
Parallel Algorithm for Non-Monotone DR-Submodular Maximization

A. Omitted Proofs
Lemma 12. The algorithm maintains the invariant that
~0 ≤ ~x ≤ ~z.

Proof. We show the lemma by induction on the number of
updates (lines 20 and 21). Consider an iteration of the inner
while loop. If the algorithm executes line 23, we have ~x = ~z
at the end of the iteration. Therefore we may assume that
the algorithm does not execute line 23. Let ~x′ and ~z′ be the
updated vectors after performing the updates on line 20 and
line 21, respectively. Let ~x and ~z denote the vectors right
before the update. By the induction hypothesis, we have
~0 ≤ ~x ≤ ~z.

For each coordinate i ∈ [n], we have:

~x′i =

{
~xi + η(1− ~xi) = η + (1− η)~xi if i ∈ S(η)

~xi otherwise

~z′i =

{
~zi + η(1− ~zi) = η + (1− η)~zi if i ∈ S
~zi otherwise

Since ~0 ≤ ~x ≤ ~z, 1 − η ≥ 0, and S(η) ⊆ S, we have
~0 ≤ ~x′ ≤ ~z′, as needed.

Lemma 13. Consider an iteration of the inner while loop.
Let ~x and ~z be the respective vectors before the updates
on lines 20–23, and let ~x′ and ~z′ = ~z(η) be the respective
vectors after the updates. For each coordinate i ∈ S(η), we
have ∇if(~x′) ≥ ∇if(~z′) ≥ v

1−~z′i
> 0.

Proof. Note that the update rule on line 21 sets ~z′ = ~z(η).
Since ~x′ ≤ ~z′ (Lemma 12), DR-submodularity implies
that ∇f(~x′) ≥ ∇f(~z′). Let i ∈ S(η). By the def-
inition of S(η), we have ~zi(η) ≤ 1 − (1 − ε)j < 1
and (1 − ~zi(η))∇if(~z(η)) ≥ v > 0, which implies that
∇if(~z(η)) ≥ v

1−~zi(η) > 0.

Lemma 14. Consider the vectors and sets defined on
line 15. For all η and η′ such that 0 ≤ η ≤ η′ ≤ ε,
we have:

(1) ~z(η) ≤ ~z(η′),

(2) S(η) ⊇ S(η′).

Proof. (1) For every i /∈ S, we have ~zi(η) = ~zi(η
′) = ~zi.

For every i ∈ S, we have:

~zi(η)
(a)
= ~zi + η(1− ~zi)

(b)

≤ ~zi + η′(1− ~zi)
(c)
= ~zi(η

′)

where (a) and (c) are due to i ∈ S, (b) is due to η ≤ η′
and 1− ~zi ≥ 0 (since i ∈ S, ~zi ≤ 1− (1− ε)j ≤ 1).

(2) Let i ∈ S(η′). By (1) and DR-submodularity, we
have ∇f(~z(η)) ≥ ∇f(~z(η′)). Since i ∈ S(η′), we
have 1 − zi(η′) ≥ 0 (since zi(η′) ≤ 1 − (1 − ε)j ≤
1), and ∇if(~z(η′)) ≥ 0 (since 1 − zi(η

′) ≥ 0 and
(1− zi(η′))∇if(~z(η′)) ≥ v > 0). Therefore

~gi(η)
(a)
= (1− η)(1− ~zi)∇if(~z(η))

(b)

≥ (1− η′)(1− ~zi)∇if(~z(η′))

(c)
= ~gi(η

′)

(d)

≥ v

where (a) and (c) are due to i ∈ S; (b) is due to η ≤ η′,
1− ~zi ≥ 0, and ∇if(~z(η)) ≥ ∇if(~z(η′)) ≥ 0; (d) is
due to i ∈ S(η′).

