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A. Facts and propositions

A.1. Scalar inequalities

Fact A.1. For any a > 0 and b, x ∈ R, we have −ax2 + bx ≤ b2/4a.

Fact A.2. e−x ≤ 1− x+ x2

2 for x ≥ 0.

Fact A.3.
∑t
i=1

1√
i
≤ 2
√
t− 1 for t ≥ 1.

Fact A.4. log(x) ≤ x− 1 for x ≥ 0.

The following proposition is a variant of an inequality that is frequently used in online learning; see, e.g., (Auer et al., 2002,
Lemma 3.5), (McMahan, 2017, Lemma 4).

Proposition A.5. Let u > 0 and a1, a2, . . . , aT ∈ [0, u]. Then

T∑
t=1

at√
u+

∑
i<t ai

≤ 2

√√√√ T∑
t=1

at.

Although it is easy to prove this inequality by induction, the following proof may provide more intuition. The proof is
based on a generic lemma on approximating sums by integrals.

Lemma A.6 (Sums with chain rule). Let S ⊆ R be an interval. Let F : S → R be concave and differentiable on the interior
of S. Let u ≥ 0 and let A : {0, . . . , T} → S satisfy A(i)−A(i− 1) ∈ [0, u] for each 1 ≤ i ≤ T . Then

T∑
i=1

F ′
(
u+A(i− 1)

)
· (A(i)−A(i− 1)) ≤ F (A(T ))− F (A(0)).

As u→ 0, the left-hand side becomes comparable to
∫ T

0
F ′(A(x))A′(x) dx, an expression that has no formal meaning

since A is only defined on integers. If this expression existed, it would equal the right-hand side by the chain rule.

Proof of Lemma A.6. Since F is concave, f := F ′ is non-increasing. Fix any 1 ≤ i ≤ T and observe that f(x) ≥ f(A(i)) ≥
f(u+A(i− 1)) for all x ≤ A(i). Thus

f(u+A(i− 1)) · (A(i)−A(i− 1)) ≤
∫ A(i)

A(i−1)

f(x) dx = F (A(i))− F (A(i− 1)).

Summing over i, the right-hand side telescopes, which yields the result.

Proof of Proposition A.5. Apply Lemma A.6 with S = R≥0, F (x) = 2
√
x and A(i) =

∑
1≤j≤i aj .

Proposition A.7. Let x, y, α, β > 0.

If x− y ≤ α
√
x+ β

then x− y ≤ α
√
y + β + α

√
β + α2.
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Proof. The proposition’s hypothesis yields

y + β +
α2

4
≥ x− α

√
x+

α2

4
=
(√

x− α

2

)2

.

Taking the square root and rearranging,
√
x ≤

√
y + β +

α2

4
+
α

2
.

Squaring both sides and rearranging,

x ≤ y + α

√
y + β +

α2

4
+ β +

α2

2

≤ y + α
√
y + α

√
β + β + α2,

by subadditivity of the square root.

A.2. Bregman divergence properties

The following lemma collects basic facts regarding the Bregman divergence induced by a mirror map of the Legendre type.
See (Zhang, n.d.) and (Rockafellar, 1970, Chapter 26). For a detailed discussion on the necessity (or the lack thereof) of mirror
maps of Legendre type, see (Bubeck, 2011, Chapter 5)

Lemma A.8. The Bregman divergence induced by Φ satisfies the following properties:

• DΦ(x, y) is convex in x;

• ∇Φ(∇Φ∗(z)) = z and ∇∗Φ(∇Φ(x)) = x for all x and z;

• DΦ(x, y) = DΦ∗(∇Φ(y),∇Φ(x)) for all x and y.

Proposition A.9. If Φ is ρ-strongly convex with respect to ‖·‖ then DΦ(x, y) ≥ ρ
2‖x− y‖

2.

A.2.1. DIFFERENCES OF BREGMAN DIVERGENCES

Recall that in Section 3 we defined the notation

DΦ(ab ; c) := DΦ(a, c)−DΦ(b, c) = Φ(a)− Φ(b)− 〈∇Φ(c), a− b 〉.

This has several useful properties, which we now discuss.

Proposition A.10. DΦ(ab ; p) is linear in p̂. In particular,

DΦ(ab ;∇Φ∗(p̂− q̂)) = DΦ(ab ; p) + 〈 q̂, a− b 〉 ∀q̂ ∈ Rn.

Proof. Immediate from the definition.

Proposition A.11. For all a, b, c, d ∈ D,

DΦ(ab ; d)−DΦ(ab ; c) = 〈 ĉ− d̂, a− b 〉 = DΦ(ab ; d) +DΦ( ba ; c).

Proof. The first equality holds from Proposition A.10 with p̂ = ĉ and q̂ = ĉ − d̂. The second equality holds since
DΦ( ba ; c) = −DΦ(ab ; c).

An immediate consequence is the “generalized triangle inequality for Bregman divergence”. See Bubeck (Bubeck, 2015,
Eq. (4.1)), Beck and Teboulle (Beck & Teboulle, 2003, Lemma 4.1) or Zhang (Zhang, n.d., Eq. (3)).

