
Supplementary Materials: Generalization Error of GLMs in High Dimensions

A. Empirical Convergence of Vector
Sequences

The LSL model in Section 2 and our main result in Section 4
require certain technical definitions.

Definition 1 (Pseudo-Lipschitz continuity). For a given
p ≥ 1, a function f : Rd → Rm is called Pseudo-Lipschitz
of order p if

‖f(x1)− f(x2)‖
≤ C‖x1 − x2‖

(
1 + ‖x1‖p−1 + ‖x2‖p−1

)
(36)

for some constant C > 0.

Observe that for p = 1, the pseudo-Lipschitz is equivalent
to the standard definition of Lipschitz continuity.

Definition 2 (Uniform Lipschitz continuity). Let φ(x, θ)
be a function on r ∈ Rd and θ ∈ Rs. We say that φ(x, θ) is
uniformly Lipschitz continuous in x at θ = θ if there exists
constants L1, L2 ≥ 0 and an open neighborhood U of θ
such that

‖φ(x1, θ)− φ(x2, θ)‖ ≤ L1‖x1 − x2‖ (37)

for all x1,x2 ∈ Rd and θ ∈ U ; and

‖φ(x, θ1)− φ(x, θ2)‖ ≤ L2 (1 + ‖x‖) ‖θ1 − θ2‖, (38)

for all x ∈ Rd and θ1, θ2 ∈ U .

Definition 3 (Empirical convergence of a sequence). Con-
sider a sequence of vectors x(N) = {xn(N)}Nn=1 with
xn(N) ∈ Rd. So, each x(N) is a block vector with a total
of Nd components. For a finite p ≥ 1, we say that the vec-
tor sequence x(N) converges empirically with p-th order
moments if there exists a random variable X ∈ Rd such
that

(i) E‖X‖pp <∞; and

(ii) for any f : Rd → R that is pseudo-Lipschitz continu-
ous of order p,

lim
N→∞

1
N

N∑
n=1

f(xn(N)) = E [f(X)] . (39)

In this case, with some abuse of notation, we will write

lim
N→∞

{xn}
PL(p)

= X, (40)

where we have omitted the dependence on N in xn(N).
We note that the sequence {x(N)} can be random or de-
terministic. If it is random, we will require that for every
pseudo-Lipschitz function f(·), the limit (39) holds almost

surely. In particular, if xn ∼ X are i.i.d. and E‖X‖pp <∞,
then x empirically converges to X with pth order moments.

PL(p) convergence is equivalent to weak convergence plus
convergence in p moment (Bayati & Montanari, 2011), and
hence PL(p) convergence is also equivalent to convergence
in Wasserstein-p metric (See Chapter 6. (Villani, 2008)).
We use this fact later in proving Theorem 1.

B. ML-VAMP Denoisers Details
Related to Smp and smp from equation (11), we need to
define two quantities s+

mp ∈ RN and s−mp ∈ Rp that are
zero-padded versions of the singular values smp, so that for
n > min{N, p}, we set s±mp,n = 0. Observe that (s+

mp)2

are eigenvalues of UUT whereas (s−mp)2 are eigenvalues
of UTU. Since smp empirically converges to Smp as given
in (12), the vector s+

mp empirically converges to random
variable S+

mp whereas the vector s−mp empirically converges
to random variable S−mp, where a mass is placed at 0 appro-
priately. Specifically, S+

mp has a point mass of (1−β)+δ{0}
when β < 1, whereas S−mp has a point mass of (1− 1

β)+δ{0},
when β > 1. In Appendix H (eqn. (113)), we provide the
densities over positive parts of S+

mp and S−mp.

A key property of our analysis will be that the non-linear
functions (20) and the denoisers g±` (·) have simple forms.

Non-linear functions φ`(·): The non-linear functions all act
componentwise. For example, for φ1(·) in (20), we have

z1 = φ1(p0, str) = diag(str)p0 ⇐⇒ z1,n = φ1(p0,n, str,n),

where φ1(·) is the scalar-valued function,

φ1(p0, s) = sp0. (41)

Similarly, for φ2(·),

z2 = φ2(p1, s
+
mp)⇐⇒ z2,n = φ2(p1,n, s

+
mp,n), n < N

where p1 ∈ RN is the zero-padded version of p1, and

φ2(p1, s) = s p1. (42)

Finally, the function φ3(·) in (20) acts componentwise with

φ3(p2, d) = φout(p2, d). (43)

Input denoiser g+
0 (·): Since F0(z0) = Fin(z0), and Fin(·)

given in (6), the denoiser (25a) acts componentwise in that,

ẑ0 = g+
0 (r−0 , γ

−
0)⇐⇒ ẑ0,n = g+

0 (r−0,n, γ
−
0),

where g+
0 (·) is the scalar-valued function,

g+
0 (r−0 , γ

−
0) := argmin

z0

fin(z0) +
γ−0
2

(z0 − r−0)2. (44)

Supplementary Materials: Generalization Error of GLMs in High Dimensions

Thus, the vector optimization in (25a) reduces to a set of
scalar optimizations (44) on each component.

Output denoiser g−3 (·): The output penalty F3(p2,y) =

Fout(p2,y) where Fout(p2,y) has the separable form (6).
Thus, similar to the case of g0(·), the denoiser g3(·) in (25b)
also acts componentwise with the function,

g−3 (r+
2 , γ

+
2 , y) := argmin

p2

fout(p2, y) +
γ+
2

2 (p2 − r+
2)2.