A.1. Proof of Lemma 3

Proof of Lemma 3. We show that the invariants are main-
tained using induction on the number of iterations of the
inner while loop in phase j. Let ~z be the vector right be-
fore the update on line 21 and let ~z′ be the vector right
after the update. By the induction hypothesis, we have
~zi ≤ 1 − (1 − ε)j + ε2. If i /∈ S, we have ~z′i = ~zi, and
the invariant is maintained. Therefore we may assume that
i ∈ S. By the definition of S, we have ~zi ≤ 1 − (1 − ε)j .
We have ~z′i = ~zi + η(1− ~z′i) ≤ ~zi + η ≤ ~zi + ε2. Thus the
invariant is maintained.

Next, we show the upper bound on the `1 norm. Note that
~z′ = ~z(η) ≤ ~z(η2), where η is the step size chosen on
line 19. Thus we have ‖~z′‖1 ≤ ‖~z(η2)‖1 ≤ εjk, where the
last inequality is by the choice of η2.

A.2. Proof of Theorem 10

Proof of Theorem 10. By Lemma 3, the algorithm main-
tains the invariant that, at the end of phase j, we have
‖~x‖1 ≤ ‖~z‖1 ≤ εjk. Thus, at the end of the algorithm,
we have ‖~x‖1 ≤ k.

Next, we show the approximation guarantee. Let ~x(0) = ~0
and let ~x(j) be the solution ~x at the end of phase j. We will
show by induction on j that:

f(~x(j)) ≥ εj(1− ε)jf(~x∗)− 8jε2f(~x∗)

The above inequality clearly hods for j = 0. Consider
j ≥ 1. By Theorem 4, we have

f(~x(j)) ≥ f(~x(j−1))

+ (1− 5ε)ε((1− ε)jf(~x∗)− f(~x(j))− 3εf(~x∗))

Hence

f(~x(j))

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

≥ (1− ε)f(~x(j−1))

+ (1− 5ε)ε((1− ε)jf(~x∗)− 3εf(~x∗))

≥ (1− ε)f(~x(j−1)) + ε(1− ε)jf(~x∗)− 8ε2f(~x∗)

(a)

≥ (1− ε)
(
ε(j − 1)(1− ε)j−1f(~x∗)− 8(j − 1)ε2f(~x∗)

)

+ ε(1− ε)jf(~x∗)− 8ε2f(~x∗)

≥ εj(1− ε)jf(~x∗)− 8jε2f(~x∗)

where (a) is by the inductive hypothesis.

Thus it follows by induction that:

f(~x(1/ε)) ≥ ((1−ε)1/ε−8ε)f(~x∗) ≥
(

1

e
−O(ε)

)
f(~x∗),

as needed.

B. Approximate Step Sizes
In this section, we show how to extend the idealized algo-
rithm (Algorithm 1) and its analysis. In order to obtain an
efficient algorithm, we find the step size η1 approximately
using t-ary search, as described below. The modified algo-
rithm is given in Algorithm 2. On line 18 of Algorithm 2,
the Θ notation hides a sufficiently small constant so that
δ ≤ ε/N , where N is the total number of iterations of the
algorithm (as we discuss later in this section, the analysis of
the number of iterations given in Theorem 11 still holds and
thus N = O(log(n) log(1/ε)/ε3).)

Finding η1 on line 20. As in the description of the al-
gorithm, we let η∗1 be the maximum η ∈ [0, ε2] such
that |S(η)| ≥ (1 − ε)|S| and we let δ be the value on
line 18. As shown in Lemma 14, for every η ≤ η′, we have
S(η) ⊇ S(η′), and thus |S(η)| is non-increasing as a func-
tion of η. Note that S(0) = S and thus |S(0)| ≥ (1− ε)|S|.
We first check whether |S(ε2)| ≥ (1− ε)|S|; if so, we have
η∗1 = ε2 and we return η1 = ε2. Therefore we may assume
that |S(ε2)| < (1 − ε)|S| and thus η∗1 ∈ [0, ε2). Starting
with the interval [0, ε2], we perform t-ary search, and we
stop once we reach an interval [a, b] of length at most δ. We
return η1 = b. Note that we have η∗1 ≤ η1 ≤ η∗1 + δ.

