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A. Effect of Mask Updates on the Energy
Landscape

To update the connectivity of our sparse network, we first
need to drop a fraction d of the existing connections for
each layer independently to create a budget for growing
new connections. Like many prior works (Thimm & Fiesler,
1995; Ström, 1997; Narang et al., 2017; Han et al., 2015),
we drop parameters with the smallest magnitude. The effec-
tiveness of this simple criteria can be explained through the
first order Taylor approximation of the loss L around the
current set of parameters θ.

∆L = L(θ + ∆θ)− L(θ) = ∇θL(θ)∆θ +R(||∆θ||22)

The main goal of dropping connections is to remove pa-
rameters with minimal impact on the output of the neu-
ral network and therefore on its loss. Since removing the
connection θi corresponds to setting it to zero, it incurs
a change of ∆θ = −θi in that direction and a change
of ∆Li = −∇θiL(θ)θi + R(θ2

i ) in the loss, where the
first term is usually defined as the saliency of a connection.
Saliency has been used as a criterion to remove connec-
tions (Molchanov et al., 2016), however it has been shown
to produce inferior results compared to magnitude based
removal, especially when used to remove multiple connec-
tions at once (Evci, 2018). In contrast, picking the lowest
magnitude connections ensures a small remainder term in
addition to a low saliency, limiting the damage we make
when we drop connections. Additionally, we note that con-
nections with small magnitude can only remain small if
the gradient they receive during training is small, meaning
that the saliency is likely small when the parameter itself is
small.

After the removal of insignificant connections, we enable
new connections that have the highest expected gradients.
Since we initialize these new connections to zero, they are
guaranteed to have high gradients in the proceeding iteration
and therefore to reduce the loss quickly. Combining this
observation with the fact that RigL is likely to remove low
gradient directions, ) and the results in Section 4.4, suggests
that RigL improves the energy landscape of the optimization
by replacing flat dimensions with ones with higher gradient.
This helps the optimization procedure escape saddle points.

B. Comparison with Bayesian Structured
Pruning Algorithms

Structured pruning algorithms aim to remove entire neurons
(or channels) instead of individual connections either at the
end of, or throughout training. The final pruned network is
a smaller dense network. Liu et al. (2019) demonstrated that

these smaller networks could themselves be successfully
be trained from scratch. This recasts structured pruning
approaches as a limited kind of architecture search, where
the search space is the size of each hidden layer.

In this section we compare RigL with three different struc-
tured pruning algorithms: SBP (Neklyudov et al., 2017),
L0 (Christos Louizos, 2018), and VIB (Dai et al., 2018).
We show that starting from a random sparse network, RigL
finds compact networks with fewer parameters, that require
fewer FLOPs for inference and require fewer resources for
training. This serves as a general demonstration of the ef-
fectiveness of unstructured sparsity.

For our setting we pick the standard LeNet 300-100 net-
work with ReLU non-linearities trained on MNIST. In Table
2 we compare methods based on how many FLOPs they
require for training and also how efficient the final archi-
tecture is. Unfortunately, none of the papers have released
the code for reproducing the MLP results, so we therefore
use the reported accuracies and calculate lower bounds for
the the FLOPs used during training. For each method we
assume that one training step takes as much as the dense 300-
100 architecture and omit any additional operations each
method introduces. We also consider training the pruned
networks from scratch and report the training FLOPs re-
quired in parenthesis. In this setting, training FLOPs are
significantly lower since the starting networks are have been
significantly reduced in size. We assume that following (Liu
et al., 2019) the final networks can be trained from scratch,
but we cannot verify this for these MLP networks since
it would require knowledge of which pixels were dropped
from the input.