(45)

Linear denoiser g±1 (·): The expressions for both denoisers
g±1 and g±2 are very similar and can be explained together.
The penalty F1(·) restricts z1 = Strp0, where Str is a
square matrix. Hence, for ` = 1, the minimization in (27)
is given by,

p̂0 := argmin
p0

γ+
0

2 ‖p0 − r+
0 ‖2 +

γ−
1

2 ‖Strp0 − r−1 ‖2,

(46)

and ẑ1 = Strp̂0. This is a simple quadratic minimization
and the components of p̂0 and ẑ1 are given by

p̂0,n = g−1 (r+
0,n, r

−
1,n, γ

+
0 , γ

−
1 , str,n)

ẑ1,n = g+
1 (r+

0,n, r
−
1,n, γ

+
0 , γ

−
1 , str,n),

where

g−1 (r+
0 , r

−
1 , γ

+
0 , γ

−
1 , s) :=

γ+
0 r

+
0 + sγ−1 r

−
1

γ+
0 + s2γ−1

(47a)

g+
1 (r+

0 , r
−
1 , γ

+
0 , γ

−
1 , s) :=

s(γ+
0 r

+
0 + sγ−1 r

−
1)

γ+
0 + s2γ−1

(47b)

Linear denoiser g±2 (·): This denoiser is identical to the case
g±1 (·) in that we need to impose the linear constraint z2 =
Smpp1. However Smp is in general a rectangular matrix
and the two resulting cases of β ≶ 1 needs to be treated
separately.

Recall the definitions of vectors s+
mp and s−mp at the begin-

ning of this section. Then, for ` = 2, with the penalty
F2(p1, z2) = δ{z2=Smpp1}, the solution to (27) has compo-
nents,

p̂1,n = g−2 (r+
1,n, r

−
2,n, γ

+
1 , γ

+
2 , s

−
mp,n) (48a)

ẑ2,n = g+
2 (r+

1,n, r
−
2,n, γ

+
1 , γ

+
2 , s

+
mp,n), (48b)

with the identical functions g−2 = g−1 and g+
2 = g+

1 as given
by (47a) and (47b). Note that in (48a), n = 1, . . . , p and in
(48b), n = 1, . . . , N .

C. State Evolution Analysis of ML-VAMP
A key property of the ML-VAMP algorithm is that its perfor-
mance in the LSL can be exactly described by a scalar
equivalent system. In the scalar equivalent system, the
vector-valued outputs of the algorithm are replaced by scalar
random variables representing the typical behavior of the
components of the vectors in the large-scale-limit (LSL).
Each of the random variables are described by a set of
parameters, where the parameters are given by a set of de-
terministic equations called the state evolution or SE.

The SE for the general ML-VAMP algorithm are derived
in (Pandit et al., 2019) and the special case of the updates
for ML-VAMP for GLM learning are shown in Algorithm 2
with details of functions g±` in Appendix B. We see that the
SE updates in Algorithm 2 parallel those in the ML-VAMP
algorithm Algo. 1, except that vector quantities such as ẑk`,
p̂k`, r+

k` and r−k` are replaced by scalar random variables
such as Ẑk`, P̂k`, R+

k` and R−k`. Each of these random
variables are described by the deterministic parameters such
as Kk` ∈ R2×2

�0 , and τ0
` , τ−k` ∈ R+.

The updates in the section labeled as “Initial”, provide the
scalar equivalent model for the true system (18). In these
updates, Ξ` represent the limits of the vectors ξ` in (19).
That is,

Ξ1 := Str, Ξ2 := S+
mp, Ξ3 := D. (49)

Due to assumptions in Section 2, we have that the compo-
nents of ξ` converge empirically as,

lim
N→∞

{ξ`,i}
PL(2)

= Ξ`, (50)

So, the Ξ` represent the asymptotic distribution of the com-
ponents of the vectors ξ`.

The updates in sections labeled “Forward pass” and “Back-
ward pass” in the SE equations in Algorithm 2 parallel those
in Algorithm 1. The key quantities in these SE equations
are the error variables,

p+
k` := r+

k` − p0
` , q−k` := r−k` − z0

` ,

which represent the errors of the estimates to the inputs of
the denoisers. We will also be interested in their transforms,

q+
k` = VT

`p
+
k, +̀1, p−k` = V`q

−
k`.

The following Theorem is an adapted version of the main
result from (Pandit et al., 2019) to the iterates of Algorithms
1 and 2.
Theorem 2. Consider the outputs of the ML-VAMP for
GLM Learning Algorithm under the assumptions of Sec-
tion 2. Assume the denoisers satisfy the continuity condi-
tions in Assumption 1. Also, assume that the outputs of the
SE satisfy

α±k` ∈ (0, 1),

Supplementary Materials: Generalization Error of GLMs in High Dimensions

Algorithm 2 SE for ML-VAMP for GLM Learning
1: // Initial
2: Initialize γ−0` = γ−0` from Algorithm 1.
3: Q−0` ∼ N (0, τ−0`) for some τ−0` > 0 for ` = 0, 1, 2
4: Z0

0 = W 0

5: for ` = 0, . . . , L−1 do
6: P 0

` = N (0, τ0
`), τ0

` = var(Z0
`)

7: Z0
+̀1 = φ +̀1(P 0

` ,Ξ +̀1)
8: end for
9:

10: for k = 0, 1, . . . do
11: // Forward Pass
12: for ` = 0, . . . , L− 1 do
13: if ` = 0 then
14: R−k0 = Z0

` +Q−k0

15: Ẑk0 = g+
0 (R−k0, γ

−
k0)

16: else
17: R+

k, −̀1 = P 0
−̀1 + P+

k, −̀1, R−k` = Z0
` +Q−k`

18: Ẑk` = g+
` (R+

k, −̀1, R
−
k`, γ

+
k, −̀1, γ

−
k`,Ξ`)

19: end if
20: α+

k` = E∂Ẑk`/∂Q−k`

21: Q+
k` =

Ẑk` − Z0
` − α

+
k`Q

−
k`

1− α+
k`

22: γ+
k` = (1

α+
k`

− 1)γ−k`

23: (P 0
` , P

+
k`) ∼ N (0,K+

k`), K+
k` = cov(Z0

` , Q
+
k`)