Proposition A.12. For all a, b, d ∈ D,

DΦ(a, d)−DΦ(b, d) +DΦ(b, a) = 〈 â− d̂, a− b 〉
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Proof. Apply Proposition A.11 with c = a and use DΦ(a, a) = 0.

Proposition A.13. Let a, b, c, u, v ∈ Rn satisfy γâ+ (1− γ)b̂ = ĉ for some γ ∈ R. Then

γDΦ(uv ; a) + (1− γ)DΦ(uv ; b) = DΦ(uv ; c).

Proof. By definition of DΦ, the claimed identity is equivalent to

(1− γ)
(
Φ(u)−Φ(v)− 〈∇Φ(a), u− v 〉

)
+ γ

(
Φ(u)−Φ(v)− 〈∇Φ(b), u− v 〉

)
=
(
Φ(u)−Φ(v)− 〈∇Φ(c), u− v 〉

)
.

This equality holds by canceling Φ(u)− Φ(v) and by the assumption that∇Φ(c) = (1− γ)∇Φ(a) + γ∇Φ(b).

The following proposition is the “Pythagorean theorem for Bregman divergence”. Recall that ΠΦ
X (y) = arg minu∈X DΦ(u, y).

Proofs may be found in (Bubeck, 2015, Lemma 4.1) or (Zhang, n.d., Eq. (17)).

Proposition A.14. Let X ⊂ Rn be a convex set. Let p ∈ Rn and π = ΠΦ
X (p). Then

DΦ( zπ ; p) ≥ DΦ( zπ ;π) = DΦ(z, π) ∀z ∈ X .

A generalization of the previous proposition can be obtained by using the linearity property.

Proposition A.15. Let X ⊂ Rn be a convex set. Let p ∈ Rn and π = ΠΦ
X (p). Then

DΦ( vπ ;∇Φ∗(p̂− q̂)) ≥ DΦ( vπ ; Φ∗(π̂ − q̂)) ∀v ∈ X , q̂ ∈ Rn.

Proof.

DΦ( vπ ;∇Φ∗(p̂− q̂)) = DΦ( vπ ; p) + 〈 q̂, v − π 〉 (by Proposition A.10)
≥ DΦ( vπ ;π) + 〈 q̂, v − π 〉 (by Proposition A.14)
= DΦ( vπ ;∇Φ∗(π̂ − q̂)) (by Proposition A.10)

B. Missing details from the proof of Theorem 4.1

Due to space constraints we had to omit some calculations from the proof of Theorem 4.1 the main body of the paper.
In particular, we claimed that summing the expression from Claim 4.2 over t ∈ [T ] yields Theorem 4.1. For the sake of
completeness we present the missing calculations.

Summing (4.8) over t and using Claim 4.2 leads to the desired telescoping sum.

T∑
t=1

(
ft(xt)− ft(z)

)
≤

T∑
t=1

(
DΦ( xt

xt+1
;wt+1)

ηt
+
( 1

ηt+1
− 1

ηt

)
DΦ(z, x1) +

DΦ(z, xt)

ηt
− DΦ(z, xt+1)

ηt+1

)

≤
T∑
t=1

DΦ( xt

xt+1
;wt+1)

ηt
+

(
1

η1
+

T∑
t=1

(
1

ηt+1
− 1

ηt

))
DΦ(z, x1)

=

T∑
t=1

DΦ( xt

xt+1
;wt+1)

ηt
+

DΦ(z, x1)

ηT+1
.

C. Proof of Theorem 4.3

Proof (of Theorem 4.3).

Fix z ∈ X . The first step is the same as in Theorem 4.1.

ft(xt)− ft(z)
(i)

≤ 〈ĝt, xt − z〉

=
1

ηt
〈x̂t − ŵt+1, xt − z〉
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(ii)
=

1

ηt

(
DΦ(xt, wt+1) +DΦ(z, xt)−DΦ(z, wt+1)

)
(C.1)

Here (i) is the subgradient inequality. For (ii), recall our notation x̂t = ∇Φ(xt) and ŵt+1 = ∇Φ(wt+1), then use the
generalized triangle inequality for Bregman divergences (Proposition A.12).

From Claim 4.4 and the definition γt = ηt+1/ηt, we obtain

DΦ(z, wt+1) ≥ ηt
ηt+1

DΦ(z, xt+1)−
( ηt
ηt+1

− 1
)
DΦ(z, x1) +DΦ(yt+1, wt+1). (C.2)

The remainder is very similar to Theorem 4.1. Plugging (C.2) into (C.1), we obtain

(C.1) ≤ 1

ηt

(
DΦ(xt, wt+1) +DΦ(z, xt)−

ηt
ηt+1

DΦ(z, xt+1) +
( ηt
ηt+1

− 1
)
DΦ(z, x1)−DΦ(yt+1, wt+1)

)

=
DΦ(xt, wt+1)−DΦ(yt+1, wt+1)

ηt
+
DΦ(z, xt)

ηt
− DΦ(z, xt+1)

ηt+1
+
( 1

ηt+1
− 1

ηt

)
DΦ(z, x1). (C.3)

Summing (C.3) over t, the DΦ(z, xt) terms telescope, and we obtain

T∑
t=1

(
ft(xt)− ft(z)

)
≤

T∑
t=1

(
DΦ(xt, wt+1)−DΦ(yt+1, wt+1)

ηt
+
DΦ(z, xt)

ηt
− DΦ(z, xt+1)

ηt+1
+
( 1

ηt+1
− 1

ηt

)
DΦ(z, x1)

)

≤
T∑
t=1

DΦ(xt, wt+1)−DΦ(yt+1, wt+1)

ηt
+

(
1

η1
+

T∑
t=1

(
1

ηt+1
− 1

ηt

))
DΦ(z, x1)

=

T∑
t=1

DΦ(xt, wt+1)−DΦ(yt+1, wt+1)

ηt
+

DΦ(z, x1)

ηT+1
, (C.4)

as desired.

