317–
327, 1987.

Training Linear Neural Networks

Gunasekar, S., Woodworth, B. E., Bhojanapalli, S.,
Neyshabur, B., and Srebro, N. Implicit regularization
in matrix factorization. In Advances in Neural Informa-
tion Processing Systems, pp. 6151–6159, 2017.

Hardt, M. and Ma, T. Identity matters in deep learning.
arXiv preprint arXiv:1611.04231, 2016.

Hauser, R. A. and Eftekhari, A. Pca by optimisation of
symmetric functions has no spurious local optima. arXiv
preprint arXiv:1805.07459, 2018.

Hauser, R. A., Eftekhari, A., and Matzinger, H. F. Pca by
determinant optimisation has no spurious local optima.
In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 1504–1511, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European conference on
computer vision, pp. 630–645. Springer, 2016.

Helmke, U. and Shayman, M. A. Critical points of matrix
least squares distance functions. Linear Algebra and its
Applications, 215:1–19, 1995.

Hu, W., Xiao, L., and Pennington, J. Provable benefit of or-
thogonal initialization in optimizing deep linear networks.
arXiv preprint arXiv:2001.05992, 2020.

Illashenko and Yakovenko. Lectures on analytic differential
equations, volume 86. American Mathematical Soc.,
2008.

Ji, Z. and Telgarsky, M. Gradient descent aligns the layers of
deep linear networks. arXiv preprint arXiv:1810.02032,
2018.

Johnstone, I. M. et al. On the distribution of the largest
eigenvalue in principal components analysis. The Annals
of statistics, 29(2):295–327, 2001.

Kawaguchi, K. Deep learning without poor local minima.
In Advances in neural information processing systems,
pp. 586–594, 2016.

Laurent, T. Deep linear networks with arbitrary loss: All
local minima are global. 2018.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B.
Gradient descent converges to minimizers. arXiv preprint
arXiv:1602.04915, 2016.

Lee, J. D., Panageas, I., Piliouras, G., Simchowitz, M.,
Jordan, M. I., and Recht, B. First-order methods
almost always avoid saddle points. arXiv preprint
arXiv:1710.07406, 2017.

Li, Y. and Liang, Y. Learning overparameterized neural
networks via stochastic gradient descent on structured
data. In Advances in Neural Information Processing
Systems, pp. 8157–8166, 2018.

Lojasiewicz, S. On the trajectories of the gradient of an
analytical function. 1983:115–117, 1982.

Lu, H. and Kawaguchi, K. Depth creates no bad local
minima. arXiv preprint arXiv:1702.08580, 2017.

Mackey, L. W. Deflation methods for sparse pca. In Ad-
vances in neural information processing systems, pp.
1017–1024, 2009.

Mirsky, L. Symmetric gauge functions and unitarily in-
variant norms. Quart. J. Math. Oxford, pp. 1156–1159,
1966.

Murphy, K. P. Machine learning: a probabilistic perspective.
MIT press, 2012.

Nguyen, Q. On connected sublevel sets in deep learning.
arXiv preprint arXiv:1901.07417, 2019.

Oymak, S. and Soltanolkotabi, M. Overparameterized non-
linear learning: Gradient descent takes the shortest path?
arXiv preprint arXiv:1812.10004, 2018.

Parks, H. R. and Krantz, S. A primer of real analytic func-
tions. Birkhäuser Verlag Boston (MA), 1992.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F. A., Bengio, Y., and Courville, A. On
the spectral bias of neural networks. arXiv preprint
arXiv:1806.08734, 2018.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

Shamir, O. Exponential convergence time of gradient de-
scent for one-dimensional deep linear neural networks.
arXiv preprint arXiv:1809.08587, 2018.

Shin, Y. and Karniadakis, G. E. Trainability and data-
dependent initialization of over-parameterized relu neural
networks. arXiv preprint arXiv:1907.09696, 2019.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and
Srebro, N. The implicit bias of gradient descent on sepa-
rable data. The Journal of Machine Learning Research,
19(1):2822–2878, 2018.

Su, L. and Yang, P. On learning over-parameterized neural
networks: A functional approximation prospective. arXiv
preprint arXiv:1905.10826, 2019.

Training Linear Neural Networks

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In International conference on machine learning, pp.
1139–1147, 2013.

Tian, Y. An analytical formula of population gradient for
two-layered relu network and its applications in con-
vergence and critical point analysis. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 3404–3413. JMLR. org, 2017.

Townsend, J. Differentiating the singular value decomposi-
tion. Technical report, Technical report, 2016.

Trager, M., Kohn, K., and Bruna, J. Pure and spurious criti-
cal points: a geometric study of linear networks. arXiv
preprint arXiv:1910.01671, 2019.

Vershynin, R. How close is the sample covariance matrix
to the actual covariance matrix? Journal of Theoretical
Probability, 25(3):655–686, 2012.

Wu, X., Du, S. S., and Ward, R. Global convergence of adap-
tive gradient methods for an over-parameterized neural
network. arXiv preprint arXiv:1902.07111, 2019.

Yan, W.-Y., Helmke, U., and Moore, J. B. Global analysis
of oja’s flow for neural networks. IEEE Transactions on
Neural Networks, 5(5):674–683, 1994.

Yehudai, G. and Shamir, O. On the power and limitations
of random features for understanding neural networks.
arXiv preprint arXiv:1904.00687, 2019.

Yun, C., Sra, S., and Jadbabaie, A. Global optimality
conditions for deep neural networks. arXiv preprint
arXiv:1707.02444, 2017.

Zhang, G., Martens, J., and Grosse, R. Fast convergence
of natural gradient descent for overparameterized neural
networks. arXiv preprint arXiv:1905.10961, 2019.

Zhang, X., Yu, Y., Wang, L., and Gu, Q. Learning one-
hidden-layer relu networks via gradient descent. arXiv
preprint arXiv:1806.07808, 2018.

Zhang, Y. and Ghaoui, L. E. Large-scale sparse principal
component analysis with application to text data. In
Advances in Neural Information Processing Systems, pp.
532–539, 2011.

Zhong, K., Song, Z., and Dhillon, I. S. Learning non-
overlapping convolutional neural networks with multiple
kernels. arXiv preprint arXiv:1711.03440, 2017.

Zhu, Z., Soudry, D., Eldar, Y. C., and Wakin, M. B. The
global optimization geometry of shallow linear neural
networks. Journal of Mathematical Imaging and Vision,
pp. 1–14, 2019.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. Stochastic gradient
descent optimizes over-parameterized deep relu networks.
arXiv preprint arXiv:1811.08888, 2018.

Training Linear Neural Networks

A. Derivation of (10a,10b)
To show (10a,10b), it suffices to show that the map

Π(dN) : RdN →MdN×d0
1,··· ,r

WN = (W1, · · · ,WN)→W = WN · · ·W1, (40)

is surjective, which we now set out to do.

Above, dN = (d0, · · · , dN) and RdN = Rd0 × · · · × RdN
is the domain of the function. Also,MdN×d0

1,··· ,r ⊂ RdN×d0
is the set of all dN × d0 matrices of rank at most r. As a
side note,MdN×d0

1,··· ,r is the closure of the manifold of rank-
r matrices. Lastly, the network architecture dictates that
satisfies

min
j
dj = r. (see (9)) (41)

The proof of this surjective property is by induction.

The base of induction forN = 1 is trivial because Π(d0, d1)
is simply the identity map by (40) and thus surjective, in
particular for any pair of integers (d0, d1) that satisfies (41).

For the step of induction, suppose that Π(dN) is surjective
for every tuple dN = (d0, · · · , dN) that satisfies (41).

For an arbitrary integer dN+1, consider also an arbitrary
matrix

W ∈MdN+1×d0
1,··· ,r , (42)

with the SVD

W
SVD
= Ũ · S̃Ṽ > =: Ũ · Q̃, (43)

where Ũ ∈ RdN+1×dN+1 and Ṽ ∈ Rd0×d0 are orthonor-
mal bases, and S̃ ∈ RdN+1×d0 contains the singular values
of W .

In particular, note that Q̃ ∈ RdN+1×d0 . Note also that (42)
implies that

rank(Q̃) = rank(W) ≤ r, (44)

because Ũ is an orthonormal basis.

Combining (41) and (44), we reach

rank(Q̃) ≤ r ≤ dN . (45)

In view of (45), it is therefore possible (by padding with
zero columns or removing some columns from Ũ and the
corresponding rows from Q̃) to create Ũ ′ and Q̃′ such that

W = Ũ ′ · Q̃′>,

where Ũ ′ ∈ RdN+1×dN , Q̃′ ∈ RdN×d0 . (46)

In this construction, rank(Q̃′) = rank(Q̃) ≤ r and Q̃′ ∈
RdN×d0 . Consequently, the step of induction guarantees the
existence of WN = (WN , · · · ,W1) ∈ RdN such that

Q̃′ = WN · · ·W1. (47)

It follows that

W = Ũ ′ · Q̃′ (see (46))

= Ũ ′WN · · ·W1. (see (47)) (48)

That is,

W = Π(d0, · · · , dN+1)[W1, · · · ,WN , Ũ
′], (49)

which completes the induction. We thus proved that Π(dN)
is a surjective map for every tuple dN that satisfies (41).

