A. Appendix

A.1. Lipschitz Constants

The Lipschitz constant describes: when input changes, how much does the output change correspondingly. For a function $f: X \to Y$, if it satisfies

$$||f(x_1) - f(x_2)||_Y \le L ||x_1 - x_2||_X, \ \forall x_1, x_2 \in X$$

for $L \ge 0$, and norms $\|\cdot\|_X$ and $\|\cdot\|_Y$ on their respective spaces, then we call *h* Lipschitz continuous and *L* is the known as the Lipschitz constant of *h*.

For a one layer network, full precision network f_{fp} has Lipschitz constant L, which satisfies

$$L \leq C_{\sigma} \|W_{fp}\| \text{ for } C_{\sigma} = \frac{d\sigma}{dx}$$

This bound is immediate from the fact that $\nabla f_{fp}(x) = \sigma'(W_{fp}x) \cdot [W_{,1} \dots W_{,d}]$, and $L \le \max_x \|\nabla f_{fp}(x)\|$.

A.2. Proofs and Additional Lemmas

Lemma 1. Let f_{fp} be an *m* layer network, and each layer has Lipschitz constant L_i . Assume that quantizing each layer leads to a maximum pointwise error of δ_i , and results in a quantized *m* layer network f_q . Then for any two points $x, y \in X$, f_q satisfies

$$||f_q(x) - f_q(y)|| < \left(\prod_{j=1}^m L_j\right) ||x - y|| + 2\Delta_{m,L},$$

where $\Delta_{m,L} = \delta_m + \sum_{i=1}^{m-1} \left(\prod_{j=i+1}^m L_j \right) \delta_i.$

Proof of Lemma 1. Let $\phi_q^{(i)}$ be the quantized i^{th} layer of the network. From Section A.1, we know that

$$\|\phi_q^{(i)}(x) - \phi_q^{(i)}(y)\| < L_i \|x - y\| + 2\delta_i$$

Similarly, we know that feeding in the previous layer's quantized output yields

$$\begin{aligned} \|\phi_q^{(2)} \circ \phi_q^{(1)}(x) - \phi_q^{(2)} \circ \phi_q^{(1)}(y)\| &\leq L_2 \|\phi_q^{(1)}(x) - \phi_q^{(1)}(y)\| + 2\delta_2 \\ &\leq L_2 L_1 \|x - y\| + 2L_2 \delta_1 + 2\delta_2. \end{aligned}$$

By chaining together the *i* layers inductively up to *m*, we complete the desired inequality.

Proof of Theorem 1. We know that $\|\phi_q^{(1)}(x) - \phi^{(1)}(x)\| < \delta_1$. This means $\phi^{(2)}$ receives different inputs depending on whether $\phi^{(1)}$ was quantized or not, and thus requires the Lipschitz bound. Thus

$$\begin{aligned} \|\phi_q^{(2)}((\phi_q^{(1)}(x)) - \phi^{(2)}(\phi^{(1)}(x))\| &\leq \|\phi_q^{(2)}(\phi_q^{(1)}(x)) - \phi_q^{(2)}(\phi^{(1)}(x))\| + \|\phi_q^{(2)}(\phi^{(1)}(x)) - \phi^{(2)}(\phi^{(1)}(x))\| \\ &\leq \left(L_2 \|\phi_q^{(1)}(x) - \phi^{(1)}(x)\| + 2\delta_2\right) + \delta_2 \\ &\leq 2L_2\delta_1 + 3\delta_2, \end{aligned}$$

where the second ineuqlity comes from Lemma 1. Chaining the argument for the i^{th} layer inductively up to *m*, we arrive at the desired inequality.

Proof of Theorem 2. From the guarantee of Lemma 1, we know

$$||f_q(x+\eta) - f_q(x)|| \le L ||(x+\eta) - x|| + 2\Delta_{m,L}$$

If we consider a full precision network f_{fp} that classifies x_i correctly with output margin $r_i > 0$, then we must simply apply a triangle inequality to attain

$$\begin{aligned} \|f_q(x_i+\eta) - f_{fp}(x_i)\| &\leq \|f_q(x_i+\eta) - f_q(x_i)\| + \|f_q(x_i) - f_{fp}(x_i)\| \\ &\leq L\|(x_i+\eta) - x_i\| + 2\Delta_{m,L} + 3\Delta_{m,L}. \end{aligned}$$