To compare, we train a sparse network starting from the
original MLP architecture (RigL). At initialization, we ran-
domly remove 99% and 89% of the connections in the first
and second layer of the MLP. At the end of the training
many of the neurons in the first 2 layers have no in-coming
or out-going connections. We remove such neurons and use
the resulting architecture to calculate the inference FLOPs
and the size. We assume the sparse connectivity is stored
as a bit-mask (We assume parameters are represented as
floats, i.e. 4 bytes). In this setting, RigL finds smaller,
more FLOP efficient networks with far less work than the
Bayesian approaches.

Next, we train a sparse network starting from the architec-
ture found by the first run (RigL+) (408-100-69) but with
a new random initialization (both masks and the parame-
ters). We reduce the sparsity of the first 2 layers to 96% and
86% respectively as the network is already much smaller.
Repeating RigL training results in an even more compact ar-
chitecture half the size and requiring only a third the FLOPs
of the best architecture found by Dai et al. (2018).
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Method Final Sparsity Training Cost Inference Cost Size Error
Architecture (GFLOPs) (KFLOPs) (bytes)

SBP 245-160-55 0.000 13521.6 (2554.8) 97.1 195100 1.6
L0 266-88-33 0.000 13521.6 (1356.4) 53.3 107092 1.6
VIB 97-71-33 0.000 13521.6 (523) 19.1 38696 1.6
RigL 408-100-69 0.870 482.0 12.6 31914 1.44 (1.48)
RigL+ 375-62-51 0.886 206.3 6.2 16113 1.57 (1.69)

Table 2. Performance of various structured pruning algorithms on compressing three layer MLP on MNIST task. Cost of training the final
architectures found by SBP, L0 and VIB are reported in parenthesis. RigL finds more compact networks compared to structured pruning
approaches.

Figure 7. Number of connections that originate from the pixels of MNIST images at the beginning and end of the training. RigL+ starts
from a smaller architecture (408-100-69) that has already removed some of the input pixels near the edges. Starting from an initially
random distribution, RigL converges on the most relevant dimensions. See main text for further details.

Examination of the open-sourced code for the methods con-
sidered here made us aware that all of them keep track of
the test error during training and report the best error ever
observed during training as the final error. We generally
would not encourage such overfitting to the test/validation
set, however to make the comparisons with these results fair
we report both the lowest error observed during training and
the error at the end of training (reported in parenthesis). All
hyper-parameter tuning was done using only the final test
error.

In Figure 7 we visualize how RigL chooses to connect to
the input and how this evolves from the beginning to the
end of training. The heatmap shows the number of outgoing
connections from each input pixels at the beginning (RigL
Initial) and at the end (RigL (Final)) of the training. The
left two images are for the initial network and the right
two images are for RigL+ training. RigL automatically
discards uninformative pixels and allocates the connections
towards the center highlighting the potential of RigL on
model compression and feature selection.

C. Effect of Sparsity Distribution on Other
Methods

In Figure 8-left we show the effect of sparsity distribution
choice on 4 different sparse training methods. ERK dis-
tribution performs better than other distributions for each
training method.

D. Effect of Momentum Coefficient for SNFS
In Figure 8 right we show the effect of the momentum co-
efficient on the performance of SNFS. Our results shows
that using a coefficient of 0.99 brings the best performance.
On the other hand using the most recent gradient only (co-
efficient of 0) performs as good as using a coefficient of
0.9. This result might be due to the large batch size we are
using (4096), but it still motivates using RigL and instanta-
neous gradient information only when needed, instead of
accumulating them.

E. (Non)-Existence of Lottery Tickets
We perform the following experiment to see whether Lottery
Tickets exist in our setting. We take the sparse network found
by RigL and restart training using original initialization, both
with RigL and with fixed topology as in the original Lottery
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Figure 8. (left) Effect of sparsity distribution choice on sparse training methods at different sparsity levels. We average over 3 runs and
report the standard deviations for each. (right) Effect of momentum value on the performance of SNFS algorithm. Momentum does not
become helpful until it reaches extremely large values.