24: end for
25:
26: // Backward Pass
27: for ` = L, . . . , 1 do
28: if ` = L then
29: R+

k,L−1 = P 0
L−1 + P+

k,L−1

30: P̂k,L−1 = g−L (R+
k,L−1, γ

+
k,L−1, Z

0
L)

31: else
32: R+

k, −̀1 = P 0
−̀1 +P+

k, −̀1, R−k+1,` = Z0
` +Q−k+1,`

33: P̂k, −̀1 = g−` (R+
k, −̀1, R

−
k+1,`, γ

+
k, −̀1, γ

−
k+1,`,Ξ`)

34: end if
35: α−k, −̀1 = E∂P̂k, −̀1/∂P

+
k, −̀1

36: P−k+1, −̀1 =
P̂k, −̀1 − P 0

−̀1 − α
−
k, −̀1P

+
k, −̀1

1− α−k, −̀1

37: γ−k+1, −̀1 = (1
α−
k, −̀1

− 1)γ+
k, −̀1

38: Q−k+1, −̀1 ∼ N (0, τ−k+1, −̀1), τ−k, −̀1 = E(P−k+1, −̀1)2

39: end for
40: end for

for all k and `. Suppose Algo. 1 is initialized so that the
following convergence holds

lim
N→∞

{r−0` − z0
`}

PL(2)
= Q−0`

where (Q−00, Q
−
01, Q

−
02) are independent zero-mean Gaus-

sians, independent of {Ξ`}. Then,

(a) For any fixed iteration k ≥ 0 in the forward direction
and layer ` = 1, . . . , L−1, we have that, almost surely,

lim
N→∞

(γ+
k, −̀1, γ

−
k`) = (γ+

k, −̀1, γ
−
k`), and, (51)

lim
N→∞

{(ẑ+
k`, z

0
` ,p

0
−̀1, r

+
k, −̀1, r

−
`)}

PL(2)
= (Ẑ+

k`, Z
0
` , P

0
−̀1, R

+
k, −̀1, R

−
`) (52)

where the variables on the right-hand side are from the
SE equations (51) and (52) are the outputs of the SE
equations in Algorithm 2. Similar equations hold for
` = 0 with the appropriate variables removed.

(b) Similarly, in the reverse direction, For any fixed itera-
tion k ≥ 0 and layer ` = 1, . . . , L − 2, we have that,
almost surely,

lim
N→∞

(γ+
k, −̀1, γ

−
k+1,`) = (γ+

k, −̀1, γ
−
k+1,`), and (53)

lim
N→∞

{(p̂+
k+1, −̀1, z

0
` ,p

0
−̀1, r

+
k, −̀1, r

−
k+1,`)}

PL(2)
= (P̂+

k+1, −̀1, Z
0
` , P

0
−̀1, R

+
k, −̀1, R

−
k+1,`). (54)

Furthermore, (P 0
−̀1, P

+
k −̀1) and Q−k` are independent.

Proof. This is a direct application of Theorem 3 from (Pan-
dit et al., 2019) to the iterations of Algorithm 1. The con-
vergence result in (Pandit et al., 2019) requires the uniform
Lipschitz continuity of functions g±` (·). Assumption 1 pro-
vides the required uniform Lipschitz continuity assumption
on g+

0 (·) and g−3 (·). For the ”middle” layers, ` = 1, 2,
the denoisers g±` (·) are linear and the uniform continuity
assumption is valid since we have made the additional as-
sumption that the terms str and smp are bounded almost
surely. �

A key use of the Theorem is to compute asymptotic empiri-
cal limits. Specifically, for a componentwise function ψ(·),
let 〈ψ(x)〉 denotes the average 1

N

∑N
n=1 ψ(xn) The above

theorem then states that for any componentwise pseudo-
Lipschitz function ψ(·) of order 2, as N →∞, we have the
following two properties

lim
N→∞

〈ψ(ẑ+
k`, z

0
` ,p

0
−̀1, r

+
k, −̀1, r

−
`)〉

= Eψ(Ẑ+
k`, Z

0
` , P

0
−̀1, R

+
k, −̀1, R

−
`)

lim
N→∞

〈ψ(p̂+
k+1, −̀1, z

0
` ,p

0
−̀1, r

+
k, −̀1, r

−
k+1,`)〉

= Eψ(P̂+
k+1, −̀1, Z

0
` , P

0
−̀1, R

+
k, −̀1, R

−
k+1,`).

Supplementary Materials: Generalization Error of GLMs in High Dimensions

That is, we can compute the empirical average over compo-
nents with the expected value of the random variable limit.
This convergence is key to proving Theorem 1.

D. Empirical Convergence of Fixed Points
A consequence of Assumption 2 is that we can take the
limit k →∞ of the random variables in the SE algorithm.
Specifically, let xk = xk(N) be any set of d outputs from
the ML-VAMP for GLM Learning Algorithm under the
assumptions of Theorem 2. Under Assumption 2, for each
N , there exists a vector

x(N) = lim
k→∞

xk(N), (55)

representing the limit over k. For each k, Theorem 2 shows
there also exists a random vector limit,

lim
N→∞

{xk,i(N)} PL(2)
= Xk, (56)

representing the limit over N . The following proposition
shows that we can take the limits of the random variables
Xk.

Proposition 1. Consider the outputs of the ML-VAMP for
GLM Learning Algorithm under the assumptions of Theo-
rem 2 and Assumption 2. Let xk = xk(N) be any set of d
outputs from the algorithm and let x(N) be its limit from
(55) and let Xk be the random variable limit (56). Then,
there exists a random variable X ∈ Rd such that, for any
pseudo-Lipschitz continuous f : Rd → R,

lim
k→∞

Ef(Xk) = Ef(X) = lim
N→∞

1

N

N∑
i=1

f(xi(N)).

(57)
In addition, the SE parameter limits α±k` and γ±k` converge
to limits,

lim
k→∞

α±k` = α±` , lim
k→∞

γ±k` = γ±` . (58)

The proposition shows that, under the convergence assump-
tion, Assumption 2, we can take the limits as k →∞ of the
random variables from the SE. To prove the proposition we
first need the following simple lemma.