D. Proof of Theorem 4.6

Proof (of Theorem 4.6). As previously mentioned, this proof parallels the proof of Theorem 4.1.

Fix z ∈ X . The first step is very similar to the proof of Theorem 4.1.

ft(xt)− ft(z) ≤ 〈 ĝt, xt − z 〉 (subgradient inequality)

=
1

ηt
〈 ŷt − ŵt+1, xt − z 〉 (by (4.15))

=
1

ηt

(
DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ( zxt

; yt)
)
. (D.1)

where we have used Proposition A.11 instead of Proposition A.12.

As in the proof of Theorem 4.1, the next step is to relate DΦ(z, wt+1) to DΦ(z, yt+1) so that (D.1) can be bounded using a
telescoping sum. The following claim is similar to Claim 4.2.

Claim D.1. Assume that γt = ηt+1/ηt ∈ (0, 1]. Then

(D.1) ≤
DΦ( xt

xt+1
;wt+1)

ηt
+
( 1

ηt+1
− 1

ηt

)
︸ ︷︷ ︸

telescopes

DΦ(z, x1) +
DΦ( zxt

; yt)

ηt
−
DΦ( z

xt+1
; yt+1)

ηt+1︸ ︷︷ ︸
telescopes

.
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Proof. The first two steps are identical to the proof of Claim 4.2.

γt
(
DΦ(z, wt+1)−DΦ(xt+1, wt+1)

)
+ (1− γt)DΦ(z, x1)

≥ γtDΦ( z
xt+1

;wt+1) + (1− γt)DΦ( z
xt+1

;x1) (since DΦ(xt+1, x1) ≥ 0 and γt ≤ 1)

= DΦ( z
xt+1

; yt+1) (by Proposition A.13 and (4.3)).

Rearranging and using γt > 0 yields

DΦ(z, wt+1) ≥ DΦ(xt+1, wt+1) −
( 1

γt
− 1
)
DΦ(z, x1) +

DΦ( z
xt+1

; yt+1)

γt
. (D.2)

Plugging this into (D.1) yields

(D.1) =
1

ηt

(
DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ( zxt

; yt)
)

≤ 1

ηt

(
DΦ(xt, wt+1)−DΦ(xt+1, wt+1) +

( 1

γt
− 1
)
DΦ(z, x1)−

DΦ( z
xt+1

; yt+1)

γt
+DΦ( zxt

; yt)

)
,

by (D.2). The claim follows by the definition of γt.

The final step is very similar to the proof of Theorem 4.1. Summing (D.1) over t and using Claim D.1 leads to the desired
telescoping sum.

T∑
t=1

(
ft(xt)− ft(z)

)
≤

T∑
t=1

(
DΦ( xt

xt+1
;wt+1)

ηt
+
( 1

ηt+1
− 1

ηt

)
DΦ(z, x1) +

DΦ( zxt
; yt)

ηt
−
DΦ( z

xt+1
; yt+1)

ηt+1

)

≤
T∑
t=1

DΦ( xt

xt+1
;wt+1)

ηt
+

(
1

η1
+

T∑
t=1

(
1

ηt+1
− 1

ηt

))
DΦ(z, x1)

=

T∑
t=1

DΦ( xt

xt+1
;wt+1)

ηt
+

DΦ(z, x1)

ηT+1
.

For the second inequality we have also used that DΦ( zx1
; y1) = DΦ(z, x1) since x1 = y1. Thus, the above shows that

Regret(T, z) ≤
T∑
t=1

DΦ( xt

xt+1
;wt+1)

ηt
+
DΦ(z, x1)

ηT+1
∀T > 0. (D.3)

Notice that (D.3) is syntactically identical to (4.7); the only difference is the definition of wt+1 in these two settings.
However the bound (D.3) requires further development because, curiously, this proof has not yet used the definition of xt. To
conclude the theorem, we will provide an upper bound on (D.3) that incorporates the definition xt = ΠΦ

X (yt). Specifically,
we will control DΦ( xt

xt+1
;wt+1) by applying Proposition A.15 as follows. Taking p = yt, π = xt = ΠΦ

X (yt), v = xt+1 and
q̂ = ηtĝt, we obtain

DΦ( xt

xt+1
;wt+1) = −DΦ( vπ ;∇Φ∗(p̂− q̂)) (since ŵt+1 = ŷt − ηtĝt = p̂− q̂)

≤ −DΦ( vπ ;∇Φ∗(π̂ − q̂)) (by Proposition A.15)
= DΦ( xt

xt+1
;∇Φ∗(x̂t − ηtĝt)).