B. Proof of Lemma 2.4
Let WN = (W 1, · · · ,WN) ∈ RdN be an FOSP of
problem (6). For an infinitesimally small perturbation
∆N = (∆1, · · · ,∆N) ∈ RdN , we can expand LN in (6) as

LN (WN + ∆N)

= LN (WN) +∇LN (WN)[∆N]

+
1

2
∇2LN (WN)[∆N] + o

= LN (WN) +
1

2
∇2LN (WN)[∆N] + o. (50)

where o represents (negligible) higher order terms, and the
second identity above holds because WN is assumed to
be an FOSP in Lemma 2.4, see Definition 2.1. Above,
∇2LN (WN)[∆N] contains all second order terms in the
variables ∆N.

Let j0 correspond to a layer with the smallest width within
the linear network (2,3), i.e.,

r = min
j≤N

dj (see (9))

= dj0 . (51)

We also set

P := WN · · ·W j0+1 ∈ Rdy×r,
Q := W j0 · · ·W 1 ∈ Rr×dx , (52)

for short, and note that

W := P ·Q = WN · · ·W 1,

rank(W) = rank(P) = rank(Q) = r, (53)

where the second line above holds by the assumption of
Lemma 2.4.

Training Linear Neural Networks

Indeed, W = P ·Q implies that

min(rank(P), rank(Q)) ≥ r. (54)

Note also that P has r columns and Q has r rows, thus

max(rank(P), rank(Q)) ≤ r. (55)

Together, (54) and (55) give the second line of (53).

On the one hand, for an arbitrary (∆P ,∆Q), we can relate
the perturbation of WN to the perturbation of (P ,Q) as

(WN + ∆N) · · · (W 1 + ∆1)

= (P + ∆P)(Q+ ∆Q), (56)

where

∆1 = W 1Q
†
∆Q,

∆i = 0, 2 ≤ i ≤ N − 1,

∆N = ∆PP
†
WN , (57)

and † denotes the pseudo-inverse, and we used the second
identity in (53).

Indeed, for the choice of ∆N in (57), it holds that

(WN + ∆N) · · · (W 1 + ∆1)

= (WN + ∆PP
†
WN)WN−1 · · ·

· · ·W 2(W 1 +W 1Q
†
∆Q) (see (57))

= (Idy + ∆PP
†
)WNWN−1 · · ·

· · ·W 2W 1(Idx +Q
†
∆Q)

= (Idy + ∆PP
†
)P ·Q(Idx +Q

†
∆Q) (see (53))

= (P + ∆P)(Q+ ∆Q), (58)

which agrees with (56). The last line above uses the second
identity in (53), i.e., rank(P) = rank(Q) = r. Above,
Idy ∈ Rdy×dy is the identity matrix.

On the other hand, we can expand L2 in (10a) as

L2(P + ∆P , Q+ ∆Q)

= L2(P ,Q) +∇L2(P ,Q)[∆P ,∆Q]

+∇2L2(P ,Q)[∆P ,∆Q] + o, (59)

where o again higher order terms. Above,
∇L2(P ,Q)[∆P ,∆Q] collects all first order terms in
the variables (∆P ,∆Q). Likewise, ∇2L2(P ,Q)[∆P ,∆Q]
contains all second order terms in (∆P ,∆Q).

For convenience, let us define the map

L1 :Rdy×dx → R

W → 1

2
‖Y −WX‖2F , (60)

and note that

L2(P,Q) = L1(PQ), (see (10b))
LN (WN) = L1(WN · · ·W1), (see (6)) (61)

for every P,Q,WN.

In view of (61), we now write that

L2(P + ∆P , Q+ ∆Q)

= L1((P + ∆P)(Q+ ∆Q)) (see (61))

= L1((WN + ∆N) · · · (W 1 + ∆1)) (see (56))

= LN (WN + ∆N), (see (61)) (62)

for ∆N = (∆1, · · · ,∆N) specified in (57).

As a result of (62), the expansions in (50) and (59) must
match. That is, for an arbitrary (∆P ,∆Q) and the corre-
sponding choice of ∆N in (56), it holds that

∇L2(P ,Q)[∆P ,∆Q]

= ∇LN (WN)[∆N] = 0, (see (50,59)) (63)

and

∇2L2(P ,Q)[∆P ,∆Q]

= ∇2LN (WN)[∆N]. (see (50,59)) (64)

It follows from (63) that (P ,Q) is an FOSP of problem (10a)
if WN is an FOSP of problem (6).

Moreover, if WN is an SOSP of problem (6), then the last
line of (64) is nonnegative, see Definition 2.2. That is,

∇2L2(P ,Q)[∆P ,∆Q]

= ∇2LN (WN)(∆N) ≥ 0, (65)

for an arbitrary (∆P ,∆Q) and the corresponding choice of
∆N in (56). Therefore, (P ,Q) is an SOSP of problem (10a)
if WN is an SOSP of problem (6). This completes the proof
of Lemma 2.4.

C. Proof of Lemma 2.5
Recall that PX and PX⊥ denote the orthogonal projections
onto the row span of X and its complement, respectively.

Using the decomposition Q′ = Q′PX + Q′PX⊥ , the last
program in (12) can be written as

min
P,Q′

1

2
‖Y PX − PQ′‖2F

= min
P,Q′

1

2
‖Y PX − PQ′PX‖2F +

1

2
‖PQ′PX⊥‖2F . (66)

Training Linear Neural Networks

From the above decomposition, it is evident that the mini-
mum above is achieved when the last term in (66) vanishes.
This observation allows us to write that

min
P,Q′

1

2
‖Y PX − PQ′‖2F

= min
P,Q′

1

2
‖Y PX − PQ′PX‖2F (see (66))

=

{
min
P,Q′

1
2‖Y PX − PQ

′′‖2F
subject to Q′′ = Q′PX

=

{
min
P,Q′′

1
2‖Y PX − PQ

′′‖2F
subject to row span(Q′′) ⊆ row span(X)

=

{
min
P,Q′′

1
2‖Y PX − PQ

′′‖2F
subject to Q′′ = QX

= min
P,Q

1

2
‖Y PX − PQX‖2F , (67)

which proves the tight relaxation claimed in (12). The third
identity above uses the fact that the map

Rr×m → row span(X)

Q′ → Q′′ = Q′PX (68)

is surjective.

To prove the second claim in Lemma 2.5, let (P ,Q) be an
FOSP of problem (10b), which satisfies

0 = (Y − P ·QX)X>Q
>
,

0 = P
>

(Y − P ·QX)X>. (69)

After setting

Q
′

= QX, (70)

the above identities read as

0 = (Y − P ·QX)X>Q
>

(see (69))

= (Y PX − P ·QX)X>Q
>

= (Y PX − P ·Q
′
)Q
′>
, (71)

and

0 = P
>

(Y − P ·QX)X> (see (69))

= P
>

(Y PX − P ·QX)X>

= P
>

(Y PX − P ·Q
′
)X>. (72)

Recall that

row span(Q
′
) ⊆ row span(X). (see (70)) (73)

With this in mind, (72) implies that

0 = P
>

(Y PX − P ·Q
′
)X> (see (72))

= P
>

(Y PX − P ·Q
′
), (see (73)) (74)

where we also used the assumption that XX> is invertible.

By combining (71,74), we conclude that (P ,Q
′
) is an FOSP

of problem (12) if (P ,Q) is an FOSP of problem (10b).

To prove the last claim of Lemma 2.5, let (P ,Q) be an
SOSP of problem (10b), which satisfies

1

2
‖∆PQX + P∆QX‖2F + 〈P ·QX − Y,∆P∆QX〉 =

1

2
‖∆PQX + P∆QX‖2F + 〈P ·QX − Y PX ,∆P∆QX〉

≥ 0, ∀(∆P ,∆Q). (75)

Let us set Q
′

= QX as before, and also note that the map

Rr×dx → row span(X)

∆Q → ∆Q′ = ∆QX (76)

is evidently surjective. Then we may rewrite (75) as

1

2
‖∆PQ

′
+ P∆Q′‖2F + 〈P ·Q′ − Y PX ,∆P∆Q′〉 ≥ 0,

∀(∆P ,∆Q′) ∈ Rdy×r × row span(X), (77)

On the other hand, recall again (73). When

∆Q′ ⊥ row span(X), (78)

we have that

1

2
‖∆PQ

′
+ P∆Q′‖2F + 〈P ·Q′ − Y PX ,∆P∆Q′〉

=
1

2
‖∆PQ

′‖2F + ‖P∆Q′‖2F ≥ 0,

∀(∆P ,∆Q′) ∈ Rdy×r × row span(X)⊥, (79)

where the identity above uses (73,78). By combin-
ing (77,79), we reach

1

2
‖∆PQ

′
+ P∆Q′‖2F + 〈P ·Q′ − Y PX ,∆P∆Q′〉

≥ 0, ∀(∆P ,∆Q′). (80)

It is evident from (80) that (P ,Q
′
) is an SOSP of prob-

lem (12) if (P ,Q) is an SOSP of problem (10b). This
completes the proof of Lemma 2.5.

D. Proof of Theorem 2.8
We begin with a technical lemma below, proved with the aid
of EYM Theorem 2.7. This result is standard but a proof is
included for completeness.

Training Linear Neural Networks

Lemma D.1. If rank(Y PX) ≥ r, then any SOSP (P ,Q
′
)

of problem (12) is a global minimizer of problem (12) and
satisfies

rank(P) = rank(Q
′
) = rank(W) = r, (81)

where W = P ·Q′.

Before proving the above lemma in the next appendix, let
us show how it can be used to prove Theorem 2.8.