Lemma 1. If αN and βk ∈ R are sequences such that

lim
k→∞

lim
N→∞

|αN − βk| = 0, (59)

then, there exists a constant C such that,

lim
N→∞

αN = lim
k→∞

βk = C. (60)

In particular, the two limits in (60) exist.

Proof. For any ε > 0, the limit (59) implies that there exists
a kε(↑ ∞ as ε ↓ 0) such that for all k > kε,

lim
N→∞

|αN − βk| < ε,

from which we can conclude,

lim inf
N→∞

αN > βk − ε

for all k > kε. Therefore,

lim inf
N→∞

αN ≥ sup
k≥kε

βk − ε.

Since this is true for all ε > 0, it follows that

lim inf
N→∞

αN ≥ lim sup
k→∞

βk. (61)

Similarly, lim supN→∞ αN ≤ infk>kε βk + ε, whereby

lim sup
N→∞

αN ≤ lim inf
k→∞

βk. (62)

Equations (61) and (62) together show that the limits in (60)
exists and are equal. �

Proof of Proposition 1 Let f : Rd → R be any pseudo-
Lipschitz function of order 2, and define,

αN =
1

N

N∑
i=1

f(xi(N)), βk = Ef(Xk). (63)

Their difference can be written as,

αN − βk = AN,k +BN,k, (64)

where

AN,k :=
1

N

N∑
i=1

f(xi(N))− f(xk,i(N)), (65)

BN,k :=
1

N

N∑
i=1

f(xk,i(N))− Ef(Xk). (66)

Since {xk,i(N)} converges PL(2) to Xk, we have,

lim
N→∞

BN,k = 0. (67)

For the term AN,k,

|AN,k|
(a)

≤ lim
N→∞

1

N

N∑
i=1

|f(xi(N))− f(xk,i(N))|

(b)

≤ lim
N→∞

C

N

N∑
i=1

aki(N)(1 + aki(N))

(c)

≤ C lim
N→∞

√√√√ 1

N

N∑
i=1

a2
ki(N) +

1

N

N∑
i=1

a2
ki(N)

= C lim
N→∞

εk(N)(1 + εk(N)), (68)

Supplementary Materials: Generalization Error of GLMs in High Dimensions

where (a) follows from applying the triangle inequality to
the definition ofAN,k in (65); (b) follows from the definition
of pseudo-Lipschitz continuity in Definition 1, C > 0 is the
Lipschitz contant and

aki(N) := ‖xk,i(N)− xi(N)‖2,

and (c) follows from the RMS-AM inequality:(
1

N

N∑
i=1

aki(N)

)2

≤ 1

N

N∑
i=1

a2
ki(N) =: ε2k(N).

By (29), we have that,

lim
k→∞

lim
N→∞

εk(N) = 0.

Hence, from (68), it follows that,

lim
k→∞

lim
N→∞

AN,k = 0. (69)

Substituting (67) and (69) into (64) show that αN and βk
satisfy (59). Therefore, applying Lemma 1 we have that
for any pseudo-Lipschitz function f(·), there exists a limit
Φ(f) such that,

lim
N→∞

1

N

N∑
i=1

f(xi(N)) = lim
k→∞

Ef(Xk) = Φ(f). (70)

In particular, the two limits in (70) exists. When restricted
to the continuous, bounded functions with the ‖f‖∞ norm,
it is easy verified that Φ(f) is a positive, linear, bounded
function of f , with Φ(1) = 1. Therefore, by the Riesz
representation theorem, there exists a random variable X
such that Φ(f) = Ef(X). This fact in combination with
(70) shows (57).

It remains to prove the parameter limits in (58). We prove
the result for the parameter α+

k`. The proof for the other
parameters are similar. Using Stein’s lemma, it is shown in
(Pandit et al., 2019) that

α+
k` =

E(Ẑk`Q
−
k`)

E(Q−`)2
. (71)

Since the numerator and denominator of (71) are PL(2)
functions we have that the limit,

α+
` := lim

k→∞
α+
k` = lim

k→∞

E(Ẑk`Q
−
k`)

E(Q−k`)
2

=
E(Ẑ`Q

−
`)

E(Q−`)2
, (72)

where Ẑ` and Q−` are the limits of Ẑk` and Q−k`. This
completes the proof.

E. Proof of Theorem 1
From Assumption 2, we know that for every N , every group
of vectors xk converge to limits, x := limk→∞ xk. The
parameters, γ±k`, also converge to limits γ±` := limk→∞ γ±k`
for all `. By the continuity assumptions on the functions
g±` (·), the limits x and γ±` are fixed points of the algorithms.

A proof similar to that in (Pandit et al., 2019) shows that
the fixed points ẑ` and p̂` satisfy the KKT condition of the
constrained optimization (22). This proves part (a).

The estimate ŵ is the limit,

ŵ = ẑ0 = lim
k→∞

ẑk0.

Also, the true parameter is z0
0 = w0. By Proposition 1, we

have that the PL(2) limits of these variables are

lim
N→∞

{(ŵ,w0)} PL(2)
= (Ŵ ,W0) := (Ẑ0, Z

0
0).

From line 2 of the SE Algorithm 2, we have

Ŵ = Ẑ0 = g+
0 (R−0 , γ

−
0) = proxfin/γ−

0
(W 0 +Q−0).

This proves part (b).

To prove part (c), we use the limit

lim
N→∞

{p0
0,n, p̂0,n}

PL(2)
= (P 0

0 , P̂0). (73)

Since the fixed points are critical points of the constrained
optimization (22), p̂0 = V0ŵ. We also have p0

0 = V0w
0.

