
Decision Trees for Decision-Making under the Predict-then-Optimize Framework

Appendices for

Decision Trees for Decision-Making under the
Predict-then-Optimize Framework

A. Proof of Theorem 1
Theorem 1. Let c̄l := 1

|Rl|
∑

i∈Rl
ci denote the average cost of all observations within leaf l. If c̄l has a unique minimizer

in its corresponding decision problem, then c̄l minimizes within-leaf SPO loss. More simply, if |W ∗(c̄l)| = 1, then c̄l =
arg minĉl

∑
i∈Rl

`SPO(ĉl, ci).

Proof. Let c̄l be defined as stated in the theorem. We will show that the within-leaf SPO loss associated with predicting c̄l
lower bounds that of predicting any other feasible cost vector ĉl ∈ Rd. Let Nl = |Rl| denote the number of observations
within leaf l. The following holds for any ĉl ∈ Rd:

1

Nl

∑
i∈Rl

`SPO(c̄l, ci)−
1

Nl

∑
i∈Rl

`SPO(ĉl, ci)

=
1

Nl

∑
i∈Rl

max
w∈W∗(c̄l)

{cTi w} −
1

Nl

∑
i∈Rl

max
w∈W∗(ĉl)

{cTi w}

=
1

Nl

∑
i∈Rl

cTi w
∗(c̄l)−

1

Nl

∑
i∈Rl

max
w∈W∗(ĉl)

{cTi w} (W ∗(c̄l) = {w∗(c̄l)} is a singleton)

≤ 1

Nl

∑
i∈Rl

cTi w
∗(c̄l)− max

w∈W∗(ĉl)

{
1

Nl

∑
i∈Rl

cTi w

}
= c̄Tl w

∗(c̄l)− max
w∈W∗(ĉl)

{c̄Tl w}

≤ 0 (by definition of w∗(c̄l))

We have thus demonstrated that c̄l achieves a within-leaf SPO loss lower or equal to that of any other cost vector ĉl ∈ Rd,
thereby proving the theorem.

B. Proof of Theorem 2
Theorem 2. Assume that the decision feasibility constraints w ∈ S consist of only linear and integer constraints and that
S is bounded. Then, optimization problem (4) may be equivalently expressed as the following MILP:

min
r, w, y

1

n

L∑
l=1

n∑
i=1

yil −
n∑

i=1

z∗(ci)

s.t. yil ≥ cTi wl −M1(1− ril), ∀i ∈ {1...n}, l ∈ {1...L},
yil ≥ −M2ril ∀i ∈ {1...n}, l ∈ {1...L},
wl ∈ S ∀l ∈ {1...L},
ril ∈ T ∀i ∈ {1...n}, l ∈ {1...L}

(7)

Proof. Let Nl = |Rl| denote the number of observations within leaf l. We first perform the following algebraic operations

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

starting with optimization problem (4):

min
R1:L∈T

1

n

L∑
l=1

∑
i∈Rl

(
cTi w

∗(c̄l)− z∗(ci)
)

= min
R1:L∈T

1

n

L∑
l=1

(
Nlc̄

T
l w
∗(c̄l)−

∑
i∈Rl

z∗(ci)

)

= min
R1:L∈T

1

n

L∑
l=1

(
Nl min

wl∈S
{c̄Tl wl} −

∑
i∈Rl

z∗(ci)

)

= min
R1:L∈T
w1:L∈S

1

n

L∑
l=1

(
Nlc̄

T
l wl −

∑
i∈Rl

z∗(ci)

)

= min
R1:L∈T
w1:L∈S

1

n

L∑
l=1

∑
i∈Rl

(
cTi wl − z∗(ci)

)
.

Let ril denote a binary variable which indicates whether training observation i belongs to leaf Rl. Then,

min
R1:L∈T
w1:L∈S

1

n

L∑
l=1

∑
i∈Rl

(
cTi wl − z∗(ci)

)
= min

r1:L∈T
w1:L∈S

1

n

L∑
l=1

(
n∑

i=1

rilc
T
i wl

)
−

n∑
i=1

z∗(ci)

= min
r1:L∈T
w1:L∈S
y1:L

1

n

L∑
l=1

n∑
i=1

yil −
n∑

i=1

z∗(ci) ,

where in the last step we add the constraint that yil = rilc
T
i wl for every i and l. First, note that this constraint may be

equivalently expressed as yil ≥ rilc
T
i wl, as yil will always be set equal to its minimum feasible value (rilcTi wl) since it is

being minimized in the objective function. However, this constraint is still not linear since it involves the multiplication of
two decision variables ril and wl. We may rewrite it as the two linear constraints below:

yil ≥ cTi wl −M1(1− ril) and yil ≥ −M2ril .