Let us assume that rank(Y PX) ≥ r, so that Lemma D.1
is in force. Then any SOSP (P ,Q

′
) of problem (12) is a

global minimizer of problem (12) and satisfies (81).

Let us also assume that XX> is invertible, so that Lemma
2.6 is in force. Lemma 2.6 then implies that any SOSP
WN of problem (6) corresponds to an SOSP (P ,Q

′
) of

problem (12), provided that W = WN · · ·W 1 is rank-r.
The relationship between these quantities is

WN · · ·W 1X = WX = P ·Q′. (see (53,70) (82)

In light of the preceding paragraph, we observe that any
SOSP WN of problem (12) corresponds to a global mini-
mizer (P ,Q

′
) of problem (12), provided that W is rank-r.

Using the decomposition Y = Y PX + Y PX⊥ , we can
therefore write that

1

2
‖Y −WN · · ·W 1X‖2F

=
1

2
‖Y PX −WN · · ·W 1X‖2F +

1

2
‖Y PX⊥‖2F

=
1

2
‖Y PX − P ·Q

′‖2F +
1

2
‖Y PX⊥‖2F (see (82))

= min
P,Q′

1

2
‖Y PX − PQ′‖2F +

1

2
‖Y PX⊥‖2F

= min
P,Q

1

2
‖Y − PQX‖2F (see (12))

= min
W1,··· ,WN

1

2
‖Y −WN · · ·W1X‖2F . (see (10b)) (83)

That is, any SOSPWN of problem (6) is a global minimizer
of problem (6), provided that W is rank-r. This completes
the proof of Theorem 2.8.

D.1. Proof of Lemma D.1

We conveniently assume that

rank(Y PX) = r, (84)

but the same argument is valid also when rank(Y PX) > r.
Let

Y PX
tSVD
= Ũ S̃Ṽ (85)

denote the thin SVD of Y PX , where Ũ ∈ Rdy×r has or-
thonormal columns, Ṽ ∈ Rr×m has orthonormal rows, and
the diagonal matrix S̃ ∈ Rr×r contains the singular values
of Y PX .

By the way of contradiction, suppose that (P ,Q
′
) is an

SOSP of problem (12) such that

rank(P ·Q′) < r. (86)

Without loss of generality, we can in fact replace (86) with

rank(P) = rank(Q
′
) = rank(P ·Q′) < r. (87)

(Indeed, for example if rank(P) < rank(Q
′
) < r, then

(PPS ,PSQ
′
) takes the same objective value in prob-

lem (12) as (P ,Q
′
). Here, PS is the orthogonal projection

onto the subspace S = row span(P) ∩ column span(Q
′
).

On the other hand, by EYM Theorem 2.7, the SOSP (P ,Q
′
)

is in fact a global minimizer of problem (12). Therefore,
(PPS ,PSQ

′
) too is a global minimizer of problem (12)

and a fortiori an SOSP of problem (12). We can thus re-
place (P ,Q

′
) with the SOSP (PPS ,PSQ

′
) which satisfies

rank(PPS) = rank(PSQ
′
) < r. That is, the assumption

made in (87) indeed does not reduce the generality of the
following argument.)

Assuming (87), next note that (P ,Q
′
) satisfies

P =
[
USP 0dy×1

]
∈ Rdy×r

Q
′

=

[
SQ′V
01×dx

]
∈ Rr×m, (88)

where U ∈ Rdy×(r−1) and V ∈ R(r−1)×m correspond to
those left and right singular vectors of Y PX that might
be present in P ·Q′, see for example Lemma 5.1 (Item 5)
in (Hauser & Eftekhari, 2018).

In (88), SP , SQ′ ∈ Rr×r are (not necessarily diagonal)
matrices, and we note that U and V are column and row
submatrices of Ũ and Ṽ , respectively.

In view of (84,85,86), there exists a unique pair (u, v) of left
and right singular vectors of Y PX that is absent from (88),
i.e.,

U>u = 0, V >v = 0. (89)

To match the representation in (85), note that u above is a
column-vector whereas v is a row-vector. In particular,

Ũ =
[
U u

]
, Ṽ =

[
V
v

]
,

Y PX = Ũ S̃Ṽ = USV + usv, (see (85)) (90)

Training Linear Neural Networks

where S ∈ Rr−1 and s ∈ R collect the singular values
corresponding to (U, V) and (u, v), respectively.

To proceed, consider inifinetsimally small scalars δu
and δv. Consider also an infinitesimally small perturbation
(∆P ,∆Q′) in (P ,Q

′
), specified as

P + ∆P =
[
USP δuu

]
Q
′
+ ∆Q′ =

[
SQ′V
δvv

]
. (91)

It immediately follows that

(P + ∆P)(Q
′
+ ∆Q′)

=
[
USP δuu

]
·
[
SQ′V
δvv

]
(see (91))

= USPSQ′V + δuδvuv

= P ·Q′ + δuδvuv. (see (88)) (92)

From (89), it is evident that the perturbation in (92) is or-
thogonal to P ·Q′.

To continue, let us define the orthogonal projections PU =
UU> and Pu = uu>, and define PV ,Pv similarly. In
particular, we can decompose Y PX as

Y PX = (PU + Pu)(Y PX)(PV + Pv)
= PU (Y PX)PV + Pu(Y PX)Pv, (93)

where the cross terms above vanish by properties of the
SVD, see (85,89). Indeed, for example,

PU (Y PX)Pv = UU>(Ũ S̃Ṽ)v>v (see (85))

= UU>(USV + usv)v>v (see (90))

= UU>usv (see (89))
= 0, (see (89)) (94)

where S and s collect the corresponding singular values
for the singular vectors collected in (U, V) and (u, v), re-
spectively. We will use the decomposition (93) immediately
below.

Under the perturbation in (91), the objective function of

problem (12) becomes

1

2
‖Y PX − (P + ∆P)(Q

′
+ ∆Q′)‖2F (95)

=
1

2
‖Y PX − (P + δuu)(Q

′
+ δvv)‖2F (see (91))

=
1

2
‖Y PX − P ·Q

′ − δuδvuv‖2F (see (92))

=
1

2
‖(PU + Pu)

· (Y PX − P ·Q
′ − δuδvuv)(PV + Pv)‖2F

=
1

2
‖(PU (Y PX)PV − P ·Q

′
)

+ (Pu(Y PX)Pv − δuδvuv)‖2F (see (93))

=
1

2
‖PU (Y PX)PV − P ·Q

′‖2F

+
1

2
‖Pu(Y PX)Pv − δuδvuv‖2F (see (88))

=
1

2
‖PU (Y PX)PV − P ·Q

′‖2F

+
1

2
|u>(Y PX)v> − δuδv|2. (96)

It is now clear from (96) that the perturbation in (91) de-
creases the objective function of problem (12) if we choose
the signs of δu and δv carefully.

Indeed, we can upper bound the last line of (96) as

1

2
‖Y PX − (P + δu)(Q

′
+ δv)‖2F

=
1

2
‖PU (Y PX)PV − P ·Q

′‖2F

+
1

2
|u>(Y PX)v> − δuδv|2 (see (96))

<
1

2
‖PU (Y PX)PV − P ·Q

′‖2F +
1

2
‖u>(Y PX)v‖2F

=
1

2
‖PU (Y PX)PV − P ·Q

′‖2F +
1

2
‖Pu(Y PX)Pv‖2F

=
1

2
‖Y PX − P ·Q

′‖2F , (see (88,93)) (97)

where we chose δuδv above such that sign(δuδv) =
sign(u>(Y PX)v>).

Note that (97) contradicts the assumption that (P ,Q
′
) is an

SOSP of problem (12), see Definition 2.2. In fact, (P ,Q
′
)

is a strict saddle point of problem (12) because (∆P ,∆Q′)
is a descent direction, see Definition 2.3.

Provided that rank(Y PX) ≥ r, we conclude that any SOSP
(P ,Q

′
) of problem (12) satisfies

rank(W) = r, where W = P ·Q′. (98)

We can in fact replace the conclusion in (98) with

rank(P) = rank(Q
′
) = rank(W) = r. (99)

Training Linear Neural Networks

Indeed, max(rank(P), rank(Q
′
)) ≤ r because P has r

columns and Q
′

has r rows, see (12). On the other hand,
min(P ,Q

′
) ≥ r because of (98). These two observations

imply that rank(P) = rank(Q
′
) = r, as claimed in (99).

Lastly, by EYM Theorem 2.7, any SOSP of the PCA prob-
lem (12) is also a global minimizer of problem (12). This
completes the proof of Lemma D.1.

E. Another Proof for Theorem 2.8
Here, we establish Theorem 2.8 with Proposition 32 in (Bah
et al., 2019) as the starting point. For completeness, let us
first recall their result, adapted to our notation.

Proposition E.1. For every r′ ∈ [r], An SOSP WN ∈
MN,r′ of problem (6) is a global minimizer ofLN restricted
to the setMN,r′ .

Next, let us recall from (10b,12) that

min
WN

LN (WN)

= min
W1,··· ,WN

1

2
‖Y −WN · · ·W1X‖2F (see (4,6))

= min
P,Q

1

2
‖Y − PQX‖2F (see (10b))

=
1

2
‖Y PX⊥‖2F + min

P,Q′

1

2
‖Y PX − PQ′‖2F , (100)

where the last line above is from (12).