Ticket Hypothesis. Results in table 3 demonstrate that train-
ing with a fixed topology is significantly worse than training
with RigL and that RigL does not benefit from starting again
with the final topology and the original initialization - train-
ing for twice as long instead of rewiring is more effective.
In short, there are no special tickets, with RigL all tickets
seems to win.

F. Effect of Update Schedules on Other
Dynamic Sparse Methods

In Figure 9 we repeat the hyper-parameter sweep done for
RigL in Figure 5-right, using SET and SNFS. Cosine sched-
ule with ∆T = 50 and α = 0.1 seems to work best across
all methods. An interesting observation is that higher drop
fractions (α) seem to work better with longer intervals ∆T .
For example, SET with ∆T = 1000 seems to work best
with α = 0.5.

G. Alternative Update Schedules
In Figure 10, we share the performance of two alternative
annealing functions:

1. Constant: fdecay(t) = α.

2. Inverse Power: The fraction of weights updated de-
creases similarly to the schedule used in (Zhu & Gupta,
2018) for iterative pruning: fdecay(t) = α(1− t

Tend
)k.

In our experiments we tried k = 1 which is the linear
decay and their default k = 3.

Constant seems to perform well with low initial drop frac-
tions like α = 0.1, but it starts to perform worse with in-

creasing α. Inverse Power for k=3 and k=1 (Linear) seems
to perform similarly for low α values. However the per-
formance drops noticeably for k=3 when we increase the
update interval. As reported by (Dettmers & Zettlemoyer,
2019) linear (k=1) seems to provide similar results as the
cosine schedule.

H. Calculating FLOPs of models and methods
In order to calculate FLOPs needed for a single forward
pass of a sparse model, we count the total number of mul-
tiplications and additions layer by layer for a given layer
sparsity sl. The total FLOPs is then obtained by summing
up all of these multiply and adds. Different sparsity distribu-
tions require different number of FLOPs to compute a single
prediction. For example Erdős-Renyi-Kernel distributions
usually cause 1x1 convolutions to be less sparse than the
3x3 bottleneck layers (see Appendix K). The number of in-
put/output channels of 1x1 convolutional layers are greater
and therefore require more FLOPs to compute the output
features compared to 3x3 layers of the ResNet blocks. Thus,
allocating smaller sparsities to 1x1 convolutional layers re-
sults in a higher overall FLOPs than a sparse network with
uniform sparsity.

Training a neural network consists of 2 main steps:

1. forward pass: Calculating the loss of the current set
of parameters on a given batch of data. During this
process layer activations are calculated in sequence
using the previous activations and the parameters of
the layer. Activation of layers are stored in memory for
the backward pass.
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Initialization Training Method Test Accuracy Training FLOPs

Lottery Static 70.82±0.07 0.46x
Lottery RigL 73.93±0.09 0.46x
Random RigL 74.55±0.06 0.23x
Random RigL2× 76.06±0.09 0.46x

Table 3. Effect of lottery ticket initialization on the final performance. There are no special tickets and the dynamic connectivity provided
by RigL is critical for good performance.
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Figure 9. Cosine update schedule hyper-parameter sweep done using dynamic sparse training methods SET (left) and SNFS (right).

2. backward pass: Using the loss value as the initial error
signal, we back-propagate the error signal while calcu-
lating the gradient of parameters. During the backward
pass each layer calculates 2 quantities: the gradient of
the activations of the previous layer and the gradient of
its parameters. Therefore in our calculations we count
backward passes as two times the computational ex-
pense of the forward pass. We omit the FLOPs needed
for batch normalization and cross entropy.

Dynamic sparse training methods require some extra FLOPs
to update the connectivity of the neural network. We omit
FLOPs needed for dropping the lowest magnitude connec-
tions in our calculations. For a given dense architecture with
FLOPs fD and a sparse version with FLOPs fS , the total
FLOPs required to calculate the gradient on a single sample
is computed as follows:

• Static Sparse and Dense. Scales with 3∗fS and 3∗fD
FLOPs, respectively.