Therefore,[
z

(N)
ts ẑ

(N)
ts

]
:= uT Diag(sts)V0[w0 ŵ]

= uT Diag(sts)[p
0
0 p̂0]. (74)

Here, (N) in the subscript denotes the dependence on N.
Since u ∼ N (0, 1

pI), [z
(N)
ts ẑ

(N)
ts] is a zero-mean bivariate

Gaussian with covariance matrix

M(N) = 1
p

p∑
n=1

[
s2

ts,np
0
0,np

0
0,n s2

ts,np
0
0,np̂0,n

s2
ts,np

0
0,np̂0,n s2

ts,np̂0,np̂0,n

]
The empirical convergence (73) yields the following limit,

lim
N→∞

M(N) = M := ES2
ts

[
P 0

0P
0
0 P 0

0 P̂0

P 0
0 P̂0 P̂0P̂0

]
. (75)

It suffices to show that the distribution of [z
(N)
ts ẑ

(N)
ts] con-

verges to the distribution of [Zts Ẑts] in the Wasserstein-2
metric as N →∞. (See the discussion in Appendix A on
the equivalence of convergence in Wasserstein-2 metric and
PL(2) convergence.)

Supplementary Materials: Generalization Error of GLMs in High Dimensions

Now, Wassestein-2 distance between between two probabil-
ity measures ν1 and ν2 is defined as

W2(ν1, ν2) =

(
inf
γ∈Γ

Eγ ‖X1 −X2‖2
)1/2

, (76)

where Γ is the set of probability distributions on the product
space with marginals consistent with ν1 and ν2. For Gaus-
sian measures ν1 = N (0,Σ1) and ν2 = N (0,Σ2) we have
(Givens et al., 1984)

W 2
2 (ν1, ν2) = tr(Σ1 − 2(Σ

1/2
1 Σ2Σ

1/2
1)1/2 + Σ2).

Therefore, for Gaussian distributions ν(N)
1 = N (0,M(N)),

and ν2 = N (0,M), the convergence (75) implies
W2(ν

(N)
1 , ν2)→ 0, i.e., convergence in Wasserstein-2 dis-

tance. Hence,

(z
(N)
ts , ẑ

(N)
ts)

W2−→ (Zts, Ẑts) ∼ N (0,M),

where M is the covariance matrix in (75). Hence the conver-
gence holds in the PL(2) sense (see discussion in Appendix
A on the equivalence of convergence in W2 and PL(2) con-
vergence).

Hence the asymptotic generalization error (17) is

Ets := lim
N→∞

Efts(ŷts, yts)

(a)
= lim

N→∞
Efts(φout(z

(N)
ts , D), φ(ẑ

(N)
ts))

(b)
= Efts(φout(Zts, D), φ(Ẑts)), (77)

where (a) follows from (3); and step (b) follows from con-
tinuity assumption in Assumption 1(b) along with the def-
inition of PL(2) convergence in Def. 3. This proves part
(c).

F. Formula for M

For the special cases in the next Appendix, it is useful to
derive expressions for the entries the covariance matrix M
in (75). For the term m11,

m11 = ES2
ts(P

0
0)2 = ES2

tsE(P 0
0)2 = ES2

ts · k11, (78)

where we have used the fact that P 0
0 ⊥⊥ (Sts, Str). Next,

m12 = ES2
ts P

0
0 P̂0. where,

P̂0 = g−1 (P 0
0 + P+

0 , Z
0
1 +Q−1 , γ

+
0 , γ

−
1 , S

−
tr)

=
γ+

0 P
+
0 + Strγ

−
1 Q
−
1

γ+
0 + S2

trγ
−
1

+ P 0
0 , (79)

where (P 0
0 , P

+
0 , Q

−
0) are independent of (Str, Sts). Hence,

m12 = ES2
ts · E(P 0

0)2 + E
S2

tsγ
+
0

γ+
0 + S2

trγ
−
1

E[P 0
0P

+
0]

= m11 + E
(

S2
tsγ

+
0

γ+
0 + S2

trγ
−
1

)
· k12, (80)

since E[P 0
0Q
−
1] = 0 and K+

0 is the covariance matrix of
(P 0

0 , P
+
0) from line 2.

Finally for m22 we have,

m22 = ES2
tsP̂0P̂0

= E
(

Stsγ
+
0

γ+
0 + S2

trγ
−
1

)2

E(P+
0)2

+ E
(

StsStrγ
−
1

γ+
0 + S2

trγ
−
1

)2

E(Q−1)2

+ ES2
tsE(P 0

0)2 + 2E
γ+

0 S
2
ts

γ+
0 + γ−1 S

2
tr

· EP 0
0P

+
0

= k22E
(

Stsγ
+
0

γ+
0 + S2

trγ
−
1

)2

+ τ−1 E
(

StsStrγ
−
1

γ+
0 + S2

trγ
−
1

)2

−m11 + 2m12. (81)

G. Special Cases
G.1. Linear Output with Square Error

In this section we examine a few special cases of the GLM
problem (2). We first consider a linear output with additive
Gaussian noise and a squared error training and test loss.
Specifically, consider the model,

y = Xw0 + d (82)

We consider estimates of w0 such that:

ŵ = argmin
w

1
2 ‖y −Xw‖2 + λ

2β ‖w‖
2 (83)

The factor β is added above since the two terms scale with
a ratio of β. It does not change analysis. Consider the ML-
VAMP GLM learning algorithm applied to this problem.
The following corollary follows from the Main result in
Theorem 1.

Corollary 1 (Squared error). For linear regression, i.e.,
φ(t) = t, φout(t, d) = t + d, fts(y, ŷ) = (yts − ŷts)

2,
Fout(p2) = 1

N ‖y − p2‖2, we have

ELRts =E
(

γ+
0 Sts

γ+
0 +S2

trγ
−
1

)2

k22 + E
(
γ−
1 StrSts

γ+
0 +S2

trγ
−
1

)2

τ−1 + σ2
d.

The quantities k22, τ−1 , γ
+
0 , γ

−
1 depend on the choice of

regularizer λ and the covariance between features.

Proof. This follows directly from the following observation:

ESLRts = E(Zts +D − Ẑts)
2 = E(Zts − Ẑts)

2 + ED2

= m11 +m22 − 2m12 + σ2
d.

Substituting equation (81) proves the claim. �

Supplementary Materials: Generalization Error of GLMs in High Dimensions

G.2. Ridge Regression with i.i.d. Covariates

We next the special case when the input features are inde-
pendent, i.e., (83) where rows of X corresponding to the
training data has i.i.d Gaussian features with covariance
Ptrain =

σ2
tr

p I and Str = σtr.

