## A. Appendix

## A.1. Lipschitz Constants

The Lipschitz constant describes: when input changes, how much does the output change correspondingly. For a function $f: X \rightarrow Y$, if it satisfies

$$
\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|_{Y} \leq L\left\|x_{1}-x_{2}\right\|_{X}, \forall x_{1}, x_{2} \in X
$$

for $L \geq 0$, and norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$ on their respective spaces, then we call $h$ Lipschitz continuous and $L$ is the known as the Lipschitz constant of $h$.
For a one layer network, full precision network $f_{f p}$ has Lipschitz constant $L$, which satisfies

$$
L \leq C_{\sigma}\left\|W_{f p}\right\| \text { for } C_{\sigma}=\frac{d \sigma}{d x}
$$

This bound is immediate from the fact that $\nabla f_{f p}(x)=\sigma^{\prime}\left(W_{f p} x\right) \cdot\left[\begin{array}{lll}W_{\cdot, 1} & \ldots & W_{\cdot, d}\end{array}\right]$, and $L \leq \max _{x}\left\|\nabla f_{f p}(x)\right\|$.

## A.2. Proofs and Additional Lemmas

Lemma 1. Let $f_{f p}$ be an m layer network, and each layer has Lipschitz constant $L_{i}$. Assume that quantizing each layer leads to a maximum pointwise error of $\delta_{i}$, and results in a quantized m layer network $f_{q}$. Then for any two points $x, y \in X, f_{q}$ satisfies

$$
\left\|f_{q}(x)-f_{q}(y)\right\|<\left(\prod_{j=1}^{m} L_{j}\right)\|x-y\|+2 \Delta_{m, L}
$$

where $\Delta_{m, L}=\delta_{m}+\sum_{i=1}^{m-1}\left(\prod_{j=i+1}^{m} L_{j}\right) \delta_{i}$.
Proof of Lemma 1 . Let $\phi_{q}^{(i)}$ be the quantized $i^{\text {th }}$ layer of the network. From Section A.1. we know that

$$
\left\|\phi_{q}^{(i)}(x)-\phi_{q}^{(i)}(y)\right\|<L_{i}\|x-y\|+2 \delta_{i}
$$

Similarly, we know that feeding in the previous layer's quantized output yields

$$
\begin{aligned}
\left\|\phi_{q}^{(2)} \circ \phi_{q}^{(1)}(x)-\phi_{q}^{(2)} \circ \phi_{q}^{(1)}(y)\right\| & \leq L_{2}\left\|\phi_{q}^{(1)}(x)-\phi_{q}^{(1)}(y)\right\|+2 \delta_{2} \\
& \leq L_{2} L_{1}\|x-y\|+2 L_{2} \delta_{1}+2 \delta_{2} .
\end{aligned}
$$

By chaining together the $i$ layers inductively up to $m$, we complete the desired inequality.

Proof of Theorem 1 . We know that $\left\|\phi_{q}^{(1)}(x)-\phi^{(1)}(x)\right\|<\delta_{1}$. This means $\phi^{(2)}$ receives different inputs depending on whether $\phi^{(1)}$ was quantized or not, and thus requires the Lipschitz bound. Thus

$$
\begin{aligned}
\| \phi_{q}^{(2)}\left(\left(\phi_{q}^{(1)}(x)\right)-\phi^{(2)}\left(\phi^{(1)}(x)\right) \|\right. & \leq\left\|\phi_{q}^{(2)}\left(\phi_{q}^{(1)}(x)\right)-\phi_{q}^{(2)}\left(\phi^{(1)}(x)\right)\right\|+\left\|\phi_{q}^{(2)}\left(\phi^{(1)}(x)\right)-\phi^{(2)}\left(\phi^{(1)}(x)\right)\right\| \\
& \leq\left(L_{2}\left\|\phi_{q}^{(1)}(x)-\phi^{(1)}(x)\right\|+2 \delta_{2}\right)+\delta_{2} \\
& \leq 2 L_{2} \delta_{1}+3 \delta_{2}
\end{aligned}
$$

where the second ineuqlity comes from Lemma1. Chaining the argument for the $i^{\text {th }}$ layer inductively up to $m$, we arrive at the desired inequality.