Above, M1 and M2 are constants which upper bound cTi wl and −cTi wl, respectively, for all i ∈ {1, 2, . . . , n} and wl ∈ S.
We therefore defineM1 := max{maxi,w∈S c

T
i w, 0} andM2 := max{maxi,w∈S −cTi w, 0}which are finite due to S being

bounded. Note that when the cost vectors are all nonnegative (nonpositive), then M2 = 0 (M1 = 0) assuming the decision
variables w are nonnegative for all feasible w ∈ S. Thus, the optimization problem for training decision trees under SPO
loss may be written as the following mixed integer linear program:

min
r, w, y

1

n

L∑
l=1

n∑
i=1

yil −
n∑

i=1

z∗(ci)

s.t. yil ≥ cTi wl −M1(1− ril), ∀i ∈ {1...n}, l ∈ {1...L},
yil ≥ −M2ril ∀i ∈ {1...n}, l ∈ {1...L},
wl ∈ S ∀l ∈ {1...L},
ril ∈ T ∀i ∈ {1...n}, l ∈ {1...L}

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

C. Encoding Decision Trees using Integer and Linear Constraints
Here we provide the complete formulation of ril ∈ T as integer and linear constraints using the decision tree encoding
proposed in Bertsimas & Dunn (2017). As it is only covered briefly here, we encourage the reader to examine Bertsimas
& Dunn (2017) for a more thorough treatment of the materials below. We assume that the practitioner has specified the
following parameters regulating the growth of the tree during the training procedure: (1) the depth H of the tree being
trained, and (2) the minimum number of training observations Nmin permitted to be in each leaf of the tree. We consider
training a complete tree of depth H , define as a tree in which all leaves have a depth of H . Let L denote the number
of leaves in the tree, and index each leaf by l ∈ TL := {1, 2, ..., L}. Further, let B denote the number of branch nodes
(i.e., splitting nodes) within the tree, and index each branch node by t ∈ TB := {1, 2, ..., B}. Note that L = 2H and
B = 2H − 1. Not all leaves in the tree are required to be active (i.e., contain training observations), and not all branch
nodes are required to be active splits (i.e., partition the training observations). Indeed, leaves may be pooled together if
their parent splits do not contribute significantly to minimizing the objective function. To keep track of the active leaves
and branch nodes, let kl= I{leaf l is not empty} and dt= I{branch node t is an active split}. If a branch node is not an
active split, then it effectively considered as a leaf with respect to the complete tree by (1) having all observations take the
path corresponding to its left branch, and (2) constraining all child branch nodes to also not be active splits.

We assume without loss of generality that all feature components are numeric and belong to the interval [0, 1]. Note that
categorical features can be easily transformed to fit this assumption through binarization. Each decision tree split is encoded
through the variables at ∈ {0, 1}p and bt ∈ [0, 1]. The variable at indicates which feature component is involved with the
split, and bt indicates the splitting point. For example, if there are three feature components, then the split “x2 < 0.4′′ is
encoded by aTx < b where a = [0, 1, 0] and b = 0.4. Since decision tree splits only consider one feature component at a
time, only one entry of at is permitted to be nonzero. Note that the quantities at and bt are treated as additional decision
variables in the optimization problem (2) as well as kl and dt.

Let p(t) denote the parent node of t. Further, let AL(t) be the set of left ancestor nodes of node t, defined as the set of
ancestors of t whose left branch has been followed on the path from the root node to t. Define AR(t) similarly as the set
of right ancestor nodes of t.