Plugging this into (D.3) completes the proof.

E. Additional proofs for Section 5.1

Proof (of Proposition 5.2). First we apply Proposition A.12 with a = x, b = x′ and d = ∇Φ∗(x̂− q̂) to obtain

DΦ( xx′ ;w) = 〈 x̂− d̂, x− x′ 〉 −DΦ(x′, x)
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= 〈 q̂, x− x′ 〉 −DΦ(x′, x)

≤ ‖q̂‖∗‖x− x′‖ −
ρ

2
‖x− x′‖2 (definition of dual norm and Proposition A.9)

≤ ‖q̂‖2∗/2ρ (by Fact A.1).

F. Additional proofs for Section 5.2

An initial observation shows that Λ is non-negative in the experts’ setting.

Proposition F.1. Λ(a, b) ≥ 0 for all a ∈ X , b ∈ D.

Proof. Let us write Λ(a, b) = −
∑n
i=1 ai ln bi

ai
+ ln

(∑n
i=1 bi

)
. Since a is a probability distribution, we may apply Jensen’s

inequality to show that this expression is non-negative.

Proof (of Proposition 5.4). Since a, b ∈ X we have ‖a‖1 = ‖b‖1 = 1. Then

DΦ(ab ; c) = DKL(a, c)−DKL(b, c)

=
(
DKL(a, c) + 1− ‖c‖1 + ln‖c‖1

)
−
(
DKL(b, c) + 1− ‖c‖1 + ln‖c‖1

)
= Λ(a, c)− Λ(b, c) (by definition of Λ)
≤ Λ(a, c) (by Proposition F.1).

Proof (of Proposition 5.8). Let b = ∇Φ∗(â− ηq̂). By (5.1), bi = ai exp(−ηq̂i). Then

Λ(a,∇Φ∗(â− ηq̂)) =

n∑
i=1

ai ln(ai/bi) + ln‖b‖1

=

n∑
i=1

ηaiq̂i + ln
( n∑
i=1

ai exp(−ηq̂i)
)

≤
n∑
i=1

ηaiq̂i +

n∑
i=1

ai exp(−ηq̂i)− 1 (by Fact A.4)

≤
n∑
i=1

ηaiq̂i +

n∑
i=1

ai

(
1− ηq̂i +

η2q̂2
i

2

)
− 1 (by Fact A.2)

≤ η2
n∑
i=1

aiq̂i/2,

using
∑n
i=1 ai = 1 (since a ∈ X ) and q̂2

i ≤ q̂i (since q̂ ∈ [0, 1]n).

G. Remarks on lower bounds fo the expert’s problem

We have seen that dual averaging achieves regret
√
T lnn for all T . Here we present a lower bound analysis for DA

showing that this is the best one can hope for.

Theorem G.1. There exists a value of n such that, for every T > 0, there exists a sequence of vectors {ci | ci ∈ {0, 1}n}Ti=1,
such that

lim
t→∞

RegretDA(t)√
t lnn

≥ 1,

where RegretDA(T ) denotes the worst-case regret (that is, taking the supremum of the comparison point over the simples) of
the dual averaging algorithm used in (Bubeck, 2011, Theorem 2.4).

It is known in the literature (Cesa-Bianchi & Lugosi, 2006, §3.7) that no algorithm can achieve a regret bound better than√
T/2 lnn for the problem of learning with expert advice (as (T, n)→∞). Thus, there is still a

√
2 gap between the best upper

and lower bounds (that hold for all T ) for prediction with expert advice. This gap was previously pointed out by Gerchinovitz
(2011, pp. 52).
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Algorithm 1 Adaptive randomized weighted majority based on DA (Cesa-Bianchi & Lugosi, 2006)

Input: η : N→ R
x1 = [1/n, 1/n, ...]
for t = 1, 2, . . . do

Incur cost f(xt) and receive ĝt ∈ ∂ft(xt)
for j=1,2,...,n do
yt+1,j = x1,j exp

(
−ηt

∑t
k=1 ĝk(j)

)
end for
xt+1 = yt+1/‖yt+1‖1

end for

Proof. The detailed algorithm described in (Bubeck, 2011, Theorem 2.4) is shown in Algorithm 1, where ηt is set as
√

4 lnn/t,
we consider the case when n = 2, and construct the following cost vectors:

ct =


[1, 0]ᵀ 1 ≤ t < τ, t is odd
[0, 1]ᵀ 1 ≤ t < τ, t is even
[1, 0]ᵀ τ ≤ t ≤ T,

∀t ≥ 1,

where τ := bT − log(T )
√
T c. Without loss of generality, we assume that τ is an odd number.

Throughout the remainder of this proof, denote Regret(T ) as the worts-case regret on T rounds, that is,

Regret(T ) := sup
z∈∆n

Regret(T, z).