• Pruning. Et[3∗fD∗st] FLOPs where st is the sparsity
of the model at iteration t.

• Snip. We omit the initial dense gradient calculation
since it is negligible, which means Snip scales in the
same way as Static methods: 3 ∗ fS FLOPs.

• SET. We omit the extra FLOPs needed for growing
random connections, since this operation can be done
on chip efficiently. Therefore, the total FLOPs for SET
scales with 3 ∗ fS .

• SNFS. Forward pass and back-propagating the error
signal needs 2∗fS FLOPs. However, the dense gradient
needs to be calculated at every iteration. Thus, the total
number of FLOPs scales with 2 ∗ fS + fD.

• RigL. Iterations with no connection updates need 3∗fS
FLOPs. However, at every ∆T iteration we need to cal-
culate the dense gradients. This results in the average
FLOPs for RigL given by (3∗fS∗∆T+2∗fS+fD)

(∆T+1) .

I. Hyper-parameters used in Charachter
Level Language Modeling Experiments

As stated in the main text, our network consists of a shared
embedding with dimensionality 128, a vocabulary size of
256, a GRU with a state size of 512, a readout from the GRU
state consisting of two linear layers with width 256 and 128
respectively. We train the next step prediction task with
the cross entropy loss using the Adam optimizer. We set
the learning rate to 7e− 4 and L2 regularization coefficient
to 5e − 4. We use a sequence length of 512 and a batch
size of 32. Gradients are clipped when their magnitudes
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Figure 10. Using other update schedules with RigL: (left) Constant (middle) Exponential (k=3) and (right) Linear

exceed 10. We set the sparsity to 75% for all models and
run 200,000 iterations. When inducing sparsity with mag-
nitude pruning (Zhu & Gupta, 2018), we perform pruning
between iterations 50,000 and 150,000 with a frequency
of 1,000. We initialize sparse networks with a uniform
sparsity distribution and use a cosine update schedule with
α = 0.1 and ∆T = 100. Unlike the previous experiments
we keep updating the mask until the end of the training since
we observed this performed slightly better than stopping at
iteration 150,000.

J. Additional Plots and Experiments for
CIFAR-10

In Figure 11-left, we plot the final training loss of experi-
ments presented in Section 4.3 to investigate the generaliza-
tion properties of the algorithms considered. Poor perfor-
mance of Static reflects itself in training loss clearly across
all sparsity levels. RigL achieves similar final loss as the
pruning, despite having around half percent less accuracy.
Training longer with RigL decreases the final loss further
and the test accuracies start matching pruning (see Figure 4-
right) performance. These results show that RigL improves

the optimization as promised, however generalizes slightly
worse than pruning.

In Figure 11-right, we sweep mask update interval ∆T and
plot the final test accuracies. We fix initial drop fraction
α to 0.3 and evaluate two different sparsity distributions:
Uniform and ERK. Both curves follow a similar pattern as
in Imagenet-2012 sweeps (see Figure 9) and best results are
obtained when ∆T = 100.

K. Sparsity of Individual Layers for Sparse
ResNet-50

Sparsity of ResNet-50 layers given by the Erdős-Rényi-
Kernel sparsity distribution plotted in Figure 12.

L. Performance of Algortihms at Training 95
and 96.5% Sparse ResNet-50

In this section we share results of algorithms at training
ResNet-50s with higher sparsities. Results in Table 4 in-
dicate RigL achieves higher performance than the pruning
algorithm even without extending training length.
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Figure 11. Final training loss of sparse models (left) and performance of RigL at different mask update intervals (right).
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Method Top-1
Accuracy

FLOPs
(Train)

FLOPs
(Test)

Top-1
Accuracy

FLOPs
(Train)

FLOPs
(Test)

Dense 76.8±0.09 1x
(3.2e18)

1x (8.2e9)

