
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

1. Examples of Policies Learned
Learned Curricula

Here we present some examples of the curricula that were
learned by the teacher for the three datasets we have used.
We show that the policies learned are consistent according
to the dataset and reflect a strategy that has been learned by
the teacher.

WARD ADMISSION

0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

50 curriculum batches, DDPG

Figure 1. The performance of the student on the held-
out test of the ward admission dataset while it is trained
by the teacher. The red dashed line is the best perfor-
mance achieved by this student.

0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

0

5

10

15

20

25

30

35

40

45

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 2. The actions generated by the policy of the
teacher that has led to the performance of the student
shown in Figure 1. Orange crosses are the first output
(where to select data from) and blue bars are the second
output (how much data around the central selection
point to include in the batch for training). If the batch
selected is near zero then this is low entropy data and if
it is near the top of the batch selection then this is high
entropy data.

We show another example of training by spiking in entropy
to escape local minima in Figures 1 and 2. Once again
there is a spike in entropy of data selected for training prior
to 6000 iterations, which allows us to escape a local mini-
mum and degrade the performance but upon further training
achieve a better accuracy on the held-out test set. It would

seem that this entropy spiking strategy is the preferred strat-
egy for the ward admission dataset.

MIMIC-III

Plotted below are various examples of the curricula that were
developed to train students on the MIMIC-III prediction
problem. All of these provided state-of-the-art performance
on the prediction problem.

0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

0

10

20

30

40

50

60

70

80

90

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 3. Curriculum generated for a randomly ini-
tialised student trained on the MIMIC-III dataset.

0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

0

10

20

30

40

50

60

70

80

90

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 4. Curriculum generated for a randomly ini-
tialised student trained on the MIMIC-III dataset.

0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

0

10

20

30

40

50

60

70

80

90

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 5. Curriculum generated for a randomly ini-
tialised student trained on the MIMIC-III dataset.

In Figures 3 and 4 we see that the teacher utilises very
small data batches to train. This generally gives rise to very
noisy training gradients which it seems the teacher uses to



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

converge to a favourable ‘initialisation’ from which it then
starts to train on bigger batches. In Figure 5 we see that the
teacher seems to bring the student into a ‘good initialisation’
early and so the rest of training is on the bigger batches.

CIFAR-10

0 1000 2000 3000 4000 5000
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu
ra
cy

100 curriculum batches, DDPG

Figure 6. The performance of the student on the held-
out test of the CIFAR-10 dataset while it is trained by
the teacher. The red dashed line is the best performance
achieved by this student.

0 1000 2000 3000 4000 5000
Iterations

0

10

20

30

40

50

60

70

80

90

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 7. The actions generated by the policy of the
teacher that has led to the performance of the student
shown in Figure 6.

The performance of a student and the curriculum learned for
training this student on the CIFAR-10 dataset are shown in
Figures 6 and 7. We see the teacher primes the student into
an initial state before (at approximately iteration 3000) re-
peatedly presenting low entropy batches before progressing
to high entropy batches. This is very similar to curricula that
are commonly used in many studies on image recognition.
Figures 8 and 9 show the curricula used for other students by
the same teacher. It would seem that repeated presentation
of low entropy batches before progressing to repeatedly pre-
senting high entropy batches is most beneficial for training
the image recognition students. This makes sense due to the
need for feature extraction in order to generalise to other

images.

0 1000 2000 3000 4000 5000
Iterations

0

10

20

30

40

50

60

70

80

90

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 8. Curriculum generated for a randomly ini-
tialised student trained on the CIFAR-10 dataset.

0 1000 2000 3000 4000 5000
Iterations

0

10

20

30

40

50

60

70

80

90

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 9. Curriculum generated for a randomly ini-
tialised student trained on the CIFAR-10 dataset. 1.

Constrained Policy Learning

In this section we present our findings of the policies of
the teacher networks on various students for different tasks.
We present the findings on the CIFAR-10 dataset in the
main paper and the findings on the MIMIC-III and Ward
Admission datasets below.