In view of (100), a global minimizer W o
N =

(W o
1 , · · · ,W o

N) of problem (6) (the first program in (100))
corresponds to a global minimizer (P o, Q′o) of prob-
lem (12) (the last program in (100)) such that

W o
N · · ·W o

1 =: W o, W oX = P oQ′o. (101)

By assumption of Theorem 2.8, it holds that rank(Y PX) ≥
r. We can therefore invoke Lemma D.1 in Appendix D to
find that

rank(W o
N · · ·W o

1) = rank(W o) (see (101))
= r. (see Lemma D.1) (102)

It is convenient to rewrite (102) as

(W o
1 , · · · ,W o

N) ∈MN,r, (103)

where

MN,r :=
{
WN = (WN , · · · ,W1)

: rank(WN · · ·W1) = r
}
⊂ RdN . (104)

On the other hand, with k = r, Proposition 32 in (Bah et al.,
2019) states that an SOSP WN ∈MN,r of problem (6) is

almost surely a global minimizer of LN restricted to the set
MN,r. In view of (103), we see that WN is in fact a global
minimizer of LN in RdN . This completes our alternative
proof for Theorem 2.8.

F. Theorem 35(a) in (Bah et al., 2019)
For completeness, here we recall Theorem 35(a) in (Bah
et al., 2019), adapted to our notation.

Theorem 35(a) (Bah et al., 2019). Suppose that X has full
column-rank and that rank(Y X†X) ≥ r. Then gradient
flow (13) converges to a global minimizer of LN restricted
to theMN,r′ for some r′ ≤ r from any initialization outside
of a subset with Lebesgue measure zero.

The key drawback of Theorem 35(a) above is it cannot
ensure the convergence of gradient flow (13) to a global
minimizer of LN . For example, if r′ = 0 above, then
gradient flow converges to the zero matrix, which is known
to be a non-strict saddle point of problem (6) when N ≥ 2.

G. Proof of Lemma 3.1
On the one hand, note that the objective function LN (WN)
of problem (6) is analytic in WN.

On the other hand, recall the assumption thatXX> is invert-
ible. Then, regardless of initialization, gradient flow (13) is
bounded, i.e., contained in a finite ball centered at the origin,
see Step 1 in the proof of Theorem 11 in (Bah et al., 2019).

We can now invoke the Lojasiewicz’ theorem, see for ex-
ample Theorem 10 in (Bah et al., 2019) or (Absil et al.,
2005; Lojasiewicz, 1982), to conclude that gradient flow
converges to an FOSP WN of problem (6), regardless of
initialization.

Lastly, gradient flow (13) avoids strict saddle points of LN
for almost every initialization WN,0, with respect to the
Lebesgue measure in RdN , see Theorem 4.1 in (Lee et al.,
2016).1

We conclude that the limit point WN of gradient flow (13)
is in fact an SOSP of problem (6), for almost every initial-
ization with respect to the Lebesgue measure in RdN . This
completes the proof of Lemma 3.1.

Part of this argument is identical to the one in Theorem 11
of (Bah et al., 2019).

1Strictly speaking,Theorem 4.1 in (Lee et al., 2016) is for
gradient descent with a sufficiently small step size. However, their
claim also holds for the limit case of gradient flow, as the step size
of gradient descent goes to zero.

Training Linear Neural Networks

H. Proof of Lemma 3.3
In the SVD ofW (t) in (19), we let {si(t)}

min(dy,dx)
i=1 denote

the singular values of W (t) in no particular order, with the
corresponding left and right singular vectors denoted by
{ui(t), vi(t)}i, for every t ≥ 0.

On the one hand, the evolution of the singular values of
W (t) in (19) is described by Theorem 3 in (Arora et al.,
2019a) as

ṡi(t) = −Nsi(t)2−
2
N · ui(t)>∇L1(W (t))vi(t), (105)

for every t ≥ 0, where L1 was defined in (10a). Moreover,
since the network depth N ≥ 2, {si(t)}i remain nonnega-
tive for every t ≥ 0.

On the other hand, the singular values of W (t) are bounded,
i.e., maxi supt si(t) <∞.

Indeed, if XX> is invertible, then gradient flow (13) is
bounded regardless of initialization, see Step 1 in the proof
of Theorem 11 in (Bah et al., 2019). Recall also that gradient
flow (13) and induced flow (17) are related through the map

RdN → Rdy×dx

WN = (W1, · · · ,WN)→W = WN · · ·W1. (106)

Consequently, induced flow (17) and a fortiori its singular
values too are bounded.

We finally apply Lemma 4 in (Arora et al., 2019a) to (105)
and find that each si(t) is either zero for all t ≥ 0, or positive
for all t ≥ 0, provided that the network depth N ≥ 2.

In other words, rank(W (t)) is invariant with t, i.e.,

rank(W (t)) = rank(W0), ∀t ≥ 0, (107)

which completes the proof of Lemma 3.3.

I. Proof of Lemma 3.4
It is easy to see thatMN,r is not a closed set for any inte-
ger r. For example, one can construct a sequence of rank-1
matrices that converge to the zero matrix.

For the second claim in Lemma 3.4, the proof is by induction
over the depth N of the linear network.

For the base of induction, when N = 1, note that WN =
W1 ∈ Rd1×d0 , see (3). It now follows from (9) that

min(d0, d1) = r. (see (9)) (108)

In turn, it follows from (108) that almost everyW1 is rank-r,
with respect to the Lebesgue measure in RdN = Rdy×dx .

For the step of induction, suppose that

rank(W) = r, with W = WN · · ·W1, (109)

for almost every WN = (W1, · · · ,WN), with respect to
the Lebesgue measure in RdN . In particular, it follows
from (109) that range(W) is almost surely an r-dimensional
subspace in RdN , i.e.,

dim(range(W)) = r, almost surely. (110)

Consider a generic matrix WN+1, with respect to the
Lebesgue measure in RdN+1×dN . We distinguish two cases.

In the first case, suppose that dN+1 ≥ dN . Then, WN+1 ∈
RdN+1×dN has a trivial null space almost surely. With null
standing for null space of a matrix, it follows that

null(WN+1W) = null(W), (111)

and, consequently,

rank(WN+1WN · · ·W1)

= rank(WN+1W) (see (109))
= d0 − dim(null(WN+1W))

= d0 − dim(null(W)) (see (111))
= rank(W) = r, (112)

almost surely with respect to the Lebesgue measure in
RdN+1×dN . Above, the third and last lines use the fun-
damental theorem of linear algebra.

In the second case, suppose that dN+1 < dN . Then the null
space of WN+1 ∈ RdN+1×dN is a generic (dN − dN+1)-
dimensional subspace of RdN . It follows that

dim(null(WN+1)) = dN − dN+1 ≤ dN − r, (113)

where the inequality above holds by (9). Note that

dim(range(W)) + dim(null(WN+1))

≤ r + (dN − r) (see (110,113))
= dN . (114)

Since null(WN+1) is a generic subspace in RdN that satis-
fies (114), it almost surely holds that

range(W) ∩ null(WN+1) = {0}. (115)

Consequently,

null(WN+1W) = null(W), (see (115)) (116)

and it follows identically to (112) that

rank(WN+1 · · ·W1) = r, (117)

almost surely with respect to the Lebesgue measure
in RdN+1 .

We conclude from (112,117) that the induction is complete,
and this in turn completes the proof of the second and final
claim in Lemma 3.4.

Training Linear Neural Networks

J. Proof of Lemma 3.7
Recall that the initialization of gradient flow (13) is balanced
by Assumption 3.6 and consider induced flow (17). Let us
define the set

Nα(Z1) :=
{
W

tSVD
= uW · sW · v>W :

sW > (α− γZ)sZ ,

u>WZ1vW > αsZ

}
⊂ Rdy×dx , (118)

for α ∈ [γZ , 1). Once initialized in Nα(Z1), induced flow
remains there, as detailed in the next technical lemma.

Lemma J.1. For induced flow (17) and α ∈ [γZ , 1), W0 ∈
Nα(Z1) implies that Wt ∈ Nα(Z1) for all t ≥ 0. That is,

W0 ∈ Nα(Z1) =⇒Wt ∈ Nα(Z1), ∀t ≥ 0. (119)

Above, Assumption 3.6 and the notation therein are in force.

Before proving Lemma J.1 in the next appendix, we show
how it helps us prove Lemma 3.7.

Indeed, from Lemma J.1 and the balanced initialization of
gradient flow (13), it follows that

WN,0 ∈ NN,α =⇒WN,t ∈ NN,α, ∀t ≥ 0, (120)

under Assumption 3.6 and for α ∈ [γZ , 1), where we used
the definition of NN,α in (28).

Recall that the limit point WN of gradient flow (13) exists
by Lemma 3.1, since X has full-column rank by Assump-
tion 3.6.

A byproduct of (120) about the limit point WN of gradient
flow (13) is that

WN,0 ∈ NN,α =⇒
WN ∈ closure(NN,α) ⊂MN,1, (121)

where the set inclusion above holds true provided that
α ∈ (γZ , 1), see (20,28,120). In words, (121) indicates
that gradient flow does not converge to the zero matrix.

This completes the proof of Lemma 3.7.

J.1. Proof of Lemma J.1

The proof relies on the following technical lemma, which
roughly-speaking states that the (rank-1) induced flow (17)
always points in a similar direction as the (rank-1) target
matrix Z1.

Lemma J.2. Under Assumption 3.6 and for α ∈ [γZ , 1),
u>0 Z1v0 > αsZ implies that u>t Z1vt > αsZ for every
t ≥ 0. That is,

u>0 Z1v0 > αsZ =⇒ u>t Z1vt > αsZ , ∀t ≥ 0. (122)

Above,Wt
tSVD
= utstv

>
t is the rank-1 induced flow in (17,32),

and sZ , γZ were defined in (26).

