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Abstract
A complementary label (CL) simply indicates an
incorrect class of an example, but learning with
CLs results in multi-class classifiers that can pre-
dict the correct class. Unfortunately, the problem
setting only allows a single CL for each example,
which notably limits its potential since our label-
ers may easily identify multiple CLs (MCLs) to
one example. In this paper, we propose a novel
problem setting to allow MCLs for each exam-
ple and two ways for learning with MCLs. In the
first way, we design two wrappers that decompose
MCLs into many single CLs, so that we could use
any method for learning with CLs. However, the
supervision information that MCLs hold is con-
ceptually diluted after decomposition. Thus, in
the second way, we derive an unbiased risk estima-
tor; minimizing it processes each set of MCLs as
a whole and possesses an estimation error bound.
We further improve the second way into minimiz-
ing properly chosen upper bounds. Experiments
show that the former way works well for learning
with MCLs but the latter is even better.

1. Introduction
Ordinary machine learning tasks generally require mas-
sive data with accurate supervision information, while it
is expensive and time-consuming to collect the data with
high-quality labels. To alleviate this problem, the re-
searchers have studied various weakly supervised learning
frameworks (Zhou, 2018), including semi-supervised learn-
ing (Chapelle et al., 2006; Li & Liang, 2019; Miyato et al.,
2018; Niu et al., 2013; Zhu & Goldberg, 2009), positive-
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unlabeled learning (du Plessis et al., 2014; 2015; Elkan &
Noto, 2008; Kiryo et al., 2017; Sakai et al., 2017; 2018),
noisy-label learning (Han et al., 2018a;b; Menon et al.,
2015; Wei et al., 2020; Xia et al., 2019), partial label learn-
ing (Cour et al., 2011; Feng & An, 2018; 2019a;b; Zhang
& Yu, 2015), positive-confidence learning (Ishida et al.,
2018), similar-unlabeled learning (Bao et al., 2018), and
unlabeled-unlabeled classification (Lu et al., 2019; 2020).

Here, we consider another weakly supervised classifica-
tion framework called complementary-label learning (Ishida
et al., 2017; 2019; Yu et al., 2018). In complementary-label
learning, each training example is supplied with a com-
plementary label (CL), which specifies one of the classes
that the example does not belong to. Compared with ordi-
nary labels, it is obviously easier to collect CLs. Recently,
complementary-label learning has been applied to online
learning (Kaneko et al., 2019) and medical image segmen-
tation (Rezaei et al., 2019). In addition, another potential
application of learning with CLs would be data privacy.
For example, collecting some survey data may require ex-
tremely private questions (Ishida et al., 2017; 2019). It
may be difficult for us to directly obtain the true answer
(label) to the question. Nonetheless, it would be mentally
less demanding if we ask the respondent to provide some
incorrect answers. Besides, the respondent may provide
multiple incorrect answers, rather than exactly one. In this
case, multiple complementary labels (MCLs) would be more
widespread than a single CL.

In this paper, we propose a novel problem setting (Sec-
tion 3.1) that allows MCLs for each example, and pro-
vide a real-world motivation (Section 3.2). Although exist-
ing complementary-label learning approaches (Ishida et al.,
2017; 2019; Yu et al., 2018) have provided solid theoretical
foundations and achieved promising performance, they are
all restricted to the case where each example is associated
with a single CL. To learn with MCLs, we first design two
wrappers (Section 4.1) that decompose each example with
MCLs into multiple examples, each with a single CL, in dif-
ferent manners. With the two wrappers, we are able to use
arbitrary ordinary complementary-label learning approaches
for learning with MCLs. However, the derived data with
many single CLs may not match the assumed data distribu-
tion for complementary-label learning (Ishida et al., 2017;
2019). In addition, the supervision information would be
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conceptually diluted after decomposition.

In order to solve the above problems, we further propose
an unbiased risk estimator (Section 4.2) for learning with
MCLs, which processes each set of MCLs as a whole. Our
risk estimator is conceptually consistent, and builds a proto-
type baseline for the new problem setting that may inspire
more specially designed methods for this new setting in the
future. Then, we theoretically derive an estimation error
bound, which guarantees that the empirical risk minimizer
converges to the true risk minimizer with high probability
as the number of training data approaches in�nity. Fur-
thermore, we improve the risk estimator into minimizing
properly chosen upper bounds for practical implementation
(Section 4.3), and we show that they bring bene�ts to gra-
dient update. Experimental results show that the wrappers
work well for learning with MCLs while the (improved) risk
estimator is even better on various benchmark datasets.