The arity of the t-ary search gives us different trade-offs
between the number of parallel rounds and the total running
time. The t-ary search takes logt(ε

2/δ) parallel rounds and
t logt(ε

2/δ) evaluations of f and ∇f . If we use binary
search (t = 2), the number of rounds is log2(ε2/δ) =
O(log log n+ log(1/ε)) and the number of evaluations of
f and ∇f is also O(log log n + log(1/ε)). If we take t =
Θ(log n/ε), the number of rounds is O(1) and the number
of evaluations of f and∇f is O(log n/ε).

Next, we show how to extend the analysis given in Sec-
tions 4 and 5. We first note that the upper bound on the total

Algorithm 2 Algorithm for max~x∈[0,1]n : ‖~x‖1≤k f(~x),
where f is a non-negative DR-submodular function.

1: M : f(~x∗) ≤M ≤ (1 + ε)f(~x∗)
2: ~x← ~0
3: ~z ← ~0
4: for j = 1 to 1/ε do
5: 〈〈 Start of phase j 〉〉
6: ~xstart ← ~x
7: ~zstart ← ~z
8: vstart ← 1

k (((1− ε)j − 2ε)M − f(~x))
9: v ← vstart

10: while v > εvstart and ‖~z‖1 < εjk do
11: ~g = (~1− ~z) ◦ ∇f(~z)
12: S = {i ∈ [n] : ~gi ≥ v and ~zi ≤ 1 − (1 −

ε)j and ~zi − (~zstart)i < ε(1− (~zstart)i)}
13: if S = ∅ then
14: v ← (1− ε)v
15: else
16: For a given η ∈ [0, ε2], we define:

~z(η) = ~z + η(~1− ~z) ◦~1S
~g(η) = (~1− ~z(η)) ◦ ∇f(~z(η))

S(η) = {i ∈ S : ~g(η)i ≥ v}
T (η) = {i ∈ S : ~g(η)i > 0}

17: 〈〈 δ ≤ ε/N , where N is the total number of
iterations of the algorithm 〉〉

18: Let δ = Θ
(

ε4

log(n) log(1/ε)

)

19: 〈〈 Let η∗1 be the maximum η ∈ [0, ε2] such that
|S(η)| ≥ (1− ε)|S| 〉〉

20: Using t-ary search, find η1 ∈ [0, ε2] such that
η∗1 ≤ η1 ≤ η∗1 + δ

21: 〈〈 η2 = min
{
ε2, εjk−‖~z‖1
|S|−‖~z◦~1S‖1

}
〉〉

22: Let η2 be the maximum η ∈ [0, ε2] such that
‖~z(η)‖1 ≤ εjk

23: η ← min{η1, η2}
24: ~x← ~x+ η(~1− ~x) ◦~1T (η−δ)
25: ~z ← ~z + η(~1− ~z) ◦~1S
26: if f(~z) > f(~x) then
27: ~x← ~z
28: end if
29: end if
30: end while
31: end for
32: return ~x

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

number of iterations given in Theorem 11 still holds, since
we have η ≥ η∗ := min{η∗1 , η2} and T (η − δ) ⊇ T (η∗).
Therefore it only remains to show that the approximate
search only introduces an overall O(ε) additive error in the
approximation guarantee. Since δ ≤ ε/N , where N is the
total number of iterations of the algorithm, it suffices to
show that the error is O(δ)f(~x∗) in each iteration.

We start with the following lemma:

Lemma 15. Let α, β ∈ R and ~u,~v ∈ Rn. Suppose that
0 ≤ β ≤ α ≤ 1, ~u ≤ ~v ≤ α~1, and ~v − ~u ≤ β~1. Then
f(~u)− f(~v) ≤ β

1−α+β f(~u).