Before proving Lemma J.2 in the next appendix, let us see
how Lemma J.2 can be used to prove Lemma J.1.

Let us fix α ∈ [γZ , 1). If W0
tSVD
= u0s0v

>
0 ∈ Nα(Z1),

then u>0 Z1v
>
0 > αsZ by definition of Nα(Z1) in (118).

Lemma J.2 then implies that

u>t Z1vt > αsZ , ∀t ≥ 0. (123)

To prove Lemma J.1, by the way of contradiction, let τ > 0
be the first time that the induced flow (17) leaves the set
Nα(Z1). It thus holds that

sτ = αsZ − sZ,2 (see (118))

< u>τ Z1vτ − sZ,2, (see (123)) (124)

where the first line above uses the continuity of st as a
function of time t. Indeed, we know st to be an analytic
function of t, see (32).

On the other hand, let us recall the evolution of the nonzero
singular value of flow (17) from (105), which we repeat
here for convenience:

ṡτ = −Ns2−
2
N

τ · u>τ ∇L1(Wτ)vτ . (see (105)) (125)

Recalling the definition of L1 from (10a) and the whitened
data assumption in (23), we simplify the above gradient as

∇L1(Wτ) = WτXX
> − Y X> (see (10a))

= m(Wτ − Z). (see (23,25)) (126)

Substituting (126) back into (125) and using the thin SVD
of Wτ in (32), we write at

ṡτ = −mNs2−
2
N

τ · u>τ (Wτ − Z)vτ (see (125,126))

= −mNs2−
2
N

τ · (sτ − u>τ Zvτ) (see (32))

> −mNs2−
2
N

τ (u>τ Z1vτ − sZ,2 − u>τ Zvτ) (see (124))

= −mNs2−
2
N

τ

(
u>τ Z1vτ − sZ,2

− u>τ Z1vτ − u>τ Z1+vτ
)

(see (170))

= −mNs2−
2
N

τ (−sZ,2 − u>τ Z1+vτ)

≥ 0, (127)

which pushes the singular value up and thus pushes the
induced flow back into Nα(Z1). That is, the induced flow
cannot escape from Nα(Z1).

In the last line of (127), we used the fact that sZ,2 is the
second largest singular value of Z and hence the largest
singular value of the residual matrix Z1+ , see (171). In the
same line, we also used the fact that uτ , vτ are unit-length
vectors by construction, so that u>τ Z1+vτ ≥ −sZ,2. This
completes the proof of Lemma J.1.

Training Linear Neural Networks

J.2. Proof of Lemma J.2

From (32), recall the thin SVD of induced flow (17), i.e.,

Wt
tSVD
= utstv

>
t , ∀t ≥ 0, (128)

where

‖ut‖22 = ‖vt‖22 = 1, (129)

and the only nonzero singular value is st > 0.

By taking the derivative of the identities in (129) with re-
spect to t, we find that

u>t u̇t = 0,

v>t v̇t = 0, ∀t ≥ 0. (130)

By taking derivative of both sides of the thin SVD (128),
we also find that

Ẇt = u̇tstv
>
t + utṡtv

>
t + utstv̇

>
t , ∀t ≥ 0. (131)

Let Ut ∈ Rdy×(dy−1) with orthonormal columns be orthog-
onal to ut. By multiplying both sides of (131) by U>t , we
find that

U>t Ẇt = U>t u̇tstv
>
t , ∀t ≥ 0, (132)

which after rearranging yields that

U>t u̇t = s−1t U>t Ẇtvt, ∀t ≥ 0. (133)

Combining (130,133) yields that

u̇t = s−1t PUtẆtvt, ∀t ≥ 0, (134)

where PUt
= UtU

>
t is the orthogonal projection onto the

subspace orthogonal to ut.

Similarly, let Vt ∈ Rdx×(dx−1) with orthonormal columns
be orthogonal to vt. As before, by multiplying both sides
of (131) by Vt, we find that

ẆtVt = utstv̇
>
t Vt, ∀t ≥ 0, (135)

which after rearranging yields

V >t v̇t = s−1t V >t Ẇ
>
t ut, ∀t ≥ 0. (136)

Then, combining (130,136) leads us to

v̇t = s−1t PVt
Ẇ>t ut, ∀t ≥ 0, (137)

where PVt = VtV
>
t .

Both expressions (134,137) involve Ẇt. Under the assump-
tion of whitened data in (23), we express Ẇt as

Ẇt = −AWt(WtXX
> − Y X>) (see (17))

= −mAWt(Wt − Z) (see (23,25))

= −mNs1−
2
N

t (st − u>t Zvt)Wt (see (173))

+ms
2− 2

N
t Put

ZPVt

+ms
2− 2

N
t PUt

ZPvt , ∀t ≥ 0, (138)

where Put
= utu

>
t and Pvt = vtv

>
t . The last identity

above invokes the first part of Lemma N.1, which collects
some basic properties of the operator AW .

Substituting Ẇt back into (134,137), we reach

u̇t = ms
1− 2

N
t PUt

Zvt, (see (138))

v̇t = ms
1− 2

N
t PVtZ

>ut, ∀t ≥ 0. (139)

It immediately follows from the first identity in (139) that

u>Z u̇t = ms
1− 2

N
t u>ZPUt

Zvt (see (139))

= ms
1− 2

N
t u>ZPUt

(uZsZv
>
Z + Z1+)vt (see (170))

= ms
1− 2

N
t sZu

>
ZPUt

uZ · v>Z vt

+ms
1− 2

N
t u>ZPUt

Z1+vt

= ms
1− 2

N
t sZ‖PUtuZ‖22 · v>Z vt

+ms
1− 2

N
t u>ZPUtZ1+vt, ∀t ≥ 0. (140)

To bound the last term above, note that

|u>ZPUtZ1+vt|
≤ ‖PUtuZ‖2 · ‖Z1+vt‖2 (Cauchy-Schawrz ineq.)
≤ ‖PUtuZ‖2 · sZ,2‖PVZ

vt‖2, (see (170,171)) (141)

where sZ,2 is the second largest singular value of Z and thus
the largest singular value of the residual matrix Z1+ . Above,
VZ ∈ Rdx×(dx−1) with orthonormal columns is orthogonal
to vZ , see (170,171).

Similarly, it follows from the second identity in (139) that

v>Z v̇t = ms
1− 2

N
t v>ZPVt

Z>ut (see (139))

= ms
1− 1

N
t v>ZPVt

(vZsZu
>
Z + Z>1+)ut (see (170))

= ms
1− 2

N
t sZ‖PVt

vZ‖22 · u>Zut

+ms
1− 2

N
t v>ZPVtZ

>
1+ut, ∀t ≥ 0. (142)

To bound the last term above, we write that

|v>ZPVtZ
>
1+ut|

≤ ‖PVtvZ‖2 · ‖Z>1+ut‖2
≤ ‖PVtvZ‖2 · sZ,2‖PUZ

ut‖2, (143)

where UZ ∈ Rdy×(dy−1) with orthonormal columns is or-
thogonal to uZ , see (170).

Training Linear Neural Networks

All these calculations in (140-143) allow us to write that

d(u>t Z1vt)

dt

= sZ
d(u>t uZv

>
Z vt)

dt
(see (170))

= sZ(u>Z u̇t)(v
>
Z vt)

+ sZ(u>Zut)(v
>
Z v̇t) (product rule)

= ms2Zs
1− 2

N
t ‖PUt

uZ‖22 · (v>Z vt)2

+ms2Zs
1− 2

N
t ‖PVt

vZ‖22 · (u>Zut)2

+Rt, ∀t ≥ 0, (144)

where the residual Rt satisfies

|Rt| ≤ msZsZ,2s
1− 2

N
t ‖PUtuZ‖2‖PVZ

vt‖2|v>Z vt|

+msZsZ,2s
1− 2

N
t ‖PVtvZ‖2‖PUZ

ut‖2|u>Zut|. (145)

Let us set

at := u>Zut, bt := v>Z vt, (146)

for short. Then we can rewrite (144,145) as

d(u>t Z1vt)

dt
= ms2Zs

1− 2
N

t

(
(1− a2t)b2t + a2t (1− b2t)

)
+Rt, ∀t ≥ 0, (147)

where

|Rt| ≤ msZsZ,2s
1− 2

N
t

√
1− a2t

√
1− b2t (|at|+ |bt|)

≤ 2msZsZ,2s
1− 2

N
t

√
(1− a2t)(1− b2t)

≤ 2msZsZ,2s
1− 2

N
t (1− atbt), (148)

and the second above uses the fact that

|at| = |u>Zut| ≤ ‖uZ‖2 · ‖ut‖2 ≤ 1, (149)

for every t ≥ 0, and similarly |bt| ≤ 1. The third line
in (148) uses the inequality√

(1− a2t)(1− b2t) =
√

1− a2t − b2t + a2t b
2
t

≤
√

1− 2atbt + a2t b
2
t

= 1− atbt, (150)

where the last line above again uses (149).