Although the solution to (83) exists in closed form (XTX +
λI)−1XTy, we can study the effect of the regularization
parameter λ on the generalization error Ets as detailed in
the result below.

Corollary 2. Consider the ridge regression problem (83)
with regularization parameter λ > 0. For the squared loss
i.e., fts(y, ŷ) = (y − ŷ)2, i.i.d Gaussian features without
train-test mismatch, i.e., Str = Sts = σtr, the generaliza-
tion error ERRts is given by Corollary 1, with constants

k22 = Var(W 0), γ+
0 = λ/β,

γ−1 =

1
G −

λ
σ2
tr

β < 1
λ

σ2
trβ

(
1
G−

λ
σ2
trβ

)

β−1
G +

λ
σ2
trβ

β > 1

where G = Gmp(− λ
σ2
trβ

), with Gmp given in Appendix H,

and τ−1 = E(P−1)2 where P−1 is given in equation (95) in
the proof.

Proof of Corollary 2. We are interested in identifying the
following constants appearing in Corollary 1:

K+
0 , τ

−
1 , γ

+
0 , γ

−
1 .

These quantities are obtained as fixed points of the State
Evolution Equations in Algo. 2. We explain below how
to obtain expressions for these constants. Since these are
fixed points we ignore the subscript k corresponding to the
iteration number in Algo. 2.

In the case of problem (83), the maps proxfin and proxfout ,
i.e., g+

0 and g−3 respectively, can be expressed as closed-
form formulae. This leads to simplification of the SE equa-
tions as explained below.

We start by looking at the forward pass (finding quantities
with superscript ’+’) of Algorithm 2 for different layers and
then the backward pass (finding quantities with superscript
’-’) to get the parameters {K+

` , τ
−
` , α

±
` , γ

±
` } for ` = 0, 1, 2.

To begin with, notice that fin(w) = λ
2w

2, and therefore the
denoiser g+

0 (·) in (44) is simply,

g+
0 (r−0 , γ

−
0) =

γ−
0

γ−
0 +λ/β

r−0 , and
∂g+0
∂r−0

=
γ−
0

γ−
0 +λ/β

Using the random variable R−0 and substituting in the ex-
pression of the denoiser to get Ẑ0, we can now calculate α+

0

using lines 2 and 2,

α+
0 =

γ−
0

γ−
0 +λ/β

, γ+
0 = λ/β. (84)

Similarly, we have fout(p2) = 1
2 (p2 − y)2, whereby the

output denoiser g−3 (·) in the last layer for ridge regression
is given by,

g−3 (r+
2 , γ

+
2 , y) =

γ+
2 r

+
2 + y

γ+
2 + 1

. (85)

By substituting this denoiser in line 2 of the algorithm we
get P̂−2 and thus, following the lines 2-2 of the algorithm
we have

α−2 =
γ+
2

γ+
2 +1

, whereby γ−2 = 1. (86)

Having identified these constants α+
0 , γ

+
0 , α

−
2 , γ

−
2 , we will

now sequentially identify the quantities

(α+
0 , γ

+
0)→ K+

0 → (α+
1 , γ

+
1)→ K+

1 → (α+
2 , γ

+
2)→ K+

2

in the forward pass, and then the quantities

τ−0 ← (α−0 , γ
−
0)← τ−1 ← (α−1 , γ

−
1)← τ−2 ← (α−2 , γ

−
2)

in the backward pass.

We also note that we have

α+
` + α−` = 1 (87)

Forward Pass: Observe that K+
0 = Cov(Z0, Q

+
0). Now,

from line 2, on simplification we get Q+
0 = −W 0

0 whereby,

K+
0 = var(W 0)

[
1 −1
−1 1

]
. (88)

Notice that from line 2, the pair (P 0
0 , P

+
0) is jointly Gaus-

sian with covariance matrix K+
0 . But the above equation

means that P+
0 = −P 0

0 , whereby R+
0 = 0 from line 2.

Now, the linear denoiser g+
1 (·) is defined as in (47a). Note

that since we are considering i.i.d Gaussian features for this
problem, the random variable Str in this layer is a constant
σtr. Therefore, similar to layer ` = 0 by evaluating lines
2-2 of the algorithm we get Q+

1 = −Z0
1 , whereby

α+
1 =

σ2
trγ

−
1

γ+
0 +σ2

trγ
−
1

, γ+
1 =

γ+
0

σ2
tr

= λ
σ2
trβ
, K+

1 = σ2
trK

+
0 .

(89)

Observe that this means

P+
1 = −P 0

1 . (90)

Supplementary Materials: Generalization Error of GLMs in High Dimensions

Backward Pass: Since Y = φout(P
0
2 , D) = P 0

2 + D,
line 2 of algorithm on simplification yields P−2 = D,
whereby we can get τ−2 ,

τ−2 = E(P−2)2 = E[D2] = σ2
d. (91)

Next, to calculate the terms (α−1 , γ
−
1), we use the decoiser

g−2 defined in (47a) for line 2 of the algorithm to get P̂1.

P̂1 =
γ+
1 R

+
1 +S−

mpγ
−
2 R

−
2

γ+
1 +(S−

mp)2γ−
2

=
S−
mp(S+

mpP
0
1 +Q−

2)

γ+
1 +(S−

mp)2
, (92)

where we have used γ−2 = 1, R+
1 = P 0

1 + P+
1 = 0 due to

(90), and R−2 = Z0
2 +Q−2 = S+

mpP
0
1 +Q−2 from lines 2, 2

and 2 respectively.

Then, we calculate α−1 and γ−1 as α−1 = E ∂g−2
∂P+

1

=

E γ+
1

γ+
1 +(S−

mp)2
. This gives,

α−1 =

{
λ

σ2
trβ
G β < 1

(1− 1
β) + 1

β
λ

σ2
trβ
G β ≥ 1

(93)

Here, in the overparameterized case (β > 1), the denoiser
g−2 outputs R+

1 with probability 1 − 1
β and λ

σ2
trβ
G with

probability 1
β .