2. Related Work

In this section, we introduce some notations and brie�y
review the formulations of multi-class classi�cation and
complementary-label learning.

2.1. Multi-Class Classi�cation

Suppose the feature space isX P Rd with d dimensions
and the label space isY � t 1; 2; : : : ; kuwith k classes, the
instancex P X with its class labely P Y is sampled from
an unknown probability distribution with densityppx ; yq.
Ordinary multi-class classi�cation aims to induce a learning
functionf px q: Rd Ñ Rk that minimizes the classi�cation
risk:

Rpf q � Eppx ;y q
�
L

�
f px q; y

��
; (1)

whereL
�
f px q; y

�
is a multi-class loss function. The pre-

dicted label is given aŝy � argmaxyPY f y px q, wheref y px q
is they-th coordinate off px q.

2.2. Complementary-Label Learning

Suppose the dataset for complementary-label learning is
denoted bytpx i ; syi quni � 1, wheresyi PY is a complementary
label ofx i , and each complementarily labeled example is
sampled fromsppx ; syq. Ishida et al. (2017; 2019) assumed
that sppx ; syqis expressed as:

sppx ; syq � 1
k � 1

°
y � sy ppx ; yq: (2)

This assumption implies that all other labels except the
correct label are chosen to be the complementary label
with uniform probabilities. This is reasonable as we do
not have extra labeling information except a complemen-
tary label. Under this assumption, it was proved by Ishida

et al. (2017) that an unbiased estimator of the original clas-
si�cation risk can be obtained from only complementarily
labeled data, when the loss function satis�es certain condi-
tions. Speci�cally, they used the multi-class loss functions
with the one-versus-all strategy and the pairwise comparison
strategy (Zhang, 2004):

sL OVA
�
f px q; sy

�
� 1

k � 1

°
y1� sy `

�
f y1px q

�
� `

�
� f sy px q

�
;

sL PC
�
f px q; sy

�
�

°
y1� sy `

�
f y1px q � f sy px q

�
;

where`pzq is a binary loss function that satis�es`pzq �
`p� zq � 1, such as sigmoid loss̀Spzq � 1

1� ez and ramp
loss`Rpzq � 1

2 maxp0; minp2; 1 � zqq.

Later, another different assumption was used by Yu et al.
(2018). They assumed that all other labels except the cor-
rect label are chosen to be the complementary label with
different probabilities, and proposed to estimate the class
transition probability matrix for model training. Although
they showed that the minimizer of their learning objective
coincides with the minimizer of the original classi�cation
risk, they did not provide an unbiased risk estimator.

Recently, a more general unbiased risk estimator (Ishida
et al., 2019) was proposed, which does not rely on speci�c
losses or models. Their formulation is as follows:

sL FREE
�
f px q; sy

�
�

k°

y � 1
L

�
f px q; y

�
� p k � 1qL

�
f px q; sy

�
:

(3)

For this formulation, they showed that due to the negative
term, the empirical risk could be unbounded below, which
leads to over-�tting. In order to alleviate this issue, the
authors further proposed modi�ed versions by using the
max operator and the gradient ascent strategy.

In summary, although the above methods have provided
solid theoretical foundations and achieved promising per-
formance for complementary-label learning, they are all
restricted to the case where each example is associated with
a single CL. In this paper, we propose a novel problem
setting that allows MCLs for each example.

3. Multiple Complementary Labels

In this section, we �rst introduce our problem setting where
each example is associated with MCLs, and then provide a
corresponding real-world motivation.

3.1. Data Generation Process

Suppose the given dataset for learning with MCLs is rep-
resented assD � tp x i ; sYi quni � 1, wheresYi is a set of com-
plementary labels for the instancex i . It is obvious that
learning with MCLs is a generalization of complementary-
label learning that learns with a single CL. Speci�cally, if
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sYi contains only one complementary label with probability
1, we obtain a complementary-label learning problem. In
addition, if sYi containsk � 1 complementary labels where
k denotes the total number of classes, we obtain an ordinary
multi-class classi�cation problem. It is easy to know that
for all i , sYi cannot be the empty set nor the full label set,
hencesYi P sY where sY � t 2Y � H � Yuand| sY| � 2k � 2.

