
Stochastic Regret Minimization in Extensive-Form Games

A. Proofs
A.1. Regret Guarantees when Gradient Estimators are Used

For completeness, we show a proof of Proposition 1. As mentioned, it is an application of the Azuma-Hoeffding inequality
for martingale difference sequences, which we now state (see, e.g., Theorem 3.14 of McDiarmid (1998) for a proof).

Theorem 1 (Azuma-Hoeffding inequality). Let Y1, . . . , Yn be a martingale difference sequence with ak ≤ Yk ≤ bk for each
k, for suitable constants ak, bk. Then for any τ ≥ 0,

P
[∑

Yk ≥ τ
]
≤ e−2τ2/

∑
(bk−ak)2 .

Proposition 1. Let M and M̃ be positive constants such that |(`t)>(z − z′)| ≤ M and |( ˜̀)>(z − z′)| ≤ M̃ for all times
t = 1, . . . , T and all feasible points z,z′ ∈ Z. Then, for all p ∈ (0, 1) and all u ∈ Z,

P
[
RT (u) ≤ R̃T (u) + (M + M̃)

√
2T log

1

p

]
≥ 1− p.

Proof. As observed in the body, dt := (`t)>(zt − u)− ( ˜̀t)>(zt − u) is a martingale difference sequence. Furthermore, at
all times t,

|dt| = |(`t)>(zt − u)− ( ˜̀t)>(zt − u)|
≤ |(`t)>(zt − u)|+ |( ˜̀t)>(zt − u)|
≤M + M̃, (8)

and therefore −(M + M̃) ≤ dt ≤ (M + M̃) for each t.

Furthermore,
T∑

t=1

dt =

(
T∑

t=1

(`t)>(zt − u)

)
−
(

T∑

t=1

( ˜̀t)>(zt − u)

)
= RT (u)− R̃T (u).

So, using Theorem 1, for all τ ≥ 0

P
[
RT (u) ≤ R̃T (u) + τ

]
= P

[
T∑

t=1

dt ≤ τ
]

= 1− P

[
T∑

t=1

dt ≥ τ
]

≥ 1− exp

{
− 2τ2

∑T
t=1 4(M + M̃)2

}

= 1− exp

{
− 2τ2

4T (M + M̃)2

}
.

Finally, substituting τ = (M + M̃)
√

2T log(1/p) yields the statement.

A.2. Properties of the Outcome Sampling Gradient Estimator

Let wt ∈ X be an arbitrary strategy for Player 1. Furthermore, let z̃t ∈ Z be a random variable such that for all z ∈ Z,

Pt[z̃t = z] = wt[σ1(z)] · yt[σ2(z)] · c[σc(z)],

and let ez be defined as the vector such that ez [σ1(z)] = 1 and ez [σ] = 0 for all other σ ∈ Σ1, σ 6= σ1(z).

Lemma 1. The random vector
˜̀t
1 :=

u2(z̃t)

wt[σ1(z̃t)]
ez̃t

is such that Et[ ˜̀t1] = `t1.
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Proof. For all x ∈ R|Σ1|,

Et[`t1]>x =


∑

z∈Z
P[z̃t = z] · u1(z)

wt[σ1(z)]
ez



>

x

=


∑

z∈Z
u2(z) · yt[σ2(z)] · c[σc(z)] · ez



>

x

=
∑

z∈Z
u2(z) · yt[σ2(z)] · c[σc(z)] · (e>z x)

=
∑

z∈Z
u2(z) · yt[σ2(z)] · c[σc(z)] · x[σ1(z)]

= u2(x,yt, c) = `>1 x.

Since the equality holds for all x ∈ R|Σ1|, we conclude Et[ ˜̀t1] = `1.

Furthermore,
Lemma 2. For all x,x′ ∈ X ,

( ˜̀
1)>(x− x′) ≤ ∆ · max

σ∈Σ1

1

wt[σ]
.