It is obvious that the second expert is the best one and our regret at time T is

Regret(T ) =
∑

1≤t<τ

cᵀt xt −
τ − 1

2
+
∑

τ≤t≤T

cᵀt xt

It is also easy to check that

xt =


[1/2, 1/2]ᵀ 1 ≤ t < τ, t is odd[

1

1 + exp(ηt−1)
,

1

1 + exp(−ηt−1)

]ᵀ
1 ≤ t < τ, t is even[

1

1 + exp(ηt−1(t− τ))
,

1

1 + exp(−ηt−1(t− τ))

]ᵀ
τ ≤ t ≤ T

Regret(T ) =
∑

1≤t<τ,t is even

(
1

1 + exp(−ηt−1)
− 1

2

)
︸ ︷︷ ︸

Term 1

+

T∑
t=τ

1

1 + exp((t− τ)ηt−1)︸ ︷︷ ︸
Term 2

For Term 1,

Term 1
(i)

≥
∑

1≤t<τ,t is even

1− exp(−ηt−1)

4

=
∑

1≤t<τ,t is even

ηi−1

4
+O(η2

i−1)

(ii)

≥
√

4 lnn

4

√
τ + o(τ)

where (i) is true by 1
2−x −

1
2 ≥

x
4 ∀x ∈ (0, 1) and (ii) is true by using the fact that

∑τ
t=1

1√
t
≥ 2
√
τ − 2
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By the definition of τ , we have lim
T→∞

τ

T
= 1, thus

lim
T→∞

Term 1√
T lnn

=
1

2
. (G.1)

For Term 2,

Term 2 =

T∑
t=τ

1

1 + exp((t− τ)ηt−1)

≥
T∑
t=τ

1

1 + exp((t− τ)
√

4 lnn
t−1 )

≥
T∑
t=τ

1

1 + exp((t− τ)
√

4 lnn
τ−1 )

≥
∫ T

t=τ

1

1 + exp((t− τ)
√

4 lnn
τ−1 )

dt

=

∫ log(T )
√
T

y=0

1

1 + exp(y
√

4 lnn
τ−1 )

dy (G.2)

Note that ∫
1

1 + exp(βy)
dy = y −

ln
(
1 + eβy

)
β

Set β =
√

4 lnn
τ−1 and plug the above result to Eq G.2, we get the following,

Term 2 ≥ log(T )
√
T −

ln
(

1 + exp
(√

4 lnn
τ−1 log(T )

√
T
))

√
4 lnn
τ−1

+
ln 2√
4 lnn
τ−1

Using the fact that ln (1 + ex) = x+ o(x),

Term 2 ≥ log(T )
√
T − log(T )

√
T + o

(√
4 lnn

τ − 1
log(T )

√
T

)
+ ln 2

√
(τ − 1)

4 lnn

Note that n = 2, thus

lim
T→∞

Term 2√
T lnn

= lim
T→∞

ln 2
√

(τ−1)
4 ln 2√

T ln 2
=

1

2
(G.3)

Combining Eq. G.1 and Eq. G.3, we conclude that

lim
T→∞

Regret(T)√
T lnn

= lim
T→∞

Term 1√
T lnn

+ lim
T→∞

Term 2√
T lnn

≥ 1

2
+

1

2
= 1.

H. Aditional proofs for Section 6

At many points throughout this section we will need to talk about optimality condition for problems where we minimize a
convex function over a convex set. Such conditions depend on the normal cone of the set on which the optimization is taking
place.

Definition H.1. The normal cone to C ⊆ Rn at x ∈ Rn is the set NC(x) := {s ∈ Rn | 〈s, y − x〉 ≤ 0 ∀y ∈ C}.
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Lemma H.2 ((Rockafellar, 1970, Theorem 27.4)). Let h : C → R be a closed convex function such that (ri C) ∩ (riX ) 6= ∅.
Then, x ∈ arg minz∈X h(z) if and only if there is ĝ ∈ ∂h(x) such that −ĝ ∈ NX (x).

Using the above result allows us to derive a useful characterization of points that realize the Bregman projections.

Lemma H.3. Let y ∈ D and x ∈ D̄. Then x = ΠΦ
X (y) if and only if x ∈ D ∩ X and ∇Φ(y)−∇Φ(x) ∈ NX (x).

Proof. Suppose x ∈ D ∩ X and ∇Φ(y)−∇Φ(x) ∈ NX (x). Since ∇Φ(y)−∇Φ(x) = −∇(DΦ(·, y))(x), by Lemma H.2
we conclude that x ∈ arg minz∈X D(z, y). Now suppose x = ΠΦ

X (y). By Lemma H.2 together with the definition of Bregman
divergence, this is the case if and only if there is −g ∈ ∂Φ(x) such that −(g −∇Φ(y)) ∈ NX (x). Since Φ is of Legendre
type we have ∂Φ(z) = ∅ for any z 6∈ D (see (Rockafellar, 1970, Theorem 26.1)). Thus, x ∈ D and g = ∇Φ(x) since Φ is
differentiable. Finally, x ∈ X by the definition of Bregman projection.

Before proceding to the proof of the results from Section 6, we need to state on last result about the relation of subgradients
and conjugate functions.

Lemma H.4 ((Rockafellar, 1970, Theorem 23.5)). Let f : X → R, let x ∈ X and let ŷ ∈ Rn. Then ŷ ∈ ∂f(x) if and only if
x attains supx∈Rn(〈ŷ, x〉 − f(x)) = f∗(ŷ).