The constraint ril ∈ T in optimization problem (2) may be replaced with the set of linear and integer constraints below
developed by Bertsimas & Dunn (2017) to encode the splitting logic of decision trees:

L∑
l=1

ril = 1, ∀i ∈ {1, 2, ..., n} (8a)

ril ≤ kl, ∀i ∈ {1, 2, ..., n}, l ∈ TL (8b)
n∑

i=1

ril ≥ Nminkl, ∀l ∈ TL (8c)

aTmxi ≥ bm − (1− ril), ∀l ∈ TL, i ∈ {1, 2, ..., n},m ∈ AR(l) (8d)

aTm(xi + ε) ≤ bm + (1 + εmax)(1− ril), ∀l ∈ TL, i ∈ {1, 2, ..., n},m ∈ AL(l) (8e)
p∑

j=1

ajt = dt, ∀t ∈ TB (8f)

1− dt ≤ bt ≤ 1, ∀t ∈ TB (8g)
dt ≤ dp(t), ∀t ∈ TB/{1} (8h)
ajt, dt ∈ {0, 1}, ∀j ∈ {1...p}, t ∈ TB (8i)
ril, kl ∈ {0, 1}, ∀i ∈ {1...n}, l ∈ TL (8j)

Above, εj =
{
x

(q+1)
j − x(q)

j |x
(q+1)
j 6= x

(q)
j 1 = 1, 2, . . . n− 1

}
is the smallest nonzero difference between observed

values of feature component j, where x(q)
j is the qth largest value observed for feature xj and εmax = maxj εj . We

encourage the reader to consult Bertsimas & Dunn (2017) for intuition regarding ε and its role in the constraints.

In Bertsimas & Dunn (2017), if a branch node is considered to be inactive, then its associated split parameters a and
b are set to the zero vector and zero, respectively. This design choice was intended by the authors to force all training

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

observations down the right branch by making the left split direction constraint (8e) infeasible for all training observations.
However, we believe that this logic was implemented incorrectly, as both constraints (8d) and (8e) are feasible for any
training observations when a and b are both zero. We have corrected for this behavior by modifying constraint (8g) to set
b equal to one when a branch node is inactive, therefore successfully making constraint (8d) infeasible when a is the zero
vector and forcing observations down the left branch.

D. SPOT Integer Programming Approach: Additional Implementation Details
To prevent unnecessarily large trees and overfitting, Bertsimas & Dunn (2017) recommend adding the quantity
“α
∑

t∈TB
dt” to the objective function to penalize trees with a large number of active splits. The parameter α is in-

tended to be chosen by the practitioner to balance the trade-off between concise trees and low training set error, and this
parameter can be tuned through applying methods such as cross-validation. However, cross-validation might not be fea-
sible in situations where solving the optimization problem is too computationally expensive to be performed for multiple
values of α across multiple folds. In our numerical experiments, we train the SPO Trees with no regularization and instead
apply the well-known CART post-pruning algorithm (using SPO loss) proposed by Breiman et al. (1984) to regularize the
tree. To avoid lengthy technical details, we refer the reader to Breiman et al. (1984) for more information about the pruning
algorithm.

Finally, we detail a few strategies for improving the computational time associated with solving the mixed integer linear
program. First, as noted in Section 4.2 of the main paper, we recommend warm starting the MILP with the solution
recovered from the greedy algorithm. Second, we have observed that the computational time is influenced by the precision
of the vector of constants ε. Since the magnitude of ε is tied to the smallest (nonzero) differences between feature values,
we recommend rounding the features according to a certain precision (e.g., 1e−2) in settings where feature rounding would
not affect the quality of the resulting decision tree. Finally, we have observed that the linear programming (LP) relaxation
of the MILP often has large negative solutions, which can slow down MILP solvers which rely on LP relaxations to bound
the objective function (e.g., branch and bound). We recommend including the following constraint to ensure that the LP
relaxation associated with the MILP has at least a lower objective function bound of zero:(

L∑
l=1

yil

)
− z∗(ci) ≥ 0 ∀i ∈ {1, 2, ..., n}

E. Additional Experimental Details: Noisy Shortest Path
Here we investigate the decision performance of the algorithms on the shortest path problem when trained on larger datasets
of n = 10000 observations. Since there are more training observations available, it is now feasible to train the decision
tree algorithms to higher depths than in the previous experiment. Therefore, we train and evaluate the algorithms on depth
sizes up to 6, and we also report the performance of SPOT and CART when trained without any depth restrictions. We also
increase the level of noise from ε̄ = 0.25 to ε̄ = 0.5 to make the estimation problem more challenging for the algorithms
given the increased amount of data.