The residual Rt is small when the spectral gap of Z is large.
Indeed, note that

|Rt| ≤ 2msZsZ,2s
1− 2

N
t (1− atbt) (see (148))

< 2ms2Zs
1− 2

N
t atbt(1− atbt), (151)

where the last line above holds provided that

atbt >
sZ,2
sZ

= γZ . (see (26)) (152)

We continue and bound the last line of (151) as

|Rt| < 2ms2Zs
1− 2

N
t atbt(1− atbt) (see (151))

= 2ms2Zs
1− 2

N
t (atbt − a2t b2t)

≤ 2ms2Zs
1− 2

N
t

(
a2t + b2t

2
− a2t b2t

)
= ms2Zs

1− 2
N

t (a2t + b2t − 2a2t b
2
t)

= ms2Zs
1− 2

N
t ((1− a2t)b2t + a2t (1− b2t)). (153)

By comparing the above bound on the residual Rt
with (147), for a fixed time t, we conclude that

d(u>t Z1vt)

dt
> 0, (154)

provided that

u>t Z1vt = sZ · u>t uZv>Z vt (see (170))
= sZ · atbt (see (146))
> sZγZ . (see (152)) (155)

For α ∈ [γZ , 1), it immediately follows from (155) that

u>0 Z1v0 > αsZ =⇒ u>t Z1vt > αsZ , (156)

for every t ≥ 0, which completes the proof of Lemma J.2.

K. Lazy Training
For completeness, here we verify that Theorem 1 in (Arora
et al., 2018a) suffers from lazy training (Chizat et al., 2019).
To begin, let us recall Theorem 1 in (Arora et al., 2018a),
adapted to our setting.

Theorem K.1. For c > 0, suppose that gradient flow is
initialized at WN,0 = (W1,0, · · · ,WN,0) where W0 =
WN,0 · · ·W1,0 satisfies ‖W0 − Z‖F ≤ σmin(Z)− c. Here,
σmin(Z) stands for the smallest singular value of Z, de-
fined in (25). Suppose also that W,0 is balanced, see Def-
inition 3.2. Then, for a target accuracy ε > 0, it holds
that

l(t) =
1

2
‖W (t)− Z‖2F ≤ ε,

∀t ≥ 1

c2(1−
1
N)

log(l(0)/ε), (157)

where W (t) = WN (t) · · ·W1(t).

For the sake of clarity, let us assume that dx = m and
X =

√
mIdx , which satisfies the whitened requirement

Training Linear Neural Networks

in (23) and (Arora et al., 2018a). Here, Idx ∈ Rdx×dx is the
identity matrix.

Recalling the loss function LN in (6) and the initialization
WN,0 ∈ RdN of gradient flow (13), we write that

LN (WN,0)

=
1

2
‖Y −WN,0 · · ·W1,0X‖2F (see (6))

=
1

2
‖Y −

√
mWN,0 · · ·W1,0‖2F (X =

√
mIdx)

=
m

2

∥∥∥∥Y X>m −Wn,0 · · ·W1,0

∥∥∥∥2
F

(X =
√
mIdx)

=
m

2
‖Z −WN,0 · · ·W1,0‖2F . (see (25)) (158)

Definition 2 in (Arora et al., 2018a) requires the last line
above and, consequently, LN (WN,0) to be small. In turn,
LN (WN,0) appears in Equation (1) in (Chizat et al., 2019).
Definition 2 in (Arora et al., 2018a) thus requires the factor
κ in Equation (1) in (Chizat et al., 2019) to be small, which
is how the authors define the lazy training regime there.

L. Proof of Lemma 4.1
From Theorem 3.8, recall that gradient flow (13) converges
to a solution of (6) from almost every balanced initialization
in the set NN,α. That is,

lim
t→∞

1

2
‖Y −WN (t) · · ·W1(t)X‖2F

= min
W1,··· ,WN

1

2
‖Y −WN · · ·W1X‖2F . (159)

On the other hand, recall that gradient flow (13) induces the
flow (17) under the surjective map

RdN →M1,··· ,r

WN = (W1, · · · ,WN)→W = WN · · ·W1, (160)

where M1,··· ,r is the set of all dy × dx matrices of rank
at most r, see Appendix A for the proof of the surjective
property.

In view of (159), induced flow (17) therefore satisfies

lim
t→∞

1

2
‖Y −W (t)X‖2F

= min
rank(W)≤r

1

2
‖Y −WX‖2F , (161)

where W (t) = WN (t) · · ·W1(t).

Let PX = X†X and PX⊥ = Im −PX denote the orthogo-
nal projections onto the row span of X and its orthogonal
complement, respectively. We can decompose Y as

Y = Y PX + Y PX . (162)

Using this decomposition, we can rewrite (161) as

lim
t→∞

1

2
‖Y PX −W (t)X‖2F

= min
rank(W)≤r

1

2
‖Y PX −WX‖2F . (163)

That is, in words, a linear network can only learn the com-
ponent of Y within the row span of X .

Under Assumption 3.6, the data matrix X is whitened, so
that PX = X†X = 1

mX
>X , see (23). We can therefore

revise (163) as

lim
t→∞

m

2
‖Z −W (t)‖2F

= min
rank(W)≤r

m

2
‖Z −W‖2F , (164)

where above we also used the definition of Z in (25). To
prove Lemma 4.1, we continue by setting r = 1 in (164).

Recall also from Assumption 3.6 and specifically (26) that
Z has a nontrivial spectral gap, i.e., sZ > sZ,2. Therefore,
Z1 = uZsZv

>
Z is the unique solution of the optimization

problem in (164), where the vectors uZ , vZ are the corre-
sponding leading left and right singular vectors of Z1, see
for example Section 1 in (Golub et al., 1987). In view of
this, it now follows from (164) with r = 1 that

lim
t→∞

‖Z1 −W (t)‖F = 0, (165)

which completes the proof of Lemma 4.1.

M. Derivation of (33)
From Appendix N, we will use the orthonormal bases Ũt =
[ut, Ut] and Ṽt = [vt, Vt]. We decompose the loss function
in these two bases as

L1,1(Wt) =
1

2
‖Wt − Z1‖2F (see (31))

=
1

2
‖Put

(Wt − Z1)Pvt‖2F

+
1

2
‖Put

(Wt − Z1)PVt
‖2F

+
1

2
‖PUt

(Wt − Z1)Pvt‖2F

+
1

2
‖PUt

(Wt − Z1)PVt
‖2F , (166)

where Put = utu
>
t is the orthogonal projection onto the

span of ut, and the remaining projection operators above
are defined similarly.

Recalling the thin SVD Wt = utstv
>
t from (32) allows us

Training Linear Neural Networks

to simplify (166) as

L1,1(Wt) =
1

2
(st − u>t Z1vt)

2

+
1

2
‖Put

Z1PVt
‖2F +

1

2
‖PUt

Z1Pvt‖2F

+
1

2
‖PUt

Z1PVt
‖2F

=
1

2
(st − u>t Z1vt)

2

+
1

2
‖Z1‖2F −

1

2
‖Put

Z1Pvt‖2F . (167)

Using the thin SVD Z1 = uZsZv
>
Z from (170) simplifies

the last line above as

‖Z1‖2F − ‖Put
Z1Pvt‖2F

= s2Z − s2Z(u>t uZ)2(v>Z vt)
2. (see (170)) (168)

Substituting the above identity back into (167) yields that

L1,1(Wt)

=
1

2
(st − u>t Z1vt)

2

+
s2Z
2

(1− (u>t uZ)2(v>Z vt)
2) (see (167,168))

=
1

2
(st − u>t Z1vt)

2

+
1

2
(s2Z − (u>t Z1vt)

2) (see (170))

=
1

2
(st − u>t Z1vt)

2

+
1

2
(sZ + u>t Z1vt)(sZ − u>t Z1vt)

≤ 1

2
(st − u>t Z1vt)

2

+ sZ(sZ − u>t Z1vt), (169)

where the second identity and the inequality above use
again the thin SVD of Z1. The inequality above also
uses u>t Z1vt ≤ sZ twice, which holds true because ut, vt
are unit-length vectors by construction and sZ is the only
nonzero singular ofZ1, see (170). This completes the deriva-
tion of (33).

N. Proof of Lemma 4.2
To begin, recall from (27) that Z1 is the leading rank-1
component of Z, and let Z1+ = Z − Z1 denote the corre-
sponding residual. We thus decompose Z as

Z = Z1 + Z1+

SVD
= uZ · sZ · v>Z + UZSZV

>
Z , (170)

where UZ , VZ contain the remaining left and right singular
vectors of Z, and SZ contains the remaining singular values
of of Z. In particular, let us repeat that

sZ = ‖Z‖ = ‖Z1‖, sZ,2 = ‖Z1+‖, (see (26)) (171)

where ‖ · ‖ stands for spectral norm.

In this appendix, we compute the evolution of loss function
L1,1 with time, which we recall from (34) as

dL1,r(Wt)

dt
= −m〈Wt − Z1,AWt

(Wt − Z)〉 (see (34))
= −m〈Wt − Z1,AWt

(Wt − Z1)〉
+m〈Wt − Z1,AWt

(Z1+)〉. (see (170)) (172)

To proceed, we will recall some basic properties of the
operator AW , proved by algebraic manipulation of (16) and
included in Appendix N.1 for completeness. The second
identity below appears also in Lemma 5 of (Bah et al., 2019).