Proof (of Proposition 6.1). Let t ≥ 1 and let Ft : D → R be the function being minimized on the right-hand side of (6.1). By
definition we have xt+1 = ΠΦ

X (yt+1). Using the optimality conditions of the Bregman projection, we have

xt+1 = ΠΦ
X (yt+1) ⇐⇒ ŷt+1 − x̂t+1 ∈ NX (xt+1), (by Lemma H.3)

By further using the definitions from Algorithm 2 we get

ŷt+1 − x̂t+1 = γt(x̂t − ηtĝt) + (1− γt)x̂1 − x̂t+1

= γt(x̂t − x̂t+1 − ηtĝt) + (1− γt)(x̂1 − x̂t+1)

= −γt
(
∇(DΦ(·, xt))(xt+1) + ηtĝt

)
− (1− γt)∇(DΦ(·, x1))(xt+1)

= −∇Ft(xt+1)

Thus, we have −∇Ft(xt+1) ∈ NX (xt+1). By the optimality conditions from Lemma H.2 we conclude that xt+1 ∈
arg minx∈X Ft(x), as desired.

Theorem 6.2 is an easy consequence of the following proposition.

Proposition H.5. Let {ft}t≥1 with ft : X → R be a sequence of convex functions and let η : N→ R>0 be non-increasing.
Let {xt}t≥1 and {ĝt}t≥1 be as in Algorithm 2. Define γ[i,t] :=

∏t
j=i γj for every i, t ∈ N. Then, there are {pt}t≥1 with

pt ∈ NX(xt) for each t ≥ 1 such that

{xt+1} = arg min
x∈X

( t∑
i=1

γ[i,t]〈ηiĝi + pi, x〉 −
(
γ[1,t] +

t∑
i=1

γ[i+1,t](1− γi)
)
〈x̂1, x〉+ Φ(x)

)
, ∀t ≥ 0. (H.1)

Proof. First of all, in order to prove (H.1) we claim it suffices to prove that there are {pt}t≥1 with pt ∈ NX(xt) for each t ≥ 1
such that

ŷt+1 = −
t∑
i=1

γ[i,t](ηiĝi + pi) +
(
γ[1,t] +

t∑
i=1

γ[i+1,t](1− γi)
)
x̂1, ∀t ≥ 0. (H.2)

To see the sufficiency of this claim, note that

xt+1 = ΠΦ
X (yt+1)) ⇐⇒ ŷt+1 − x̂t+1 ∈ NX (xt+1) (Lemma H.3)

⇐⇒ ŷt+1 ∈ ∂(Φ + δ(· | X ))(xt+1) (∂(δ(· | X ))(x) = NX (x))

⇐⇒ xt+1 ∈ arg max
x∈Rn

(
〈ŷt+1, x〉 − Φ(x)− δ(x | X )

)
(Lemma H.4)

⇐⇒ xt+1 ∈ arg min
x∈X

(
−〈ŷt+1, x〉+ Φ(x)

)
.
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The above together with (H.2) yields (H.1). Let us now prove (H.2) by induction on t ≥ 0.

For t = 0 (H.2) holds trivially. Let t > 0. By definition, we have ŷt+1 = (1− γt)(x̂t − ηtĝt) + γtx̂1. At this point, to use
the induction hypothesis, we need to write x̂t in function of ŷt. From the definition of Algorithm 2, we have xt = ΠΦ

X(yt). By
Lemma H.3, the latter holds if and only if ŷt − x̂t ∈ NX (xt). That is, there is pt ∈ NX (xt) such that x̂t = ŷt − pt. Plugging
these facts together and using our induction hypothesis we have

ŷt+1 = γt(x̂t − ηtĝt) + (1− γt)x̂1 = γt(ŷt − ηtĝt − pt) + (1− γt)x̂1

I.H.
= γt

(
−
t−1∑
i=1

γ[i,t−1](ηiĝi + pi)− ηtĝt − pt +
(
γ[1,t−1] +

t−1∑
i=1

γ[i+1,t−1](1− γi)
)
x̂1

)
+ (1− γt)x̂1

= −
t∑
i=1

γ[i,t](ηiĝi + pi) +
(
γ[1,t] +

t∑
i=1

γ[i+1,t](1− γi)
)
x̂1,

and this finishes the proof of (H.2).

Proof (of Theorem 6.2). Define γ[i,t] for every i, t ∈ N as in Proposition H.5. If γt = 1 for all t ≥ 1, then γ[i,t] = 1 for
any t, i ≥ 1. Moreover, if γt = ηt+1

ηt
for every t ≥ 1, then for every t, i ∈ N with t ≥ i we have γ[i,t] = ηt+1

ηi
, which yields

γ[i,t](ηiĝi + pi) = ηtĝi + 1
ηi
pi and

γ[1,t] +

t∑
i=1

γ[i+1,t](1− γi) =
ηt+1

η1
+

t∑
i=1

ηt+1

ηi+1

(
1− ηi+1

ηi

)
=
ηt+1

η1
+ ηt+1

t∑
i=1

( 1

ηi+1
− 1

ηi

)
= 1.