The test set normalized extra travel times incurred by the algorithms for n = 10000 are given in Figure 5. As in the
previous set of experiments, we observe that the SPO Trees achieve stronger empirical performance over CART when the
training depths are restricted to small or modest values, with SPOTs attaining both better average performance and lower
variance in performance across the 10 experimental trials. However, when the training depths increase to six or more,
CART begins to achieve comparable performance to SPOT and even slightly outperforms SPOT in some cases. Although
individual CART splits have little value for decision-making, in combination they finely partition the feature space to a
sufficient degree that the predicted cost vectors are highly accurate within each of the resulting leaves. Therefore, CART
is eventually able to achieve highly accurate predictions – and therefore near-optimal decisions – as its depth increases.
However, its interpretabilty is sacrificed as a result, as the trees eventually grow to a size which is too large to be easily
visualized and interpreted.

Figure 6 reports the number of leaves contained within the learned CART and SPOT trees as a function of their training
depths. As the figure demonstrates, when the training depths of CART and SPOT are large or unrestricted, the SPO Trees
contain less than half the number of leaf nodes as CART. Therefore, SPO Trees achieve comparable accuracy to CART in
these settings while also being more concise and therefore more interpretable. We find that the random forest algorithms
achieve similar performance, with CART random forests having a very slight edge over SPO Forests in the normalized

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

(a) deg = 2, ε̄ = 0 (b) deg = 2, ε̄ = 0.5

(c) deg = 10, ε̄ = 0 (d) deg = 10, ε̄ = 0.5

Figure 5. Test set normalized extra travel times on 10 different shortest path datasets of size n = 10000.

(a) deg = 2, ε̄ = 0 (b) deg = 2, ε̄ = 0.5

(c) deg = 10, ε̄ = 0 (d) deg = 10, ε̄ = 0.5

Figure 6. Number of leaves contained within the SPOT and CART trees from Figure 5. Each boxplot visualizes the number of leaves
associated with the trained trees from 10 different shortest path datasets of size n = 10000.

Decision Trees for Decision-Making under the Predict-then-Optimize Framework

extra travel times observed on the test set. The greedy SPOT approach also appears to perform similarly to the MILP
approach.

F. Additional Experimental Details: News Article Recommendation
First, we provide a more thorough description of how we preprocessed the Yahoo! Front Page Today Module dataset. The
dataset contains 45,811,883 interaction records between users and news articles from May 1, 2009 to May 10th, 2009. Each
record entry consists of: a feature vector of dimension 5 that characterizes the visiting user, a feature vector of dimension 5
encoding the article displayed to the user, and finally a binary scalar representing whether the user clicked on the displayed
article. The user and article features were constructed using a conjoint analysis with a bilinear model; see Chu et al. (2009)
for more details. We preprocessed the dataset according to the following procedure in order to obtain training, validation,
and test sets of feature-cost pairs for use in our predict-then-optimize problem.

1. Randomly sample without replacement 50% of the interaction records from May 1, 2009 to May 5, 2009 for training,
and use the rest for validation. The test data consists of all records from May 6, 2009 to May 10, 2009.

2. Cluster users into 10,000 clusters (“user types”) by applying the K-means algorithm to the user features observed in
the training and validation data, and similarly cluster the displayed articles into 7 clusters (“article types”) using the
article features. For each user cluster, record the mean user feature vector associated with all training and validation
set interaction records that map to that cluster.

3. Apply the following procedure separately to the training, validation, and test sets of interaction records. For each set
of data, group the interaction records according to user type using the clustering obtained in the previous step. Each
of these user types corresponds to a feature-cost pair (x, p) for the predict-then-optimize problem. The features x are
derived by looking up the mean user feature vector associated with the given cluster computed in the previous step.
The costs p are derived by computing the average click probability of each article type across the interaction records
associated with the given cluster. Here, we note that we dropped one article type as well as a number of feature-cost
pairs in the training, validation, and test sets to ensure the average click probabilities for each user and article type
were calculated with at least 50 interaction records. We were left with 6 article types and 5130, 5105, and 8768
feature-cost pairs in the training, validation, and test sets, respectively.

We also note the empirical runtimes of our algorithms on this dataset. The greedy SPO Trees were trained on a Dell
PowerEdge M915 Linux server using 1 processor core and 1 GB of memory per tree. The greedy SPOT training procedure
(using unrestricted depth) terminated after at most 1.3 hours for each constraint set, yielding trees of depths between 28
and 38 before pruning (after pruning, the trees had an average depth of 7). SPO Forests were trained on the same server
parallelizing fitting trees in the forest across 10 cores and using 40 GBs of memory. The SPO Forests training procedure
terminated after at most 18.4 hours of computational time per constraint set.