Proof. Using the definition of ˜̀
1,

( ˜̀
1)>(x− x′) =

u2(z̃t)

wt[σ1(z̃t)]

(
x[σ1(z̃t)]− x′[σ1(z̃t)]

)
.

Since each entry of x and x′ is in the interval [0, 1], the quantity x[σ1(z̃t)]− x′[σ1(z̃t)] has absolute value in [0, 1] as well.
Hence, ∣∣∣( ˜̀

1)>(x− x′)
∣∣∣ ≤ max

z∈Z

∣∣∣∣
u2(z)

wt[σ1(z)])

∣∣∣∣ ≤ ∆ · max
σ∈Σ1

1

wt[σ]

as we wanted to show.

A.3. Exploration-Balanced Strategy

We now describe the construction of the exploration-balanced strategy w∗. Given σ ∈ Σ1, we let Cσ be the set of information
sets IinI1 such that σ1(I) = σ. Furthermore, let mσ , for σ ∈ Σ1, be the number of terminal sequences in the subtree rooted
under σ; formally, mσ is defined recursively as

mσ =





1 if Cσ = ∅;∑

I∈Cσ

∑

a∈AI
m(I,a) otherwise.

Clearly, mσ ≤ |Σ1| − 1, since the empty sequence is never terminal (assuming Player 1 acts at least once). With that, we
define w∗ such that w∗[∅] = 1 and that for all σ = (I, a) ∈ Σ1,

w∗[σ] =
mσ∑

a′∈AI m(I,a′)
w∗[σ1(I)].

It is immediate to verify that w∗ is indeed a valid sequence-form strategy. Furthermore, since for all I ∈ I1, I ∈ Cσ1(I), we
have ∑

a′∈AI
m(I,a′) ≤ mσ(I).

So,
w∗[σ] ≥ mσ

mσ1(I)
w∗[σ1(I)].

By recursively expanding the definition of w∗[σ1(I)] on the right-hand side until σ1(I) = ∅, we ultimately obtain

w∗[σ] ≥ 1

m∅
≥ 1

|Σ1| − 1

for all σ, as we wanted to show.
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A.4. Proposition 3

As mentioned in the body of the paper, Proposition 3 is a direct consequence of the concentration result for martingale
difference sequences of Bartlett et al. (2008), which we state next.

Lemma 3 (Lemma 2 of Bartlett et al. (2008)). Suppose X1, . . . , XT is a martingale difference sequence with |Xt| ≤ b. Let

VartX
t := Var[Xt | X1, . . . , Xt−1].

Let V :=
∑T
t=1 VartX

t be the sum of conditional variances of Xt’s. Further, let σ :=
√
V . Then we have, for any δ < 1/e

and T ≥ 4,

P

[
T∑

t=1

Xt > 2 max{2σ, b
√

log(1/δ)}
√

log(1/δ)

]
≤ log(T )δ.

Proposition 3. Let T ≥ 4, and let M and M̃ be positive constants such that |(`t)>(z − u)| ≤M and |( ˜̀)>(z − u)| ≤ M̃ for

all times t = 1, . . . , T and all feasible points z,u ∈ X . Furthermore, let σ :=

√∑T
t=1 Var[dt | ˜̀1, . . . , ˜̀t−1] be the square

root of the sum of conditional variances of the random variables dt introduced in (5). Then, for all p ∈ (0, 1/2] and all
u ∈ X ,

P
[
RT (u) ≤ R̃T (u) + 4 max{σβ, (M + M̃)β2}

]
≥ 1− p,

where

β :=

√
log

(
log T

p

)
.

Proof. We apply Lemma 3 to the martinagle difference sequence Xt = dt. As argued in (8), |Xt| ≤ (M + M̃) at all times t,
so the constant b = M + M̃ satisfies the requirements of Lemma 3. Finally, we set δ = p/ log(T ) in Lemma 3, so that

√
log(1/δ) =

√
log

(
log T

p

)
= β.