Lemma N.1. For an arbitrary W ∈ Rdy×dx , let

W
SVD
= Ũ S̃Ṽ >

denote its SVD, where Ũ , Ṽ are orthonormal bases and S̃
contains the singular values of W . Then, for an arbitrary
∆ ∈ Rdy×dx , it holds that

AW (∆) = Ũ

 N∑
j=1

(S̃S̃>)
N−j
N (Ũ>∆Ṽ)(S̃>S̃)

j−1
N

 Ṽ >,

〈∆,AW (∆)〉

=

N∑
j=1

∥∥∥(S̃S̃>)
N−j
2N (Ũ>∆Ṽ)(S̃>S̃)

j−1
2N

∥∥∥2
F
. (173)

For the first inner product in the last line of (172), we invoke
the second identity in (173) to write that

〈Wt − Z1,AWt
(Wt − Z1)〉 (174)

=

N∑
j=1

∥∥∥(S̃tS̃
>
t)

N−j
2N Ũ>t (Wt − Z1)Ṽt(S̃

>
t S̃t)

j−1
2N)

∥∥∥2
F

=

N∑
j=1

∥∥∥(S̃tS̃
>
t)

N−j
2N (S̃t − Ũ>t Z1Ṽt)(S̃

>
t S̃t)

j−1
2N)

∥∥∥2
F
,

where the second line above uses the SVD

Wt
SVD
= ŨtS̃tṼ

>
t . (see (19)) (175)

We next simplify the last line of (174).

In view of the thin SVD Wt
tSVD
= utstv

>
t in (32), we let

Ut ∈ Rdy×(dy−1) and Vt ∈ Rdx×(dx−1) be orthogonal

Training Linear Neural Networks

complements for ut and vt, respectively. This allows us to
decompose Wt as

Wt
SVD
= ŨtS̃tṼ

>
t (see (175))

=
[
ut Ut

] [st
0

] [
v>t
V >t

]
, (176)

for every t ≥ 0, where 0 above is the (dy − 1)× (dx − 1)
zero matrix. Using (176), we simplify (174) to read

〈Wt − Z1,AWt
(Wt − Z1)〉

= Ns
2− 2

N
t (st − u>t Z1vt)

2

+ s
2− 2

N
t ‖u>t Z1Vt‖22

+ s
2− 2

N
t ‖U>t Z1vt‖22. (177)

The two norms above can be further simplified. Let us set

at := u>t uZ , bt := v>t vZ , (178)

for short. Then we expand the first norm in (177) as

‖u>t Z1Vt‖2 = sZ‖u>t uZv>ZVt‖2 (see (170))

= sZ |u>t uZ | · ‖v>ZVt‖2

= sZat

√
1− b2t , (see (178)) (179)

where the last line above follows because Vt spans the or-
thogonal complement of vt. Likewise, the second norm
in (177) is expanded as

‖U>t Z1vt‖2 = sZ‖U>t uZ‖2 · |v>z vt|

= sZbt

√
1− a2t . (see (178)) (180)

In particular, by combining (179,180), we find that

‖u>t Z1Vt‖22 + ‖U>t Z1vt‖22
= s2Z

(
a2t (1− b2t) + (1− b2t)a2t

)
(see (179,180))

= s2Z
(
a2t + b2t − 2a2t b

2
t

)
≥ s2Z

(
2atbt − 2a2t b

2
t

)
= 2s2Zatbt(1− atbt), (181)

where the penultimate line above uses the inequality a2t +
b2t ≥ 2atbt. Plugging (181) back into (177), we arrive at

〈Wt − Z1,AWt
(Wt − Z1)〉

≥ Ns2−
2
N

t (st − u>t Z1vt)
2

+ 2s
2− 2

N
t s2Zatbt(1− atbt). (182)

For the second inner product in the last line of (172), we

invoke the first identity in (173) to write that

〈Wt − Z,AWt
(Z1+)〉

= Ns
2− 2

N
t (st − u>t Z1vt)(u

>
t Z1+vt)

− s2−
2
N

t

〈
u>t Z1Vt, u

>
t Z1+Vt

〉
− s2−

2
N

t

〈
U>t Z1vt, U

>
t Z1+vt

〉
, (183)

and, consequently,

|〈Wt − Z,AWt
(Z1+)〉|

≤ Ns2−
2
N

t |st − u>t Z1vt| · |u>t Z1+vt|

+ s
2− 2

N
t ‖u>t Z1Vt‖2‖u>t Z1+Vt‖2

+ s
2− 2

N
t ‖U>t Z1vt‖2‖U>t Z1+vt‖2, (184)

where we twice used the Cauchy-Schwarz inequality above.

Recall the decomposition of Z in (170). The three terms
in (184) that involve the residual matrix Z1+ can be simpli-
fied as follows. For the first term, we write that

|u>t Z1+vt| = |u>t UZSZV >Z vt| (see (170))

≤ ‖u>t UZ‖2 · ‖SZ‖ · ‖V >Z vt‖2
= sZ,2‖u>t UZ‖2 · ‖V >Z vt‖2

= sZ,2

√
1− a2t

√
1− b2t (see (178))

= sZ,2

√
1− a2t − b2t + a2t b

2
t

≤ sZ,2
√

1− 2atbt + a2t b
2
t

= sZ,2(1− atbt), (185)

where ‖SZ‖ denotes the spectral norm of the matrix SZ .
The second line above uses the fact that sZ,2 is the sec-
ond largest singular value of Z and thus the largest singu-
lar value of the residual matrix Z1+ , see (170,171). The
last line above uses the observation that atbt ≤ 1 since
ut, vt, uZ , vZ all have unit norm by construction, see (178).

Likewise, another term in (184) can be bounded as

‖u>t Z1+Vt‖2 = ‖u>t UZSZV >Z Vt‖2 (see (170))

≤ ‖u>t UZ‖2 · ‖SZ‖ · ‖V >Z Vt‖
= sZ,2‖u>t UZ‖2 · ‖V >Z Vt‖
≤ sZ,2‖u>t UZ‖2 · ‖VZ‖ · ‖Vt‖

≤ sZ,2
√

1− a2t , (see (178)) (186)

where the last line above uses the fact that both VZ and Vt
have orthonormal columns.

For the last term involving Z1+ in (184), we similarly write
that

‖U>t Z1+vt‖2 ≤ sZ,2‖V >Z vt‖2 = sZ,2

√
1− b2t . (187)

Training Linear Neural Networks

Plugging back (179,180,185,186,187) into (184), we reach

|〈Wt − Z,AWt
(Z1+)〉|

≤ Ns2−
2
N

t sZ,2|st − u>t Z1vt|(1− atbt)

+ s
2− 2

N
t sZsZ,2(at + bt)

√
1− a2t

√
1− b2t

≤ Ns2−
2
N

t sZ,2|st − u>t Z1vt|(1− atbt)

+ 2s
2− 2

N
t sZsZ,2(1− atbt), (188)

where the last line above follows from the chain of inequali-
ties

(at + bt)
√

1− a2t
√

1− b2t

≤ 2
√

1− a2t − b2t + a2t b
2
t (see (178))

≤ 2
√

1− 2atbt + a2t b
2
t

= 2(1− atbt). (see (178)) (189)

Above, in the second and last lines, we used the fact that
at ≤ 1 and bt ≤ 1, see their definition in (178).

By combining (182,188), we can upper bound the evolution
of the loss function as

dL1,1(Wt)

dt

≤ −mNs2−
2
N

t (st − u>t Z1vt)
2

− 2ms
2− 2

N
t s2Zatbt(1− atbt)

+mNs
2− 2

N
t sZ,2|st − u>t Z1vt|(1− atbt)

+ 2ms
2− 2

N
t sZsZ,2(1− atbt)

= −mNs2−
2
N

t (st − u>t Z1vt)
2

− 2ms
2− 2

N
t (u>t Z1vt)(sZ − u>t Z1v)

+mNs
2− 2

N
t γZ |st − u>t Z1vt|(sZ − u>t Z1vt)

+ 2ms
2− 2

N
t sZ,2(sZ − u>t Z1vt), (190)

where the identity above uses the fact that sZatbt =
u>t Z1vt, see (170,178). The inverse spectral gap γZ =
sZ,2/sZ was introduced in (26). This completes the proof
of Lemma 4.2.

N.1. Proof of Lemma N.1

Let W SVD
= Ũ S̃Ṽ > denote the SVD of W , where Ũ , Ṽ are

orthonormal bases, and S̃ contains the singular values of W .

Using the definition of AW , we write that

AW (∆) =

N∑
j=1

(WW>)
N−j
N ∆(W>W)

j−1
N (see (16))

=

N∑
j=1

(Ũ S̃S̃>Ũ>)
N−j
N ∆(Ṽ S̃>S̃Ṽ >)

j−1
N

=

N∑
j=1

Ũ(S̃S̃>)
N−j
N Ũ>∆Ṽ (S̃>S̃)

j−1
N Ṽ >

=:

N∑
j=1

AW,j(∆), (191)

which proves the first claim in Lemma N.1.

For every j ∈ N, it also holds that

〈∆,AW,j(∆)〉

= 〈∆, Ũ(S̃S̃>)
N−j
N Ũ>∆Ṽ (S̃>S̃)

j−1
N Ṽ >〉 (see (191))

=
∥∥∥(S̃S̃>)

N−j
2N Ũ>∆Ṽ (S̃>S̃)

j−1
2N

∥∥∥2
F
, (192)

where the last line uses the fact that Ũ , Ṽ are orthonormal
bases. The proof of Lemma N.1 is complete after summing
up the above identity over j.

O. Proof of Lemma 4.3
The proof is similar to that of Lemma J.1.

Let us fix α ∈ [γZ , 1) and β > 1. If

W0
tSVD
= u0s0v

>
0 ∈ Nα,β(Z1), (193)

then u>0 Z1v
>
0 > αsZ by definition of Nα,β(Z1) in (36).