MIMIC-III

To constrain our students we first constrain our teacher (as
done in the main paper) to select a batch width of zero
with probability 0.999. Figure 10 shows the policy of the
teacher when training the student on MIMIC-III data. When
comparing these to typical MIMIC-III generated curricula
(Figures 3, 4, 5), we see that there is no oscillation in entropy
at the early stages of training and instead the teacher has
learned to simply gradually step down in entropy. The
student is trained with a learning rate of 0.02 and so in
order to constrain this further we also reduce the students
learning rate to 0.002, now constraining the student. We see
from Figure 11 that the teacher begins training the student



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

0 200 400 600 800 1000
Iterations

0

10

20

30

40

50

60

70

80

90
Ba

tc
h 
Se

le
ct
ed

Batches selected for training

Figure 10. The actions generated by the learned pol-
icy of a constrained teacher to train a student on the
MIMIC-III dataset. The student has a learning rate of
0.02.

0 200 400 600 800 1000
Iterations

0

10

20

30

40

50

60

70

80

90

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 11. The actions generated by the policy of a
constrained teacher to train a student that is also con-
strained with a lower learning rate of 0.002. The student
has the same initial seed as that trained using the policy
shown in Figure 10.

using similar data (at approximately batch 50 on the entropy
scale), however due to the student’s lower learning rate
the downward stepping takes significantly longer. This is
highly encouraging as it shows that the teacher is following
the same strategy as used in Figure 10 albeit over a longer
number of iterations as we would expect.

WARD ADMISSION

In Figures 12 and 13 we utilise a DQN trained teacher on
the Ward Admission dataset. We initially train normally and
then slow the learning rate of the student by 100 times for
the same initial seed to see how this alters training.

We can see in Figure 12 that a ‘recurring low to high en-
tropy’ curriculum is implemented by the teacher as seen
implemented by the DDPG teacher. These can be seen as
the DQN equivalent of the high entropy spiking strategy
found by the DDPG teacher. Where we see drops in the
entropy of data being used seem to be locations where the
teacher is attempting to escape local minima. In Figure 13

0 20 40 60 80 100
Number of batches trained on

0
2
4
6
8

10
12
14
16
18
20

Cu
rri
cu

lu
m
 b
at
ch

 se
le
ct
ed

Figure 12. Actions generated by a DQN teacher with a
learning rate of 0.01. At each iteration, anything shaded
in blue is included in the batch used for training.

0 20 40 60 80 100
Number of batches trained on

0

2

4

6

8

10

12

14

16

18

20

Cu
rri
cu

lu
m
 b
at
ch

 se
le
ct
ed

Figure 13. Actions generated by a DQN teacher with a
learning rate of 0.001.

we reduce the student’s learning rate and we see that we still
have a ‘low to high entropy’ curriculum but it is progressing
much more slowly. Once again, this is due to the step size
being smaller and therefore requiring more gradient updates
to get the student network into a weight state that requires
different batches for training.

Policy Stability for Similar Students

We demonstrate in this section that for all the tasks consid-
ered our teacher learned stable policies conditioned on the
current state of the student. We present our findings on the
Ward Admission dataset in the main paper and our findings
on the MIMIC-III and CIFAR-10 datasets below.

MIMIC-III

We see that once again the teacher learns a policy of using
low entropy data to initialise the student before increasing
the size of the batch introduced to maximise performance.
We now once again apply Gaussian noise to the states of the
student as done in the main paper.

In Figure 15 we see that the overall structure of the cur-
riculum is the same as other MIMIC-III policies generated,



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

0 250 500 750 1000 1250 1500 1750 2000
Iterations

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
Ac

cu
ra
cy

100 curriculum batches, DDPG

Figure 14. The performance of a student trained by the
DDPG teacher on the MIMIC-III dataset.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

0

10

20

30

40

50

60

70

80

90

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 15. The actions used by the teacher to train the
student with performance shown in Figure 14.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

0

10

20

30

40

50

60

70

80

90

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 16. The actions taken by the teacher when the
student has Gaussian noise applied to its states.

beginning at high entropy and reducing to low to initialise
the student before expanding the size of the batch. Figure
16 also shows this with a very similar curriculum to the one
in Figure 15 being followed. This further encourages us that
a strategy has indeed been learned by the teacher to train a
student on the MIMIC-III dataset based on the weights of
the student.