Thus for η such that $\|\eta\| < \frac{r_i - 5\Delta_{m,L}}{L}$, we will attain $\|f_q(x_i + \eta) - f_{fp}(x_i)\| < r_i$. Since we also have that $\|z\|_{\infty} \le \|z\|_2$ for any $z \in \mathbb{R}^K$, this means that $\|f_q(x_i + \eta) - f_{fp}(x_i)\|_{\infty} < r_i$. If f_{fp} classifies x_i as class k, this means that

$$f_{fp}(x_i)_k - f_{fp}(x_i)_j \ge 2r_i, \forall j \ne k$$

By the triangle inequality, we get

$$\begin{aligned} f_q(x_i+\eta)_k - f_q(x_i+\eta)_j &= f_q(x_i+\eta)_k - f_q(x_i+\eta)_j \pm f_{fp}(x_i)_k \pm f_{fp}(x_i)_j \\ &= (f_q(x_i+\eta)_k - f_{fp}(x_i)_k) - (f_q(x_i+\eta)_j - f_{fp}(x_i)_j) + (f_{fp}(x_i)_k - f_{fp}(x_i)_j) \\ &> -r_i - r_i + 2r_i \\ &> 0. \end{aligned}$$

Since this difference is strictly greater than 0, f_q classifies $x + \eta$ correctly.

Proof of Theorem 3. Let $\hat{y}_{i,fp}$ be the estimated class of x_i using f_{fp} and $\hat{y}_{i,q}$ be the estimated class of x_i using f_q . We use basic probabilistic bounds (where the probability is a uniform distribution over the dataset) to arrive at

$$e_q = \Pr(\widehat{y}_{i,q} \neq y_i)$$

$$= \Pr(\widehat{y}_{i,q} \neq y_i \text{ and } \widehat{y}_{i,fp} \neq y_i) + \Pr(\widehat{y}_{i,q} \neq y_i \text{ and } \widehat{y}_{i,fp} = y_i)$$

$$\leq \Pr(\widehat{y}_{i,fp} \neq y_i) + \Pr(\widehat{y}_{i,fp} = y_i \text{ and } \widehat{y}_{i,q} \neq \widehat{y}_{i,fp})$$

$$\leq e_{fp} + \Pr(\widehat{y}_{i,fp} = y_i) \Pr(\widehat{y}_{i,q} \neq \widehat{y}_{i,fp} | \widehat{y}_{i,fp} = y_i)$$

$$\leq e_{fp} + (1 - e_{fp}) \Pr(\widehat{y}_{i,q} \neq \widehat{y}_{i,fp} | \widehat{y}_{i,fp} = y_i)$$

$$= e_{fp} + (1 - e_{fp}) (1 - \Pr(\widehat{y}_{i,q} = \widehat{y}_{i,fp} | \widehat{y}_{i,fp} = y_i))$$

All that remains is lower bounding the final conditional probability of matching. However, this can be done using Theorem 2. We know that $\hat{y}_{i,q} = \hat{y}_{i,fp}$ so long as $||f_q(x_i) + f_{fp}(x_i)||_{\infty} < r_i$. From Theorem 2, a sufficient condition for this is for $r_i - 5\Delta_{m,L} > 0$, as this implies one can construct a neighborhood of positive radius $||\eta|| < \frac{r_i - 5\Delta_{m,L}}{L}$ such that $||f_q(x_i + \eta) + f_{fp}(x_i)||_{\infty} < r_i$. In particular, this implies $||f_q(x_i) + f_{fp}(x_i)||_{\infty} < r_i$ by choosing $\eta = 0$. This gives us

$$\begin{aligned} \Pr(\widehat{y}_{i,q} = \widehat{y}_{i,fp} | \widehat{y}_{i,fp} = y_i) &= \Pr(\|f_q(x_i) + f_{fp}(x_i)\|_{\infty} < r_i | \widehat{y}_{i,fp} = y_i) \\ &\geq \Pr(\exists \delta \ge 0, \forall \|\boldsymbol{\eta}\| < \delta, \|f_q(x_i + \boldsymbol{\eta}) + f_{fp}(x_i)\|_{\infty} < r_i | \widehat{y}_{i,fp} = y_i) \\ &\geq \Pr\left(\frac{r_i - 5\Delta_{m,L}}{L} > 0 | \widehat{y}_{i,fp} = y_i\right) \\ &= \mathbb{E}_{x_i \in X} \left[\mathbf{1}_{r_i > 5\Delta_{m,L}} | \widehat{y}_{i,fp} = y_i \right]. \end{aligned}$$

Combining these terms, we arrive at

$$e_{q} \leq e_{fp} + (1 - e_{fp}) \Big(1 - \mathbb{E}_{x_{i} \in X} \Big[\mathbf{1}_{r_{i} > 5\Delta_{m,L}} \Big| \widehat{y}_{i,fp} = y_{i} \Big] \Big) \\= e_{fp} + (1 - e_{fp}) \mathbb{E}_{x_{i} \in X} \Big[\mathbf{1}_{r_{i} \leq 5\Delta_{m,L}} \Big| \widehat{y}_{i,fp} = y_{i} \Big].$$

L		