Lemma J.2 then implies that

u>t Z1vt > αsZ , ∀t ≥ 0. (194)

To prove Lemma 4.3, by the way of contradiction, let τ >
0 be the first time that induced flow (17) leaves the set
Nα,β(Z1). It thus holds that

sτ = αsZ − sZ,2, (195)

or

sτ = βsZ , (196)

where both of the identities above use the continuity of st
as a function of t. Indeed, we know st to be an analytic
function of time t, see (32).

The case where (195) happens is handled identically to the
proof of Lemma J.1. We therefore focus on when the second
case happens, i.e., (196).

Training Linear Neural Networks

Recalling the second identity in (127), we bound the evolu-
tion of the singular value of induced flow (17) as

ṡτ = −mNs2−
2
N

τ · (sτ − u>τ Zvτ) (see (127))

= −mNs2−
2
N

τ (βsZ − u>τ Zvτ) (see (196))

≤ −mNs2−
2
N

τ (βsZ − sZ) (see (170))
< 0, (197)

which pushes the singular value down and thus pushes the
induced flow back into Nα,β(Z1). That is, the induced flow
cannot escape from Nα,β(Z1).

In the third line of (197), we used the fact that sZ is the lead-
ing singular value of Z, and uτ , vτ are unit-norm vectors,
see (170,128), thus u>τ Zvτ ≤ sZ . The last line in (197)
holds because Lemma 4.3 assumes that β > 1. This com-
pletes the proof of Lemma 4.3.

P. Proof of Theorem 4.4
Let us fix α ∈ [γZ , 1) and β > 1. In view of Lemma 4.3,
we assume henceforth that induced flow (17) is initialized
within Nα,β(Z1) and thus remains there forever, i.e.,

Wt ∈ Nα,β(Z1), ∀t ≥ 0. (198)

Using the definition of Nα,β(Z1) in (36) and (198), we can
update (35) as

dL1,1(Wt)

dt
≤ −mN((α− γZ)sZ)2−

2
N (st − u>t Z1vt)

2

− 2αmsZ((α− γZ)sZ)2−
2
N (sZ − u>t Z1vt)

+mN(βsZ)2−
2
N γZ |st − u>t Z1vt|(sZ − u>t Z1vt)

+ 2m(βsZ)2−
2
N sZ,2(sZ − u>t Z1vt). (199)

Recalling the upper bound on the loss function in (33), we
can distinguish two regimes in the dynamics of (199), de-
pending on the dominant term on the right-hand side of (33),
as detailed next.

(Fast convergence) When

1

2
(st − u>t Z1vt)

2 ≥ sZ(sZ − u>t Z1vt), (200)

the loss function can be bounded as

L1,1(Wt) ≤ (st − u>t Z1vt)
2, (see (33,200)) (201)

and the evolution of loss in (199) thus simplifies to

dL1,1(Wt)

dt
≤ −mNs2−

2
N

Z · (202)(
(α− γZ)2−

2
N − 2γZβ

2− 2
N

)
· L1,1(Wt),

see Appendix P.1 for the detailed derivation of (202).

(Slow convergence) On the other hand, when

1

2
(st − u>t Z1vt)

2 ≤ sZ(sZ − u>t Z1vt), (203)

the loss function can be bounded as

L1,1(Wt) ≤ 2sZ(sZ − u>t Z1vt), (see (33,203)) (204)

and the evolution of loss in (199) simplifies to

dL1,1(Wt)

dt
≤ −ms2−

2
N

Z · (205)(
α(α− γZ)2−

2
N − 2γZNβ

2− 2
N

)
· L1,1(Wt),

see Appendix P.1 again for the detailed derivation of (205).

In view of (200,203), the key transition between fast and
slow convergence rates happens when

Tt := T1,t − sZT2,t

=
1

2
(st − u>t Z1vt)

2 − sZ(sZ − u>t Z1vt) (206)

changes sign. Above, we used the definition of T1,t and T2,t
in (33).

Instead of the first time such a sign change happens, it is
convenient to consider the more conservative choice of time
τ ≥ 0 when

sτ ≤
√

6sZ (207)

for the first time. Indeed, if (207) does not hold, then Tτ > 0
and thus the fast convergence is in force. This claim is
verified in Appendix P.2 for completeness.

With the definition of τ at hand from (207), we can com-
bine (202) and (205) to obtain that

dL1,1(Wt)

dt
≤ −ms2− 2

N L1,1(Wt)

·

N
(

(α− γZ)2−
2
N − 2γZβ

2− 2
N

)
t ≤ τ(

α(α− γZ)2−
2
N − 2γZNβ

2− 2
N

)
t ≥ τ.

(208)

Suppose that inverse spectral gap γZ is small enough such
that the right-hand side of (208) is negative, see (26). Using
this observation that L1,1(Wt) is decreasing in t and by
applying the Gronwall’s inequality to (208), we arrive at
Theorem 4.4.

Training Linear Neural Networks

P.1. Derivation of (202,205)

We begin with the detailed derivation of (202). Let us re-
peat (199) for convenience:

dL1,1(Wt)

dt
≤ −mN((α− γZ)sZ)2−

2
N (st − u>t Z1vt)

2

− 2αmsZ((α− γZ)sZ)2−
2
N (sZ − u>t Z1vt)

+mN(βsZ)2−
2
N γZ |st − u>t Z1vt|(sZ − u>t Z1vt)

+ 2m(βsZ)2−
2
N sZ,2(sZ − u>t Z1vt). (see (199))

Recall also that (200) is in force. By ignoring the nonposi-
tive term in the third line above, we arrive at

dL1,1(Wt)

dt
(209)

≤ −mN((α− γZ)sZ)2−
2
N (st − u>t Z1vt)

2

+mN(βsZ)2−
2
N γZ |st − u>t Z1vt|

·
√
sZ(sZ − u>t Z1vt)

+ 2m(βsZ)2−
2
N γZsZ(sZ − u>t Z1vt).

To obtain the first inequality in (209), note that Wt ∈
Nα,β(Z1) by (198) and, in particular,

u>t Z1vt ≥ 0, ∀t ≥ 0, (210)

by definition of Nα,β(Z1) in (36). In turn, (210) implies
that sZ − u>t Z1vt ≤ sZ .

We continue to bound the right-hand side of (209) as

dL1,1(Wt)

dt
≤ −mN((α− γZ)sZ)2−

2
N (st − u>t Z1vt)

2

+
mN√

2
(βsZ)2−

2
N γZ(st − u>t Z1vt)

2

+m(βsZ)2−
2
N γZ(st − u>t Z1vt)

2 = −ms2−
2
N

Z ·(
(α− γZ)2−

2
NN − γZβ2− 2

N

(
N√

2
+ 1

))
· (st − u>t Z1vt)

2 ≤ −ms2−
2
N

Z ·(
(α− γZ)2−

2
NN − γZβ2− 2

N

(
N√

2
+ 1

))
· L1,1(Wt).

The first inequality above uses (200) and the last inequality
above uses (201).

We next derive (205). Let us repeat (199) for convenience:

dL1,1(Wt)

dt
≤ −mN((α− γZ)sZ)2−

2
N (st − u>t Z1vt)

2

− 2αmsZ((α− γZ)sZ)2−
2
N (sZ − u>t Z1vt)

+mN(βsZ)2−
2
N γZ |st − u>t Z1vt|(sZ − u>t Z1vt)

+ 2m(βsZ)2−
2
N sZ,2(sZ − u>t Z1vt).

Recall that now (203) is in force. By ignoring the nonpos-
itive term in the second line above, we then simplify the
above bound as

dL1,1(Wt)

dt
≤ −αm((α− γZ)sZ)2−

2
N · 2sZ(sZ − u>t Z1vt)

+
mN√

2
(βsZ)2−

2
N γZ · 2sZ(sZ − u>t Z1vt)

+m(βsZ)2−
2
N γZ · 2sZ(sZ − u>t Z1vt)

= −ms2−
2
N

Z

(
α(α− γZ)2−

2
N − β2− 2

N γZ

(
N√

2
+ 1

))
· 2sZ(sZ − u>t Z1vt)

≤ −ms2−
2
N

Z

(
α(α− γZ)2−

2
N − β2− 2

N γZ

(
N√

2
+ 1

))
· L1,1(Wt). (211)

To obtain the first inequality above, note that

1

2
(st − u>t Z1vt)

2 ≤ sZ(sZ − u>t Z1vt) (see (203))

≤ s2Z (see (210)),

which, after rearranging, reads as

|st − u>t Z1vt| ≤
√

2sZ . (212)

The last inequality in (211) uses (204).

P.2. Derivation of (207)

In the slow convergence regime in (203), it holds that

1

2
(st − u>t Z1vt)

2 ≤ sZ(sZ − u>t Z1vt) (see (203))

≤ s2Z . (see (210)) (213)

On the other hand, we can also lower bound the first term
in (213) as

s2Z ≥
1

2
(st − u>t Z1vt)

2 (see (213))

≥ s2t
4
− 1

2
(u>t Z1vt)

2

≥ s2t
4
− s2Z

2
, (214)

Training Linear Neural Networks

where the penultimate line above uses the inequality (a−
b)2 ≥ a2

2 − b
2 for scalars a, b. The last inequality above

holds because ut, vt are both unit-norm vectors and sZ is
the only nonzero singular value of Z1, see (128,170), and
thus |u>t Z1vt| ≤ sZ .

By rearranging (214), we find that st >
√

6sZ implies the
fast convergence regime in (200).