For the generation process of each example with MCLs, we
assume that it relies on the size of the set of MCLs. Let us
represent the size of the complementary label set by a ran-
dom variables, and assumes is sampled from a distribution
ppsq. In this way, we assume that each training example
px i ; sYi qis drawn from the following data distribution:

sppx ; sYq �
¸ k � 1

j � 1
pps � j qsppx ; sY | s � j q; (4)

where

sppx ; sY | s � j q :�

$
&

%

1� k � 1
j

�
°

yRsY ppx ; yq; if | sY | � j;

0; otherwise:

It is clear that whenpps � 1q � 1, our introduced distri-
bution reduces to the assumed distribution (e.g., Eq. (2)) in
ordinary complementary-label learning approaches (Ishida
et al., 2017; 2019). Then, we show thatsppx ; sYqis a valid
probability distribution by the following theorem.

Theorem 1. The following equality holds:
»

sY

»

X
sppx ; sYqdx dsY � 1: (5)

The proof is provided in Appendix A.1.

3.2. Real-World Motivation

Here, we present a real-world motivation for the assumed
data distribution.

Since directly choosing the correct label is hard for labelers,
it would be easier if a labeling system can randomly choose
a label set and ask labelers whether the correct label is
included in the proposed label set or not. Given a patternx ,
suppose the labeling system �rst randomly samples the size
s of the proposed label set fromppsq, and then randomly
and uniformly chooses a speci�c label set with sizes from
sY. In this way, the collected label sets that do not include
the correct label precisely follow the same distribution as
Eq. (4). We will demonstrate this fact in the following.

We start by considering the case where the labeling system
has already sampled the sizes of the proposed label set.
Then we have the following lemma.

Lemma 1. Given the sampled sizes of the proposed label
set, for any patternx with its correct labely and any label

set sY with sizes (i.e., | sY | � s), the following equality
holds:

ppy P sY | x ; sq �
s
k

: (6)

The proof is provided in Appendix A.2.

Theorem 2. In the above setting, the distribution of col-
lected data where the correct labely (y PY) is not included
in the label setsY (sY P sY) is the same as Eq. (4), i.e.,

ppx ; sY | y R sYq � sppx ; sYq: (7)

The proof is provided in Appendix A.3.

4. Learning with Multiple Complementary
Labels

In this section, we �rst present two wrappers that enable us
to use any ordinary complementary-label learning approach
for learning with MCLs. Then, we present an unbiased risk
estimator for learning with MCLs as a whole, and establish
an estimation error bound.

4.1. Wrappers

Since ordinary complementary-label learning approaches
cannot directly deal with MCLs, it would be natural to ask
whether there exist some strategies that can enable us to
use any existing complementary-label learning approach for
learning with MCLs.

Motivated by this, we propose two wrappers that decom-
pose each example with MCLs into multiple examples, each
with a single CL. Speci�cally, suppose a training exam-
ple with MCLs is given aspx i ; sYi q where sYi � t sy1; sy2u.
Then ordinary complementary label learning approaches
may learn frompx i ; sy1qandpx i ; sy2q. According to whether
decomposition is after shuf�ing the training set, there are
two decomposition strategies (wrappers) when we optimize
a loss function by a stochastic optimization algorithm:

Decomposition after Shuf�e. Given the shuf�ed train-
ing set with MCLs, in each mini-batch, we decompose each
example into multiple examples, each with a single CL.

Decomposition before Shuf�e. Given the training set
with MCLs, we drive a new training set by decomposing
each example into multiple examples, each with a single CL.
Then, we shuf�e the derived training set.

Both the above decomposition strategies enable us to use
arbitrary ordinary complementary-label learning approaches
for learning with MCLs. However, the derived training
data with many single CLs may not match the originally
assumed data distribution (i.e., Eq. (2)) for complementary-
label learning, since these CLs are completely derived from
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Table 1.Supervision information for a set of MCLs (with sizes).

Setting #TP #FP Supervision Purity

Many single CLs s pk � 2qs 1{pk � 1q
A set of MCLs 1 k � s � 1 1{pk � sq

MCLs while the data distribution with MCLs is relevant
to the size of each set of MCLs. As a consequence, the
learning consistency would no longer be guaranteed even
if the complementary-label learning approach inside the
wrappers is originally risk-consistent or classi�er-consistent.