S=0.95 S=0.965
Static 59.5+-0.11 0.23x 0.08x 55.4+-0.06 0.13x 0.07x
Snip 57.8+-0.40 0.23x 0.08x 52.0+-0.20 0.13x 0.07x
SET 64.4+-0.77 0.23x 0.08x 60.8+-0.45 0.13x 0.07x
RigL 67.5+-0.10 0.23x 0.08x 65.0+-0.28 0.13x 0.07x

RigL5× 73.1+-0.12 1.14x 0.08x 71.1+-0.20 0.66x 0.07x
Static (ERK) 72.1±0.04 0.42x 0.42x 67.7±0.12 0.24x 0.24x
RigL (ERK) 69.7+-0.17 0.42x 0.12x 67.2+-0.06 0.25x 0.11x

RigL5× (ERK) 74.5+-0.09 2.09x 0.12x 72.7+-0.02 1.23x 0.11x
SNFS (ERK) 70.0+-0.04 0.61x 0.12x 67.1+-0.72 0.50x 0.11x

Pruning* (Gale) 70.6 0.56x 0.08x n/a 0.51x 0.07x
Pruning1.5× (Gale) 72.7 0.84x 0.08x 69.26 0.76x 0.07x

Table 4. Results with increased sparsity on ResNet-50/ImageNet-2012.

M. Bugs Discovered During Experiments
Our initial implementations contained some subtle bugs,
which while not affecting the general conclusion that RigL
is more effective than other techniques, did result in lower
accuracy for all sparse training techniques. We detail these
issues here with the hope that others may learn from our
mistakes.

1. Random operations on multiple replicas. We use
data parallelism to split a mini-batch among multiple
replicas. Each replica independently calculates the gra-
dients using a different sub-mini-batch of data. The
gradients are aggregated using an ALL-REDUCE opera-
tion before the optimizer update. Our implementation
of SET, SNFS and RigL depended on each replica
independently choosing to drop and grow the same
connections. However, due to the nature of random
operations in Tensorflow, this did not happen. Instead,
different replicas diverged after the first drop/grow
step. This was most pronounced in SET where each
replica chose at random and much less so for SNFS and
RigL where randomness is only needed to break ties.
If left unchecked this might be expected to be catas-
trophic, but due to the behavior of Estimators and/or
TF-replicator, the values on the first replica are broad-
cast to the others periodically (every approximately
1000 steps in our case).

We fixed this bug by using stateless random operations.
As a result the performance of SET improved slightly
(0.1-0.3 % higher on Figure 2-left).

2. Synchronization between replicas. RigL and SNFS
depend on calculating dense gradients with respect to

the masked parameters. However, as explained above,
in the multiple replica setting these gradients need to
be aggregated. Normally this aggregation is automati-
cally done by the optimizer, but in our case, this does
not happen (only the gradients with respect to the un-
masked parameters are aggregated automatically). This
bug affected SNFS and RigL, but not SET since SET
does not rely on the gradients to grow connections.
Again, the synchronization of the parameters from the
first replica every approximately 1000 steps masked
this bug.

We fixed this bug by explicitly calling ALL-REDUCE
on the gradients with respect to the masked parame-
ters. With this fix, the performance of RigL and SNFS
improved significantly, particularly for default training
lengths (around 0.5-1% improvement).

3. SNIP Experiments. Our first implementation of SNIP
used the gradient magnitudes to decide which connec-
tions to keep causing its performance to be worse than
static. Upon our discussions with the authors of SNIP,
we realized that the correct metric is the saliency (gra-
dient times parameter magnitude). With this correc-
tion SNIP performance improved dramatically to bet-
ter than random (Static) even at Resnet-50/ImageNet
scale. It is surprising that picking connections with
the highest gradient magnitudes can be so detrimen-
tal to training (it resulted in much worse than random
performance).

https://www.tensorflow.org/api_docs/python/tf/random/stateless_uniform
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Figure 12. Sparsities of individual layers of the ResNet-50.