I. Dual Stabilized OMD with Composite Functions

In this section we extend the Dual-Stabilized OMD to the case where the functions revealed at each round are compos-
ite (Xiao, 2010; Duchi et al., 2010). More specifically, at each round t ≥ 1 we see a function of the form ft + Ψ, where
ft : X → R is convex and Lipschitz continuous and Ψ is a fixed convex function which we assume to be “easy”, i.e., such
that we know how to efficiently compute points in arg minx∈X (DΦ(x, x̄) + Ψ(x)). In fact, we could simply use the original
Dual-Stabilized OMD in this setting, but this approach has some drawbacks. One issue is that subgradients of Ψ would end-up
appearing on the regret bound from Theorem 4.1, which is not ideal: we want bounds which are unaffected by the “easy”
function Ψ. Another drawback is that we would not be using the knowledge of the structure of the functions, which is in many
cases sub-optimal. For example, in an online learning problem one may artificially add the `1-norm to each function in order to
induce sparsity on the iterates of the algorithm. However, using subgradients of the `1-norm instead of the norm itself does
not induce sparsity (McMahan, 2011). Finally, the analysis of Dual-Stabilized OMD adapted to the composite setting that
we develop in this section is an easy extension of the original analysis of Section 4. This is interesting since in the literature
the algorithms for the composite setting usually require a more intricate analysis, such as in the analysis of Regularized DA
from (Xiao, 2010), or the use of powerful results, such as the duality between strong convexity and strong smoothness used
in (McMahan, 2017). An important exception is the analysis of the composite objective mirror descent from (Duchi et al.,
2010) is already elegant. Sill, it does not directly applies when we use dual-stabilization and uses proof techniques more
specially-tailored for the proximal step form of writing OMD.

In the composite setting we assume without loss of generality that X = Rn since we may substitute Ψ by Ψ + δ(· | X )
where δ(x | X ) = 0 if x ∈ X and is +∞ anywhere else. To avoid comparing the loss of the algorithm with points outside of
the effective domain of Ψ in the definition of regret, denoted by dom Ψ, we define the Ψ-regret of the sequence of functions
{ft}t≥1 (against a comparison point z ∈ dom Ψ) by and iterates {xt}t≥1 by

RegretΨ(T, z) :=

T∑
t=1

(
ft(xt) + Ψ(xt)

)
−

T∑
t=1

(
ft(z) + Ψ(z)

)
, ∀T ≥ 0.

To adapt the Dual Stabilization method to this setting, we use the same idea as in (Duchi et al., 2010). Namely, we modify
the proximal-like formulation of Dual Stabilization from Proposition 6.1 so that we do not linearize (i.e., take the subgradient)
of the function Ψ, which yields

{xt+1} := arg min
x∈X

(
γt
(
ηt(〈ĝt, x〉+ Ψ(x)) +DΦ(x, xt)

)
+ (1− γt)DΦ(x, x1)

)
, ∀t ≥ 0.
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Algorithm 2 Dual-stabilized OMD with dynamic learning rate ηt and additional regularization function Ψ.

Input: x1 ∈ arg minx∈Rn Ψ(x), η : N→ R+, γ : N→ [0, 1]
ŷ1 = ∇Φ(x1)
for t = 1, 2, . . . do

Incur cost ft(xt) and receive ĝt ∈ ∂ft(xt)
x̂t = ∇Φ(xt) B map primal iterate to dual space
ŵt+1 = x̂t − ηtĝt B gradient step in dual space (I.1)
ŷt+1 = γtŵt+1 + (1− γt)x̂1 B stabilization in dual space (I.2)
yt+1 = ∇Φ∗(ŷt+1) B map dual iterate to primal space
αt+1 := ηtγt B compute scaling factor for Ψ

xt+1 = ΠΦ
αt+1Ψ(yt+1) B project onto feasible region (I.3)

end for

Although we do not prove the equivalence for the sake of conciseness, on Algorithm 2 we present the above procedure
written in a form closer to Algorithm 2. In this new algorithm, we extend the definition of Bregman Projection and define
the Ψ-Bregman projection by {ΠΦ

Ψ(y)} := arg minx∈Rn(DΦ(x, y) + Ψ(y)). The next lemma shows an analogue of the
generalized pythagorean theorem for the Ψ-Bregman Projection.

Lemma I.1. Let α > 0 and ȳ := ΠΦ
αΨ(y). Then,

DΦ(x, ȳ) +DΦ(ȳ, y) ≤ DΦ(x, y) + α(Ψ(x)−Ψ(ȳ)), ∀x ∈ Rn.

Proof. By the optimality conditions of the projection, we have ∇Φ(y)−∇Φ(ȳ) ∈ ∂(αΨ)(ȳ). Using the generalized triangle
inequality for Bregman Divergences (Lemma A.8) and the subgradient inequality, we get

DΦ(x, ȳ) +DΦ(ȳ, y)−DΦ(x, y) = 〈∇Φ(y)−∇Φ(ȳ), x− ȳ〉
(i)

≤ α(Ψ(x)−Ψ(ȳ)).

where (i) follows from∇Φ(y)−∇Φ(ȳ) ∈ ∂(αΨ)(ȳ) and the convexity of αΨ(·).

