A. Closure of SDDM Matrices under Schur complement

Lemma A.1. If **M** is an SDDM matrix and $T = V \setminus \{x\}$ is a subset of its columns, then $\mathbf{S} := \mathbf{SC}(\mathbf{M}, T)$ is also an SDDM matrix.

Proof. Recall that

$$\mathbf{SC}(\mathbf{M},T) = \mathbf{M}_{T,T} - \frac{\mathbf{M}_{T,x}\mathbf{M}_{T,x}^{\top}}{\mathbf{D}_{x,x}'}$$

and observe that $\mathbf{D}'_{x,x} = \mathbf{M}_{x,x}$. By definition of SDDM matrices, we need to show that \mathbf{S} is (i) symmetric, (ii) its off-diagonal entries are non-positive and (iii) for all $i \in [n-1]$ we have $\mathbf{S}_{ii} \geq -\sum_{j \neq i} \mathbf{S}_{ij}$. An easy inspection shows that \mathbf{S} satisfies (i) and (ii). We next show that (iii) holds.

To this end, by definition of S, we have that

$$-\sum_{j\neq i} \mathbf{S}_{ij} = \sum_{j\neq i} \left(-\mathbf{M}_{ij} + \frac{\mathbf{M}_{ix}\mathbf{M}_{xj}}{\mathbf{M}_{xx}} \right)$$
$$= -\sum_{j\neq i} \mathbf{M}_{ij} + \frac{\mathbf{M}_{ix}}{\mathbf{M}_{xx}} \left(\sum_{j\neq i} \mathbf{M}_{xj} \right) \qquad (9)$$

As M is an SDDM matrix, the following inequality holds for the *x*-th row of M

$$-\sum_{j\neq i}\mathbf{M}_{xj}\leq \mathbf{M}_{ix},$$

or equivalently

$$\mathbf{M}_{ix}\left(\sum_{j\neq i}\mathbf{M}_{xj}\right) \leq -\mathbf{M}_{ix}^2.$$
(10)

Plugging Eq. (10) in Eq. (9) and using the fact that $-\sum_{j\neq i} \mathbf{M}_{ij} \leq \mathbf{M}_{ii}$, we get that

$$-\sum_{j\neq i}\mathbf{S}_{ij} \le \mathbf{M}_{ii} - \frac{\mathbf{M}_{ix}^2}{\mathbf{M}_{xx}} = \mathbf{S}_{ii},$$

which completes the proof of the lemma.