Next, from line 2 we get,

γ−1 = (1
α−

1

− 1)γ+
1 =

1
G −

λ
σ2
trβ

β < 1
λ

σ2
trβ

(
1
G−

λ
σ2
trβ

)

β−1
G +

λ
σ2
trβ

β > 1
(94)

Now from line 2 and equation (87) we get,

α+
1 P
−
1 = P̂1 − P 0

1 − α−1 P
+
1

(a)
= P̂1 − α+

1 P
0
1

(b)
=

(
S−
mpS

+
mp

λ
σ2
trβ

+(S−
mp)2

− α+
1

)
︸ ︷︷ ︸

A

P 0
1 +

S−
mp

λ
σ2
trβ

+(S−
mp)2︸ ︷︷ ︸

B

Q−2

(95)

where (a) follows from (90) and (87), and (b) follows from
(92). From this one can obtain τ−1 = E(P−1)2 which can
be calculated using the knowledge that P 0

1 , Q
−
2 are indepen-

dent Gaussian with covariances E(P 0
1)2 = σ2

trVar(W 0),
E(Q−2)2 = σ2

d. Further, P 0
1 , Q

−
2 are independent of

(S+
mp, S

−
mp).

Observe that by (95) we have

τ−1 =
1

(α+
1)2

(
E(A2)σ2

trVar(W 0) + E(B2)σ2
d

)
. (96)

with some simplification we get

E(A2) = (
λ

σ2
trβ

)2G′ − (
λ

σ2
trβ

G)2, (97a)

E(B2) = G− λ

σ2
trβ

G′, (97b)

where G = Gmp(− λ
σ2
trβ

), with Gmp given in Appendix H,

and G′ is the derivative of Gmp calculated at − λ
σ2
trβ

.

Now consider the under-parametrized case (β < 1):

Let u = − λ
σ2
trβ

and z = Gmp(u). In this case we have

α+
1 = 1− λ

σ2
trβ

G = 1 + uz. (98)

Note that,

G−1
mp(z) = u

(a)⇒ Rmp(z) +
1

z
= u

(b)⇒ 1

1− βz
+

1

z
= u, (99a)

where Rmp(.) is the R-transform defined in (Tulino et al.,
2004) and (a) follows from the relationship between the R-
and Stieltjes-transform and (b) follows from the fact that for
Marchenko-Pastur distribution we have Rmp(z) = 1

1−zβ .
Therefore,

Gmp(
1

1− βz
+

1

z
) = z

⇒ G′mp(
1

1− βz
+

1

z
) = G′ =

1
β

(1−βz)2 −
1
z2

. (100)

For the over-parametrized case (β > 1) we have:

α+
1 = 1

β (1 + λ
σ2
trβ
G) =

1− uz
β

. (101)

In this case, as mentioned in Appendix H and following
the results from (Tulino et al., 2004), the measure µβ scales
with β and thusRmp(z) = β

1−z . Therefore, similar to (99a),
z satisfies

β

1− z
+

1

z
= u ⇒ G′ =

1
β

(1−z)2 −
1
z2

. (102)

Now τ−1 can be calculated as follows:

τ−1 = η2

(
u2z2σ2

trvar(W
0)(κ− 1) + σ2

dz(uzκ+ 1)

)
(103)

where

η =

{
1

(1+uz) β < 1
β

(1−uz) β ≥ 1
, κ =

{
(1−βz)2

βz2−(1−βz)2 β < 1
(1−z)2

βz2−(1−z)2 β ≥ 1

(104)

Supplementary Materials: Generalization Error of GLMs in High Dimensions

and z is the solution to the fixed points{
1

1−βz + 1
z = u β < 1

β
1−z + 1

z = u β ≥ 1
. (105)

�

G.3. Ridgeless Linear Regression

Here we consider the case of Ridge regression (83) when
λ → 0+. Note that the solution to the problem (83) is
(XTX + λI)−1XTy remains unique since λ > 0. The fol-
lowing result was stated in (Hastie et al., 2019), and can be
recovered using our methodology. Note however, that we
calculate the generalization error whereas they have calcu-
lated the squared error, whereby we obtain an additional
additive factor of σ2

d. The result explains the double-descent
phenomenon for Ridgeless linear regression.

Corollary 3. For ridgeless linear regression, we have

lim
λ→0+

ERRts =

{
1

1−βσ
2
d β < 1

β
β−1σ

2
d + (1− 1

β)σ2
trVar(W 0) β ≥ 1

Proof of Corollary 3. We calculate the parameters γ+
0 , γ

−
1 ,

k22 and τ−1 when λ→ 0+. Before starting off, we note that

G0 := lim
z→0+

Gmp(−z) =

{
β

1−β β < 1
β
β−1 β > 1

, (106)

as described in Appendix H. Following the derivations in
Corollary 2, we have

γ+
0 = λ/β, k22 = Var(W 0) (107)

Now for λ→ 0+, we have

1− α−1 =

{
1 β < 1
1
β β ≥ 1

, γ−1 =

{
1
G0

= 1−β
β β < 1

λ
(β−1)σ2

trβ
β > 1

,

(108)

Using this in simplifying (95) for λ→ 0+, we get

τ−1 = E(P−1)2 =

{
σ2
dG0 β < 1

βσ2
dG0 + σ2

trVar(W 0)(β − 1) β ≥ 1

where during the evaluation of E
(

S−
mp

γ+
1 +(S−

mp)2

)2

, for the
case of β > 1, we need to account for the point mass at 0
for S−mp with weight 1− 1

β .