In the next theorem we show that the regret bound we have for the Dual-Stabilized OMD still holds in this setting when
using Algorithm 2, and the proof boils down to simple modifications to the original proof of Theorem 4.1.

Theorem I.2. Suppose that Φ is ρ-strongly convex with respect to a norm ‖ · ‖ and Ψ be a convex function such that
dom Ψ ⊆ X . Set γt = ηt+1/ηt for each t ≥ 1. Let x1 ∈ arg minx∈dom Ψ Ψ(x) and {xt}t≥1 be the sequence of iterates
generated by Algorithm 2. Then for any sequence of convex functions {ft}t≥1 with each ft : X → R and z ∈ X ,

RegretΨ(T, z) ≤
T∑
t=1

DΦ( xt

xt+1
;wt+1)

ηt
+
DΦ(z, x1)

ηT+1
, ∀T > 0. (I.4)

Proof. Let z ∈ dom Ψ and t ∈ N.

By (4.8), we have

ft(xt) + Ψ(xt)− ft(z)−Ψ(z) ≤ 1

ηt

(
DΦ(xt, wt+1) +DΦ(z, xt)−DΦ

(
z, wt+1

))
+ Ψ(xt)−Ψ(z). (I.5)

As in Theorem 4.1, let us prove bound the above expression by something with telescoping terms.

Claim I.3. Assume that γt = ηt+1/ηt ∈ (0, 1]. Then

(I.5) ≤
DΦ( xt

xt+1
;wt+1)

ηt
+
( 1

ηt+1
− 1

ηt

)
︸ ︷︷ ︸

telescopes

DΦ(z, x1) +
DΦ(z, xt)

ηt
− DΦ(z, xt+1)

ηt+1︸ ︷︷ ︸
telescopes

+ Ψ(xt)−Ψ(xt+1)︸ ︷︷ ︸
telescopes

.



Supplementary Materials

Proof. Fix z ∈ dom Ψ. First we derive the inequality

γt
(
DΦ(z, wt+1)−DΦ(xt+1, wt+1)

)
+ (1− γt)DΦ(z, x1)

≥ γtDΦ( z
xt+1

;wt+1) + (1− γt)DΦ( z
xt+1

;x1) (since DΦ(xt+1, x1) ≥ 0 and γt ≤ 1)

= DΦ( z
xt+1

; yt+1) (by Proposition A.13 and (I.2))

≥ DΦ(z, xt+1) + αt+1

(
Ψ(xt+1)−Ψ(z)

)
(by Lemma I.1 and (I.3)).

Rearranging and using both γt > 0 and αt+1 = ηtγt yields

DΦ(z, wt+1) ≥ DΦ(xt+1, wt+1)−
( 1

γt
− 1
)
DΦ(z, x1) +

1

γt
DΦ(z, xt+1) + ηt

(
Ψ(xt+1)−Ψ(z)

)
. (I.6)

Plugging this into (I.5) yields

(I.5) =
1

ηt

(
DΦ(xt, wt+1)−DΦ(z, wt+1) +DΦ(z, xt)

)
+ Ψ(xt)−Ψ(z)

≤ 1

ηt

(
DΦ( xt

xt+1
;wt+1) +

( 1

γt
− 1
)
DΦ(z, x1)− 1

γt
DΦ(z, xt+1) +DΦ(z, xt)

)
+ Ψ(xt)−Ψ(xt+1).

The claim follows by the definition of γt.

The final step is very similar to the standard OMD proof. Summing (I.5) over t and using Claim I.3 leads to the desired
telescoping sum.

T∑
t=1

(
ft(xt)− ft(z)

)
≤

T∑
t=1

(
DΦ( xt

xt+1
;wt+1)

ηt
+
( 1

ηt+1
− 1

ηt

)
DΦ(z, x1) +

DΦ(z, xt)

ηt
− DΦ(z, xt+1)

ηt+1

+ Ψ(xt)−Ψ(xt+1)

)

≤
T∑
t=1

DΦ( xt

xt+1
;wt+1)

ηt
+

DΦ(z, x1)

ηT+1
+ Ψ(x1)−Ψ(xT+1)

≤
T∑
t=1

DΦ( xt

xt+1
;wt+1)

ηt
+

DΦ(z, x1)

ηT+1
,

where in the last step inequality we used x1 ∈ arg minx∈X Ψ(x).

References

Auer, P., Cesa-Bianchi, N., and Gentile, C. Adaptive and self-confident on-line learning algorithms. Journal of Computer and
System Sciences, 64(1):48–75, 2002.

Beck, A. and Teboulle, M. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations
Research Letters, 31(3):167–175, 2003.

Bubeck, S. Introduction to online optimization, December 2011. unpublished.

Bubeck, S. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine Learning, 8(3-4):231–357,
2015.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and games. Cambridge University Press, 2006.

Duchi, J. C., Shalev-shwartz, S., Singer, Y., and Tewari, A. Composite objective mirror descent. In Proceedings of COLT, pp.
14–26, 2010.



Supplementary Materials

Gerchinovitz, S. Prediction of individual sequences and prediction in the statistical framework: some links around sparse
regression and aggregation techniques. PhD thesis, Université Paris-Sud, 2011.
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