CIFAR-10

Once again we repeat the exercise on the CIFAR-10 dataset
and observe the stability of the teaching policy based on the
corrupted states of the student.

0 100 200 300 400 500
Iterations

0

10

20

30

40

50

60

70

80

90

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 17. The actions used by the DDPG teacher to
train a student on the CIFAR-10.

0 100 200 300 400 500
Iterations

0

10

20

30

40

50

60

70

80

90

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 18. The actions of the teacher when the student
has Gaussian noise applied to its states.

We see in Figures 17 and 18 that the same general policy is
followed as that used in Figures 7, 8 and 9. As we only train
for 500 iterations the policy ends at the point of transition
to training on high entropy data. We see that corrupting
the students states with Gaussian noise has not significantly
changed the policy of the teacher, providing further reassur-
ance that the policy is not only stable but a learned function
of the state of the student and not simply an alternative
optimisation trajectory.

Policy Transfer between Tasks

In this section we provide further examples of policies gen-
erated from a teacher trained using the Ward Admission
dataset on the MIMIC-III mortality prediction task.

Figures 19 and 21 show the performances of two randomly
initialised students and the corresponding curricula that gen-
erated these performances are found in Figures 20 and 22
respectively. We see from these policies that the teacher
uses the same strategy of small batches for initialisation



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675
Ac

cu
ra
cy

50 curriculum batches, DDPG

Figure 19. Performance of a randomly initialised stu-
dent on the MIMIC-III dataset when trained by a
teacher transferred from the Ward Admission dataset.

0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

0

5

10

15

20

25

30

35

40

45

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 20. The actions selected by the transferred
teacher when training the student for the MIMIC-III
task.

and then the ‘batch expansion’ as was seen when discussing
the policies of the teacher trained using MIMIC-III. It is
interesting to see that the teacher for Ward Admission also
demonstrates this behaviour, however it is not clear why this
is the case. In future, we will investigate how to combine
teachers to train tasks that may be combinations of tasks or
hybrid tasks and assess the curricula generated from these.
We may also make the problem hierarchical, with a princi-
pal assigning teachers or combinations of teachers to train
various students on tasks which can be ranked according to
some metric (such as a task embedding). This metric can
then be related back to the specialties of the teachers, with
the principal using this information to use multiple teachers
(one iteration at a time) or combinations of teachers to train
the student on the task.

Convergence of Teacher Selection

In this experiment we investigate how the teacher makes
selections given a particular state of the student. In Figure
23 we monitor the output of the teacher for a given student
state as the teacher is trained.

We show the teacher selection for 10 different initial seeds of

0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

50 curriculum batches, DDPG

Figure 21. Performance of a randomly initialised stu-
dent on the MIMIC-III dataset when trained by a
teacher transferred from the Ward Admission dataset.

0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

0

5

10

15

20

25

30

35

40

45

Ba
tc
h 
Se

le
ct
ed

Batches selected for training

Figure 22. The actions selected by the transferred
teacher when training the student for the MIMIC-III
task.

Figure 23. Action selection of the teacher on a fixed student state
as it trains.

the teacher. We see that with training all teachers converge
on a very specific action for the given student state indicating
that a robust and consistent policy is learned.



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

2. Pseudocode for DQN Teacher

Algorithm 1 The student-teacher training routine for dis-
crete batches using the DQN algorithm
Data: Training dataset organised into N batches of Maha-

lanobis curriculum
initialise teacher network, g
initialise target teacher by copying predictor teacher, gT

select value of frequency of target network update and
batchsize of replay data, M
for x in X students do

initialise student network, fx
for i in I iterations do

Extract state of fx, s
if i = 0 then

train student on random batch (action), a
else

select a with highest Q-value from g(s) accord-
ing to a linearly decaying ε-greedy policy with
respect to I

end
•train student (fx) on action selected
•record performance improvement of student on
training set and validation set and multiply for over-
all reward, r
•add r to the output of gT (s) corresponding to the
action taken to achieve this reward
•use the error between outputs of g and gT to back-
propagate over the weights of g
•save s, a, r and next state, s′ into replay buffer
if i mod M = 0 then

sample M samples from replay buffer to train g
on
update gT with new state of g

else
continue

end
end

end