Moreover, since ordinary complementary-label learning ap-
proaches can only learn with a single CL for each example at
a time and treat each example independently, the supervision
information for each set of MCLs would be conceptually
diluted. We demonstrate this issue by Table 1. As shown
in Table 1, there are two settings according to whether to
decompose a set of MCLs into many single CLs or not.
Since all the non-complementary labels have the possibility
to be the correct label, we specially count how many times
the correct label serves as a non-complementary label (de-
noted by #TP), and how many times the other labels except
the correct label serve as a non-complementary label (de-
noted by #FP). Then the supervision purity is calculated by
(#TP)/(#TP+#FP).

Clearly, the wrappers follow the setting where a set of MCLs
is decomposed into many single CLs. If the size of the set
of MCLs is s, then #TP equalss, since the correct label
would serve as a non-complementary label fors times after
decomposition, and the other labels except the correct label
would serve as a non-complementary label forpk � s �
1qs � sps � 1q � p k � 2qs times, hence the supervision
purity would bes{ps � p k � 2qsq � 1{pk � 1q. However,
for the setting where the set of MCLs is not decomposed,
we can easily know that the correct label serves as a non-
complementary label once, and the other labels expect the
correct label serve as a non-complementary label fork� s� 1
times, hence the supervision purity is1{pk � sq. These
observations clearly show that the supervision information
is diluted after decomposing MCLs (s ¥ 2), which also
motivate us to take a set of MCLs as a whole set. In the
following, we will introduce our proposed unbiased risk
estimator, which is able to learn with MCLs as a whole.

4.2. Unbiased Risk Estimator

The above example has shown that the supervision informa-
tion is diluted after decomposition. The basic reason lies
in that ordinary complementary-label learning approaches
are designed by only considering the data distribution with
a single CL, i.e.,sppx ; syq. However, the data distribution
with MCLs sppx ; sYqbecomes much different, and the wrap-
pers fail to capture such distribution because they do not
treat MCLs as a whole for each example. To solve this

problem, we propose an unbiased estimator of the original
classi�cation risk for learning with MCLs as a whole.

We �rst relate the data distribution with ordinary labels to
that with MCLs by the following lemma.

Lemma 2. The following equality holds:

ppx ; yq � 1 �
¸ k � 1

j � 1

� k � 1
j

¸
sY P sY y

j

sppx ; sY ; s � j q
	

;

where sYy
j is the set of all the possible label sets with sizej

that include a speci�c labely PY, i.e.,

sYy
j :� t sY P sY | y P sY ;| sY | � j u:

The proof is provided in Appendix B.1.

Based on Lemma 2, we derive an unbiased estimator of the
ordinary classi�cation risk Eq. (1) by the following theorem.

Theorem 3. The ordinary classi�cation risk Eq. (1) can be
equivalently expressed as

Rpf q �
¸ k � 1

j � 1
pps � j qsRj pf q; (8)

where

sRj pf q:� Esppx ; sY |s� j qr sL j
�
f px q; sY

�
s; (9)

and

sL j
�
f px q; sY

�
:�

¸

yRsY
L

�
f px q; y

�

�
k � 1 � j

j

¸

y1PsY
L

�
f px q; y1

�
: (10)

The proof is provided in Appendix B.2.

It is easy to verify that Eq. (8) reduces to Eq. (3) whenpps �
1q � 1. Which means, our approach is a generalization
of Ishida et al. (2019). Furthermore, according to Corollary
2 in Ishida et al. (2019), our approach is also a generalization
of Ishida et al. (2017).

Given the dataset with MCLssD � tp x i ; sYi quni � 1, we can
empirically approximatepps � j q by nj {n wherenj de-
notes the number of examples whose complementary label
set size isj . By further taking into account Eqs. (8)-(10),
we can obtain the following empirical approximation of the
unbiased risk estimator introduced in Theorem 3:

pRpf q �
1
n

¸ n

i � 1

� ¸

yRsYi
L

�
f px i q; y

�

�
k � 1 � | sYi |

| sYi |

¸

y1PsYi
L

�
f px i q; y1

� 	
: (11)

Estimation Error Bound. Here, we derive an estima-
tion error bound for the proposed unbiased risk estimator
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based onRademacher complexity(Bartlett & Mendelson,
2002). LetF € t f : Rd Ñ Rk u be the hypothesis class,
pf :� arg minf PF

pRpf q be the empirical risk minimizer,
andf � � arg minf PF Rpf qbe the true risk minimizer. Be-
sides, we de�ne the functional spaceGy for the labely P Y
asGy � t g : x Ñ f y px q | f P F u. Then, we have the
following theorem.