Proof of Theorem 2. From the guarantee of Lemma 1. we know

$$
\left\|f_{q}(x+\eta)-f_{q}(x)\right\| \leq L\|(x+\eta)-x\|+2 \Delta_{m, L}
$$

If we consider a full precision network $f_{f p}$ that classifies $x_{i}$ correctly with output margin $r_{i}>0$, then we must simply apply a triangle inequality to attain

$$
\begin{aligned}
\left\|f_{q}\left(x_{i}+\eta\right)-f_{f p}\left(x_{i}\right)\right\| & \leq\left\|f_{q}\left(x_{i}+\eta\right)-f_{q}\left(x_{i}\right)\right\|+\left\|f_{q}\left(x_{i}\right)-f_{f p}\left(x_{i}\right)\right\| \\
& \leq L\left\|\left(x_{i}+\eta\right)-x_{i}\right\|+2 \Delta_{m, L}+3 \Delta_{m, L}
\end{aligned}
$$

Thus for $\eta$ such that $\|\eta\|<\frac{r_{i}-5 \Delta_{m, L}}{L}$, we will attain $\left\|f_{q}\left(x_{i}+\eta\right)-f_{f p}\left(x_{i}\right)\right\|<r_{i}$.
Since we also have that $\|z\|_{\infty} \leq\|z\|_{2}$ for any $z \in \mathbb{R}^{K}$, this means that $\left\|f_{q}\left(x_{i}+\eta\right)-f_{f p}\left(x_{i}\right)\right\|_{\infty}<r_{i}$. If $f_{f p}$ classifies $x_{i}$ as class $k$, this means that

$$
f_{f p}\left(x_{i}\right)_{k}-f_{f p}\left(x_{i}\right)_{j} \geq 2 r_{i}, \forall j \neq k
$$

By the triangle inequality, we get

$$
\begin{aligned}
f_{q}\left(x_{i}+\eta\right)_{k}-f_{q}\left(x_{i}+\eta\right)_{j} & =f_{q}\left(x_{i}+\eta\right)_{k}-f_{q}\left(x_{i}+\eta\right)_{j} \pm f_{f p}\left(x_{i}\right)_{k} \pm f_{f p}\left(x_{i}\right)_{j} \\
& =\left(f_{q}\left(x_{i}+\eta\right)_{k}-f_{f p}\left(x_{i}\right)_{k}\right)-\left(f_{q}\left(x_{i}+\eta\right)_{j}-f_{f p}\left(x_{i}\right)_{j}\right)+\left(f_{f p}\left(x_{i}\right)_{k}-f_{f p}\left(x_{i}\right)_{j}\right) \\
& >-r_{i}-r_{i}+2 r_{i} \\
& \geq 0
\end{aligned}
$$

Since this difference is strictly greater than $0, f_{q}$ classifies $x+\eta$ correctly.
Proof of Theorem 3. Let $\widehat{y}_{i, f p}$ be the estimated class of $x_{i}$ using $f_{f p}$ and $\widehat{y}_{i, q}$ be the estimated class of $x_{i}$ using $f_{q}$. We use basic probabilistic bounds (where the probability is a uniform distribution over the dataset) to arrive at