Proof. For t ≥ 0, let ~w(t) := ~u+ (~v− ~u)t. The conditions
in the lemma statement ensure that ~w((1− α+ β)/β) ≤ ~1.
Using that f is concave in non-negative directions and f is
non-negative, we obtain:

f(~v) = f(~w(1))

≥
(

1− β

1− α+ β

)
f(~w(0))

+
β

1− α+ β
f

(
~w

(
1− α+ β

β

))

≥
(

1− β

1− α+ β

)
f(~w(0))

=

(
1− β

1− α+ β

)
f(~u)

The lemma now follows by rearranging the above inequality.

We now fix an iteration of the algorithm (an iteration of the
inner while loop) that updates ~x and ~z on lines 24–27. Let
~x, ~z denote the vectors right before the update on lines 24–
27. We define:

η∗ := min{η∗1 , η2}
~x′ := ~x+ η(~1− ~x) ◦~1T (η−δ)

~a := ~x+ (η − δ)(~1− ~x) ◦~1T (η−δ)
~b := ~x+ η∗(~1− ~x) ◦~1T (η∗) + (η − δ)(~1− ~x) ◦~1T (η−δ)\T (η∗)

Note that we have η − δ ≤ η∗ ≤ η and thus it follows from
Lemma 14 that T (η − δ) ⊇ T (η∗) ⊇ T (η).

We start by applying Lemma 15. Let ~u = ~a and ~v = ~x′.
We have ~x′ ≤ (1 − (1 − ε)j + ε2)~1, and thus we can take
α = 1− (1− ε)j + ε2 ≤ 1− (1− ε)1/ε + ε2 ≈ 1

e + ε2. We
have ~a ≤ ~x′ and ~x′ − ~a ≤ δ~1, and thus we can take β = δ.
It follows from Lemma 15 that:

f(~x′)− f(~a) ≥ −O(δ)f(~a) ≥ −O(δ)f(~x∗),

where in the second inequality we have used that ~a is feasi-
ble.

Next, we have:

f(~a)− f(~x)
(a)

≥ 〈∇f(~a),~a− ~x〉
= 〈∇f(~a), (η − δ)(~1− ~x) ◦~1T (η−δ)〉
(b)

≥ 〈∇f(~a), (η − δ)(~1− ~x) ◦~1T (η∗)〉
(c)

≥ 〈∇f(~z(η∗)), (η − δ)(~1− ~x) ◦~1T (η∗)〉
(d)

≥ 〈~g(η∗), (η − δ)~1T (η∗)〉

In (a), we used that f is concave in non-negative directions
and ~a ≥ ~x. We can show (b) as follows. As noted earlier,
T (η∗) ⊆ T (η− δ). Since ~a ≤ ~z(η− δ), we have∇f(~a) ≥
∇f(~z(η−δ)) by DR-submodularity, and thus∇f(~a) is non-
negative on the coordinates in T (η−δ). In (c), we have used
that ~a ≤ ~z(η − δ) ≤ ~z(η∗) and thus ∇f(~a) ≥ ∇f(~z(η∗))
by DR-submodularity. In (d), we used that ∇f(~z(η∗)) is
non-negative on the coordinates in T (η∗) and ~1 − ~x ≥
~1− ~z(η∗) ≥ ~0.

Similarly, we have:

f(~b)− f(~a)
(a)

≥ 〈∇f(~b),~b− ~a〉
(b)
= 〈∇f(~b), (η∗ − η + δ)(~1− ~x) ◦~1T (η∗)〉
(c)

≥ 〈~g(η∗), (η∗ − η + δ)~1T (η∗)〉

In (a), we used that f is concave in non-negative directions
and~b ≥ ~a. In (b), we used that T (η − δ) ⊇ T (η∗). We can
show (c) as follows. Since η − δ ≤ η∗ and T (η − δ) ⊆ S,
we have ~b ≤ ~z(η∗). Thus ∇f(~b) ≥ ∇f(~z(η∗)) by DR-
submodularity and∇f(~b) is non-negative on the coordinates
of T (η∗).