Theorem 4. Assume the loss functionLpf px q; yq is � -
Lipschitz with respect tof px q p0   �   8q for all y P Y.
Let CL � supx PX ;f PF ;y PY Lpf px q; yqandRn pGy qbe the
Rademacher complexity ofGy given the sample sizen. Then,
for any� ¡ 0, with probability at least1 � � ,

Rppf q � Rpf � q

¤
k � 1¸

j � 1

pps � j q
� 4

?
2�k pk � 1q

j

k¸

y � 1

Rn j pGy q �
Cj

?
nj

	
;

whereCj � p 4k � 4j � 2qCL

b
log 2pk � 1q

�
2 for all j P

t 1; : : : ; k � 1u and nj denotes the number of examples
whose complementary label set size isj .

The de�nition of Rademacher complexity and the proof of
Theorem 4 are provided in Appendix C. Theorem 4 shows
that the empirical risk minimizer converges to the true risk
minimizer with high probability as the number of training
data approaches in�nity. It is worth noting that this bound is
not only related to the Redemacher complexity of the func-
tion class, but alsos andk. This observation accords with
our intuition that the learning task will be harder if the num-
ber of classesk increases or the size of the complementary
label sets decreases.

4.3. Practical Implementation

In this section, we present the practical implementation of
our proposed formulation and improvements of the used loss
functions. As described above, we have provided a general
unbiased risk estimator that is able to use arbitrary loss
functions. There arises a question: Can all loss functions
work well in our approach? Unfortunately, the answer is
negative.

The original classi�cation risk estimator in Eq. (1) includes
an expectation over a non-negative lossL : Rk � r ks Ñ R� ,
hence the expected risk and the empirical approximation are
both lower-bounded by zero. However, our proposed risk
estimator in Theorem 3 contains a negative term. Although
the expected risk estimator is unbiased, the empirical estima-
tor may become unbounded below if the used loss function
is unbounded, thereby leading to over-�tting. Similar issues
have also been shown by Ishida et al. (2019); Kiryo et al.
(2017). The above analysis suggests that a bounded loss is
probably better than an unbounded loss, in our empirical
risk estimator (i.e., Eq. (11)).

To demonstrate the above conjecture, we would like to
insert bounded and unbounded losses into Eq. (11), for
comparison studies. Note that we assume that the soft-
max function is absorbed in each loss, and denote by
p� py|x q � exppf y px qq{p

° k
j � 1 exppf j px qqqthe predicted

probability of the instancex belonging to classy, where�
denotes the parameters of the modelf . In this way, we list
the compared loss functions as follows.

� Categorical Cross Entropy (CCE):

L CCEpf px q; yq � � logp� py|x q:
� Mean Absolute Error (MAE):

L MAEpf px q; yq � 2 � 2p� py|x q:
� Mean Square Error (MSE):

L MSEpf px q; yq � 1 � 2p� py|x q �
¸ k

j � 1
p� pj |x q2:

� Generalized Cross Entropy (GCE) (Zhang & Sabuncu,
2018):

L GCEpf px q; yq � p 1 � p� py|x qqq{q;

whereq P p0; 1sis a user-de�ned hyper-parameter. We
setq � 0:7, as suggested by Zhang & Sabuncu (2018).

� Partially Huberised Cross Entropy (PHuber-CE)
(Menon et al., 2020):

L PHuber-CEpf px q; yq �
"

� log p� py|x q; if p� py|x q ¥ 1
� ;

� �p � py|x q � log � � 1; else;

where� ¡ 0 is a user-de�ned hyper-parameter. We set
� � 10, because it works well in Menon et al. (2020).