$$
\begin{aligned}
e_{q} & =\operatorname{Pr}\left(\widehat{y}_{i, q} \neq y_{i}\right) \\
& =\operatorname{Pr}\left(\widehat{y}_{i, q} \neq y_{i} \text { and } \widehat{y}_{i, f p} \neq y_{i}\right)+\operatorname{Pr}\left(\widehat{y}_{i, q} \neq y_{i} \text { and } \widehat{y}_{i, f p}=y_{i}\right) \\
& \leq \operatorname{Pr}\left(\widehat{y}_{i, f p} \neq y_{i}\right)+\operatorname{Pr}\left(\widehat{y}_{i, f p}=y_{i} \text { and } \widehat{y}_{i, q} \neq \widehat{y}_{i, f p}\right) \\
& \leq e_{f p}+\operatorname{Pr}\left(\widehat{y}_{i, f p}=y_{i}\right) \operatorname{Pr}\left(\widehat{y}_{i, q} \neq \widehat{y}_{i, f p} \mid \widehat{y}_{i, f p}=y_{i}\right) \\
& \leq e_{f p}+\left(1-e_{f p}\right) \operatorname{Pr}\left(\widehat{y}_{i, q} \neq \widehat{y}_{i, f p} \mid \widehat{y}_{i, f p}=y_{i}\right) \\
& =e_{f p}+\left(1-e_{f p}\right)\left(1-\operatorname{Pr}\left(\widehat{y}_{i, q}=\widehat{y}_{i, f p} \mid \widehat{y}_{i, f p}=y_{i}\right)\right)
\end{aligned}
$$

All that remains is lower bounding the final conditional probability of matching. However, this can be done using Theorem 2 We know that $\widehat{y}_{i, q}=\widehat{y}_{i, f p}$ so long as $\left\|f_{q}\left(x_{i}\right)+f_{f p}\left(x_{i}\right)\right\|_{\infty}<r_{i}$. From Theorem 2 a sufficient condition for this is for $r_{i}-5 \Delta_{m, L}>0$, as this implies one can construct a neighborhood of positive radius $\|\eta\|<\frac{r_{i}-5 \Delta_{m, L}}{L}$ such that $\left\|f_{q}\left(x_{i}+\eta\right)+f_{f p}\left(x_{i}\right)\right\|_{\infty}<r_{i}$. In particular, this implies $\left\|f_{q}\left(x_{i}\right)+f_{f p}\left(x_{i}\right)\right\|_{\infty}<r_{i}$ by choosing $\eta=0$. This gives us

$$
\begin{aligned}
\operatorname{Pr}\left(\widehat{y}_{i, q}=\widehat{y}_{i, f p} \mid \widehat{y}_{i, f p}=y_{i}\right) & =\operatorname{Pr}\left(\left\|f_{q}\left(x_{i}\right)+f_{f p}\left(x_{i}\right)\right\|_{\infty}<r_{i} \mid \widehat{y}_{i, f p}=y_{i}\right) \\
& \geq \operatorname{Pr}\left(\exists \delta \geq 0, \forall\|\eta\|<\delta,\left\|f_{q}\left(x_{i}+\eta\right)+f_{f p}\left(x_{i}\right)\right\|_{\infty}<r_{i} \mid \widehat{y}_{i, f p}=y_{i}\right) \\
& \geq \operatorname{Pr}\left(\left.\frac{r_{i}-5 \Delta_{m, L}}{L}>0 \right\rvert\, \widehat{y}_{i, f p}=y_{i}\right) \\
& =\mathbb{E}_{x_{i} \in X}\left[\mathbf{1}_{r_{i}>5 \Delta_{m, L}} \mid \widehat{y}_{i, f p}=y_{i}\right] .
\end{aligned}
$$

Combining these terms, we arrive at

$$
\begin{aligned}
e_{q} & \leq e_{f p}+\left(1-e_{f p}\right)\left(1-\mathbb{E}_{x_{i} \in X}\left[\mathbf{1}_{\left.\left.r_{i}>5 \Delta_{m, L} \mid \widehat{y}_{i, f p}=y_{i}\right]\right)}\right.\right. \\
& =e_{f p}+\left(1-e_{f p}\right) \mathbb{E}_{x_{i} \in X}\left[\mathbf{1}_{r_{i} \leq 5 \Delta_{m, L}} \mid \widehat{y}_{i, f p}=y_{i}\right]
\end{aligned}
$$