Furthermore, since by hypothesis T ≥ 4 and p ≤ 1/2, δ = p/ log(T ) ≤ 1/(2 log 4) ≤ 1/e, so all hypotheses of Lemma 3 are
satisfied. Hence, we have

P
[
RT (u)− R̃T (u) ≤ 4 max{σβ, (M + M̃)β2}

]
= P

[
T∑

t=1

Xt ≤ 4 max{σβ, bβ2}
]

= P

[
T∑

t=1

Xt ≤ 4 max{σ
√

log(1/δ), b log(1/δ)}
]

= P

[
T∑

t=1

Xt ≤ 2 max{2σ, 2b
√

log(1/δ)}
√

log(1/δ)

]

≥ P

[
T∑

t=1

Xt ≤ 2 max{2σ, b
√

log(1/δ)}
√

log(1/δ)

]

≥ 1− log(T )δ = 1− p,

where the last inequality follows from Lemma 3.

B. Description of the Game Instances Used in the Experiments
We run our experiments on four different games, each described below.

Leduc poker is a standard benchmark in the EFG-solving community (Southey et al., 2005). Our variant, Leduc 13, has a
deck of 13 unique cards, with two copies of each card. The game consists of two rounds. In the first round, each player
places an ante of 1 in the pot and receives a single private card. A round of betting then takes place with a two-bet maximum,
with Player 1 going first. A public shared card is then dealt face up and another round of betting takes place. Again, Player 1
goes first, and there is a two-bet maximum. If one of the players has a pair with the public card, that player wins. Otherwise,
the player with the higher card wins. All bets in the first round are 1, while all bets in the second round are 2. This game has
166336 nodes and 6007 sequences per player.
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Goofspiel The variant of Goofspiel (Ross, 1971) that we use in our experiments is a two-player card game, employing three
identical decks of 4 cards each. At the beginning of the game, each player receives one of the decks to use it as its own hand,
while the last deck is put face down between the players, with cards in increasing order of rank from top to bottom. Cards
from this deck will be the prizes of the game. In each round, the players privately select a card from their hand as a bet to
win the topmost card in the prize deck. The selected cards are simultaneously revealed, and the highest one wins the prize
card. In case of a tie, the prize card is discarded. Each prize card’s value is equal to its face value, and at the end of the game
the players’ score are computed as the sum of the values of the prize cards they have won. This game has 54421 nodes and
21329 sequences per player.

Search is a security-inspired pursuit-evasion game. The game is played on the graph shown in Figure 5.

P1 P2

S

5

10

3

Figure 5. The graph on which the search game is played.

It is a simultaneous-move game (which can be modeled as a turn-taking EFG with appropriately chosen information sets).
The defender controls two patrols that can each move within their respective shaded areas (labeled P1 and P2). At each
time step the controller chooses a move for both patrols. The attacker is always at a single node on the graph, initially the
leftmost node labeled S. The attacker can move freely to any adjacent node (except at patrolled nodes, the attacker cannot
move from a patrolled node to another patrolled node). The attacker can also choose to wait in place for a time step in order
to clean up their traces. If a patrol visits a node that was previously visited by the attacker, and the attacker did not wait to
clean up their traces, they can see that the attacker was there. If the attacker reaches any of the rightmost nodes they receive
the respective payoff at the node (5, 10, or 3, respectively). If the attacker and any patrol are on the same node at any time
step, the attacker is captured, which leads to a payoff of −1 for the attacker and a payoff of 1 for the defender. Finally, the
game times out after k simultaneous moves, in which case both players defender receive payoffs 0. Search-4 (Search-5) has
21613 (87,927) nodes, 2029 (11,830) defender sequences, and 52 (69) attacker sequences.

Our search game is a zero-sum variant of the one used by Kroer et al. (2018). A similar search game considered by Bošanskỳ
et al. (2014) and Bošanskỳ & Čermák (2015).