The detailed derivations of the above loss functions and
their bounds are provided in Appendix D. Among these
losses, CCE is unbounded while others are bounded. We
will experimentally demonstrate (Figure 1) that by insert-
ing the above losses into Eq. (11), bounded loss is sig-
ni�cantly better than unbounded loss. Furthermore, we
conduct a deeper analysis of MAE because MAE has the
special property that MAE is not only bounded, but also
satis�es the symmetric condition (Ghosh et al., 2017), i.e.,° k

y � 1 L MAE
�
f px q; y

�
� 2k � 2, which means the sum of

the losses over all classes is a constant for arbitrary examples.
However, is MAE good enough? Previous studies (Wang
et al., 2019; Zhang & Sabuncu, 2018) have already shown
that MAE suffers from the optimization issue, which would
affect its practical performance. To alleviate this problem,
we further improve MAE by proposing two upper-bound
surrogate loss functions. Speci�cally, by using MAE in
Eq. (11), we obtain

pRpf q �
k � 1
| sYi |

¸

yRsYi
L MAE

�
f px i q; y

�

�
2k � 2

| sYi |
L 1

MAE

�
f px i q; sYi

�
� Z i ; (12)
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(a) MNIST, linear (b) MNIST, MLP (c) Fashion MNIST, linear (d) Fashion MNIST, MLP

(e) Kuzushiji MNIST, linear (f) Kuzushiji MNIST, MLP (g) CIFAR-10, ResNet (h) CIFAR-10, DenseNet

Figure 1.Experimental results of different loss functions for different datasets and models. Dark colors show the mean accuracy of 5 trials
and light colors show the standard deviation.

whereL 1
MAE

�
f px i q; sYi

�
:� 1 �

°
j RsYi

p� pj |x i q, andZ i

is a constant independent off px i q. It is clear that
minimizing L 1

MAE

�
f px i q; sYi

�
is equivalent to minimizing°

yRsYi
L MAE

�
f px ; yq

�
.

Based on this fact, we further introduce two upper-bound
surrogate loss functions ofL 1

MAE :

L EXPpf px i q; sYi q � exp
�

�
¸

j RsYi
p� pj |x i q

	
;

L LOGpf px i q; sYi q � � log
� ¸

j RsYi
p� pj |x i q

	
:

One can easily verify thatL 1
MAE is upper bounded byL EXP

and L LOG using the two inequalities1 � z ¤ expp� zq
and1 � z ¤ � logz, respectively. By replacingL 1

MAE by
L LOG andL LOG in Eq. (12), we obtain two new methods for
learning with MCLs. We explain the advantage ofL EXP and
L LOG overL 1

MAE by closely examining their gradients:

BL 1
MAE

B�
�

"
� r � p� pj |x i q; if j R sYi ;

0; else;

BL EXP

B�
�

"
� r � p� pj |x i q �wEXP; if j R sYi ;

0; else;

BL LOG

B�
�

"
� r � p� pj |x i q �wLOG; if j R sYi ;

0; else;

where wEXP � exp
�

�
°

j RsYi
p� pj |x i q

�
and wLOG �

� °
j RsYi

p� pj |x i q
� � 1

. From their gradients, we can clearly
observe thatL 1

MAE basically treats each example equally,
while L EXP andL LOG give more weights to dif�cult exam-
ples. Concretely, if

°
j RsYi

p� pj |x i qis small, bothwEXP and

wLOG would be large. In other words,L EXP andL LOG pay
more attention to hard examples whose sum of the predicted
con�dences of all the non-complementary labels is small.

5. Experiments

In this section, we conduct extensive experiments to evaluate
the performance of our proposed approaches including the
two wrappers, the unbiased risk estimator with various loss
functions and the two upper-bound surrogate loss functions.

Datasets. We use �ve widely-used benchmark datasets
MNIST (LeCun et al., 1998), Kuzushiji-MNIST (Clanuwat
et al., 2018), Fashion-MNIST (Xiao et al., 2017), 20News-
groups (Lang, 1995), and CIFAR-10 (Krizhevsky et al.,
2009), and four datasets from the UCI repository (Blake
& Merz, 1998). We use four base models including lin-
ear model, MLP model (d-500-k), ResNet (34 layers) (He
et al., 2016), and DenseNet (22 layers) (Huang et al., 2017).
The detailed descriptions of these datasets with the cor-
responding base models are provided in Appendix E.1.
To generate MCLs, we instantiateppsq �

� k
s

�
{p2k � 2q,

@s P t1; � � � ; k � 1u, which meansppsqrepresents the ratio
of the number of label sets whose size iss to the number
of all possible label sets. For each instancex , we �rst
randomly samples from ppsq, and then uniformly and ran-
domly sample a complementary label setsY with sizes (i.e.,
ppsYq � 1{

� k � 1
s

�
).

Approaches. We absorb �ve ordinary complementary-
label learning approaches in the two wrappers (introduced