By combining the inequalities above, we obtain:

f(~x′)− f(~x) ≥ 〈~g(η∗), η∗~1T (η∗)〉 −O(δ)f(~x∗)

Thus we see that the gain obtained in the iteration is the
one required by the proof of Theorem 4 apart from the
additive loss of O(δ)f(~x∗). By propagating the additive
loss through the proof of Theorem 4, we obtain a total loss
of O(δN)f(~x∗), where N is the total number of iterations.
As noted above, O(δN) = O(ε), as needed.

C. DR-submodular Algorithms
In this section, we give the pseudocode of the sequential
and parallel algorithms evaluated in our experiments. The
sequential algorithm we used is the continuous greedy al-
gorithm shown in Algorithm 3. The algorithm is a variant
of the measured continuous greedy algorithm that was stud-
ied in previous works (Feldman et al., 2011; Chekuri et al.,

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

2015; Bian et al., 2017). This variant obtains higher func-
tion value in practice, since it allows for the possibility of
filling up more of the available budget, and this is what we
observed in our experiments as well. The state of the art
parallel algorithm for non-monotone DR-submodular maxi-
mization subject to a cardinality constraint is the algorithm
of (Ene et al., 2019); Algorithm 4 gives the pseudocode of
this algorithm specialized to a single cardinality constraint.

Algorithm 3 A variant of the measured continuous greedy
algorithm for max~x∈[0,1]n : ‖~x‖1≤k f(~x), where f is a non-
negative DR-submodular function.

1: ~x← ~0
2: 〈〈 In our experiments, we used η = ε/n 〉〉
3: η ← ε/n3

4: T ← 1/η
5: for t = 1 to T do
6: ~d← arg max~z∈[0,1]n : ~z≤~1−~x,‖~z‖1≤k〈∇f(~x), ~z〉
7: ~x← ~x+ η~d
8: end for
9: return ~x

Algorithm 4 The algorithm of (Ene et al., 2019) specialized
to a single cardinality constraint. The algorithm solves
the problem max~x∈[0,1]n : ‖~x‖1≤k f(~x), where f is a non-
negative DR-submodular function. The algorithm takes
as input a target value M such that f(~x∗) ≤ M ≤ (1 +
ε)f(~x∗).

1: η ← ε
2 log(n+1)

2: ~x← ε
n
~1

3: ~z ← ~x
4: 〈〈MWU weights for the (n+ 1) constraints ~zi ≤ 1 for

all i ∈ [n] and 1
k 〈~z,~1〉 ≤ 1 〉〉

5: ~wi ← exp(~zi/η) for all i ∈ [n]
6: ~wn+1 ← exp(‖~z‖1/(ηk))
7: t← η ln(‖~w‖1)
8: while t < 1− ε do
9: λ←M · (e−t − 2ε)− f(~x)

10: ~c← (~1− ~x) ◦ ∇f((1 + η)~x) ∨~0
11: ~mi ←

(
1− λ · 1

~ci
· 1
‖~w‖1

(
~wi + 1

k ~wn+1

))
∨0 for all

i ∈ [n] with ~ci 6= 0, and ~mi = 0 if ~ci = 0

12: ~d← η~x ◦ ~m
13: if ~d = ~0 then
14: break
15: end if
16: ~x← ~x+ ~d ◦ (~1− ~x)

17: ~z ← ~z + ~d
18: 〈〈 Update the weights 〉〉
19: ~wi ← exp(~zi/η) for all i ∈ [n]
20: ~wn+1 ← exp(‖~z‖1/(ηk))
21: end while
22: return ~x