Next, notice that

a :=
γ+

0 σtr

γ+
0 + γ−1 σ

2
tr

=

{
0 β < 1

(1− 1
β)σtr β ≥ 1

,

and,

b :=
γ−1 σ

2
tr

γ+
0 + γ−1 σ

2
tr

=

{
1 β < 1
1
β β ≥ 1

,

Thus applying Corollary 1, we get

ERRts = a2k22 + b2τ−1 + σ2
d

=

{
1

1−βσ
2
d β < 1

β
β−1σ

2
d + (1− 1

β)σ2
trVar(W 0) β ≥ 1

This proves the claim. �

G.4. Train-Test Mismatch

Observe that our formulation allows for analyzing the ef-
fect of mismatch in the training and test distribution. One
can consider arbitrary joint distributions over (Str, Sts) that
model the mismatch between training and test features. Here
we give a simple example which highlights the effect of this
mismatch.

Definition 4 (Bernoulli ε-mismatch). (Sts, Str) has a bi-
variate Bernoulli distribution with

• Pr{Str =Sts =0} = P{Str =Sts =1} = (1− ε)/2

• Pr{Str =0, Sts =1} = P{Str =1, Sts =0} = ε/2

Notice that the marginal distribution of the Str in the
Bernoulli ε−mismatch model is such that P(Str 6= 0) = 1

2 .
Hence half of the features extracted by the matrix V0 are
relevant during training. Similarly, P(Sts 6= 0) = 1

2 . How-
ever the features spanned by the test data do not exactly
overlap with the features captured in the training data, and
the fraction of features common to both the training and
test data is 1− ε. Hence for ε = 0, there is no training-test
mismatch, whereas for ε = 1 there is a complete mismatch.

The following result shows that the generalization error
increases linearly with the mismatch parameter ε.

Corollary 4 (Mismatch). Consider the problem of Linear
Regression (83) under the conditions of Corollary 1. Addi-
tionally suppose we have Bernoulli ε-mismatch between the
training and test distributions. Then

Ets = k22
2 ((1− ε)γ∗2 + ε) +

τ−
1

2 (1− γ∗)(1− ε) + σ2
d,

where γ∗ :=
γ+
0

γ+
0 +γ−

1

. The terms k22, τ
−
1 , γ

∗ are indepen-
dent of ε.

Proof. This follows directly by calculating the expectations
of the terms in Corollary 1, with the joint distribution of
(Str, Sts) given in Definition 4. �

Supplementary Materials: Generalization Error of GLMs in High Dimensions

The quantities k22 and τ−1 in the result above can be calcu-
lated similar to the derivation in the proof of Corollary 2
and can in general depend on the regularization parameter
λ and overparameterization parameter β.

G.5. Logistic Regression

The precise analysis for the special case of regularized lo-
gistic regression estimator with i.i.d Gaussian features is
provided in (Salehi et al., 2019). Consider the logistic re-
gression model,

P(yi = 1|xi) := ρ(xT
iw) for i = 1, · · · , N

where ρ(x) = 1
1+e−x is the standard logistic function.

In this problem we consider estimates of w0 such that

ŵ := argmin
w

1T log(1 + eXw)− yTXw + Fin(w).

where Fin is the reguralization function. This is a special
case of optimization problem (2) where

Fout(y,Xw) = 1T log(1 + eXw)− yTXw. (109)

Similar to the linear regression model, using the ML-VAMP
GLM learning algorithm, we can characterize the general-
ization error for this model with quantities K+

0 , τ
−
1 , γ

+
0 , γ

−
1

given by algorithm 2. We note that in this case, the output
non-linearity is

φout(p2, d) = 1{ρ(p2)>d} (110)

where d ∼ Unif(0, 1). Also, the denoisers g+
0 , and g−3

can be derived as the proximal operators of Fin, and Fout

defined in (25).

G.6. Support Vector Machines

The asymptotic generalization error for support vector ma-
chine (SVM) is provided in (Deng et al., 2019). Our model
can also handle SVMs. Similar to logistic regression, SVM
finds a linear classifier using the hinge loss instead of logis-
tic loss. Assuming the class labels are y = ±1 the hinge
loss is

`hinge(y, ŷ) = max(0, 1− yŷ). (111)

Therefore, if we take

Fout(y,Xw) =
∑
i

max(0, 1− yiXiw), (112)

where Xi is the ith row of the data matrix, the ML-VAMP
algorithm for GLMs finds the SVM classifier. The algorithm
would have proximal map of hinge loss and our theory
provides exact predictions for the estimation and prediction
error of SVM.

As with all other models considered in this work, the true
underlying data generating model could be anything that
can be represented by the graphical model in Figure 1, e.g.
logistic or probit model, and our theory is able to exactly
predict the error when SVM is applied to learn such linear
classifiers in the large system limit.

H. Marchenko-Pastur distribution
We describe the random variable Smp defined in (12) where
S2

mp has a rescaled Marchenko-Pastur distribution. Notice
that the positive entries of smp are the positive eigenvalues
of UTU (or UUT).

Observe that Uij ∼ N(0, 1
p), whereas, the standard scaling

while studying the Marchenko-Pastur distribution is for ma-
trices H such that Hij ∼ N (0, 1

N) (for e.g. see equation
(1.10) from (Tulino et al., 2004) and the discussion preced-
ing it). Also notice that

√
βU has the same distribution as

H. Thus the results from (Tulino et al., 2004) apply directly
to the distributions of eigenvalues of βUTU and βUUT.
We state their result below taking into account this disparity
in scaling.

The positive eigenvalues of βUTU have an empirical distri-
bution which converges to the following density:

µβ(x) =

√
(bβ − x)+(x− aβ)+

2πβx
(113)

where aβ = (1 −
√
β)2, bβ := (1 +

√
β)2. Similarly the

positive eigenvalues of βUUT have an empirical distribu-
tion converging to the density βµβ . We note the following
integral which is useful in our analysis:

G0 : = lim
z→0−

E
1

S2
mp − z

1{Smp>0}

= lim
z→0−

∫ bβ

aβ

1

x/β − z
µβ(x)dx =

β

|β − 1|
. (114)

More generally, the Stieltjes transform of the density is
given by:

Gmp(z) = E
1

S2
mp − z

1{Smp>0} =

∫ bβ

aβ

1

x/β − z
µβ(x)dx

(115)