Battleship is a parametric version of a classic board game, where two competing fleets take turns shooting at each
other (Farina et al., 2019c). At the beginning of the game, the players take turns at secretly placing a set of ships on separate
grids (one for each player) of size 3× 2. Each ship has size 2 (measured in terms of contiguous grid cells) and a value of 1,
and must be placed so that all the cells that make up the ship are fully contained within each player’s grids and do not overlap
with any other ship that the player has already positioned on the grid. After all ships have been placed. the players take turns
at firing at their opponent. Ships that have been hit at all their cells are considered sunk. The game continues until either one
player has sunk all of the opponent’s ships, or each player has completed r shots. At the end of the game, each player’s
payoff is calculated as the sum of the values of the opponent’s ships that were sunk, minus the sum of the values of ships
which that player has lost. The game has 732607 nodes, 73130 sequences for player 1, and 253940 sequences for player 2.

C. Additional Experimental Results
C.1. External Sampling

The Search-5 plot omitted from the main paper is shown here.



Stochastic Regret Minimization in Extensive-Form Games

1 2 3 4

Number of nodes touched (×106)

100

Sa
dd

le
-p

oi
nt

ga
p

Search game (5 turns), external sampling, 50 seeds

MCCFR
FTRL (η = 100)
OMD (η = 1)

Figure 6. Performance of MCCFR, FTRL, and OMD with external sampling on Search-5.

Figures 7 through 11 show the performance of FTRL and OMD for all four stepsizes that we tried on each game:
η = 0.1, 1, 10, 100.
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Figure 7. Performance of FTRL and OMD with four stepsizes on Battleship with external sampling. MCCFR shown for reference
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Figure 8. Performance of FTRL and OMD with four stepsizes on Goofspiel with external sampling. MCCFR shown for reference
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Figure 9. Performance of FTRL and OMD with four stepsizes on Leduc 13 with external sampling. MCCFR shown for reference
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Figure 10. Performance of FTRL and OMD with four stepsizes on Search-4 with external sampling. MCCFR shown for reference
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Figure 11. Performance of FTRL and OMD with four stepsizes on Search-5 with external sampling. MCCFR shown for reference

C.2. Exploration-Balanced Outcome Sampling

The Search-4 plot omitted from the main paper is shown here.
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Figure 12. Performance of MCCFR, FTRL, and OMD with outcome sampling on Search-4.

Figure 12 shows the performance on Search-4 and Search-5 with outcome sampling. In Search-4 we find that MCCFR
performs better than FTRL and OMD, though FTRL is comparable at later iterations.

Figures 13 through 17 show the performance of FTRL and OMD with outcome sampling for all four stepsizes that we tried
on each game: η = 0.1, 1, 10, 100.
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Figure 13. Performance of FTRL and OMD with four stepsizes on Battleship with outcome sampling. MCCFR shown for reference
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Figure 14. Performance of FTRL and OMD with four stepsizes on Goofspiel with outcome sampling. MCCFR shown for reference
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Figure 15. Performance of FTRL and OMD with four stepsizes on Leduc 13 with outcome sampling. MCCFR shown for reference

0.2 0.4 0.6 0.8 1.0

Number of nodes touched (×106)

100

Sa
dd

le
-p

oi
nt

ga
p

Search game (4 turns), exploration-balanced outcome sampling, 10 seeds

MCCFR
FTRL (η = 0.1)
FTRL (η = 1)
FTRL (η = 10)
FTRL (η = 100)

0.2 0.4 0.6 0.8 1.0

Number of nodes touched (×106)

100

Sa
dd

le
-p

oi
nt

ga
p

Search game (4 turns), exploration-balanced outcome sampling, 10 seeds

MCCFR
OMD (η = 0.1)
OMD (η = 1)
OMD (η = 10)
OMD (η = 100)

Figure 16. Performance of FTRL and OMD with four stepsizes on Search-4 with outcome sampling. MCCFR shown for reference
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Figure 17. Performance of FTRL and OMD with four stepsizes on Search-5 with outcome sampling. MCCFR shown for reference


