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Abstract

A complementary label (CL) simply indicates an
incorrect class of an example, but learning with
CLs results in multi-class classifiers that can pre-
dict the correct class. Unfortunately, the problem
setting only allows a single CL for each example,
which notably limits its potential since our label-
ers may easily identify multiple CLs (MCLs) to
one example. In this paper, we propose a novel
problem setting to allow MCLs for each exam-
ple and two ways for learning with MCLs. In the
first way, we design two wrappers that decompose
MCLs into many single CLs, so that we could use
any method for learning with CLs. However, the
supervision information that MCLs hold is con-
ceptually diluted after decomposition. Thus, in
the second way, we derive an unbiased risk estima-
tfor; minimizing it processes each set of MCLs as
a whole and possesses an estimation error bound.
We further improve the second way into minimiz-
ing properly chosen upper bounds. Experiments
show that the former way works well for learning
with MCLs but the latter is even better.

1. Introduction

Ordinary machine learning tasks generally require mas-
sive data with accurate supervision information, while it
is expensive and time-consuming to collect the data with
high-quality labels. To alleviate this problem, the re-
searchers have studied various weakly supervised learning
frameworks (Zhou, 2018), including semi-supervised learn-
ing (Chapelle et al., 2006; Li & Liang, 2019; Miyato et al.,
2018; Niu et al., 2013; Zhu & Goldberg, 2009), positive-
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unlabeled learning (du Plessis et al., 2014; 2015; Elkan &
Noto, 2008; Kiryo et al., 2017; Sakai et al., 2017; 2018),
noisy-label learning (Han et al., 2018a;b; Menon et al.,
2015; Wei et al., 2020; Xia et al., 2019), partial label learn-
ing (Cour et al., 2011; Feng & An, 2018; 2019a;b; Zhang
& Yu, 2015), positive-confidence learning (Ishida et al.,
2018), similar-unlabeled learning (Bao et al., 2018), and
unlabeled-unlabeled classification (Lu et al., 2019; 2020).

Here, we consider another weakly supervised classifica-
tion framework called complementary-label learning (Ishida
etal., 2017; 2019; Yu et al., 2018). In complementary-label
learning, each training example is supplied with a com-
plementary label (CL), which specifies one of the classes
that the example does not belong to. Compared with ordi-
nary labels, it is obviously easier to collect CLs. Recently,
complementary-label learning has been applied to online
learning (Kaneko et al., 2019) and medical image segmen-
tation (Rezaei et al., 2019). In addition, another potential
application of learning with CLs would be data privacy.
For example, collecting some survey data may require ex-
tremely private questions (Ishida et al., 2017; 2019). It
may be difficult for us to directly obtain the true answer
(label) to the question. Nonetheless, it would be mentally
less demanding if we ask the respondent to provide some
incorrect answers. Besides, the respondent may provide
multiple incorrect answers, rather than exactly one. In this
case, multiple complementary labels (MCLs) would be more
widespread than a single CL.

In this paper, we propose a novel problem setting (Sec-
tion 3.1) that allows MCLs for each example, and pro-
vide a real-world motivation (Section 3.2). Although exist-
ing complementary-label learning approaches (Ishida et al.,
2017; 2019; Yu et al., 2018) have provided solid theoretical
foundations and achieved promising performance, they are
all restricted to the case where each example is associated
with a single CL. To learn with MCLs, we first design two
wrappers (Section 4.1) that decompose each example with
MCLs into multiple examples, each with a single CL, in dif-
ferent manners. With the two wrappers, we are able to use
arbitrary ordinary complementary-label learning approaches
for learning with MCLs. However, the derived data with
many single CLs may not match the assumed data distribu-
tion for complementary-label learning (Ishida et al., 2017;
2019). In addition, the supervision information would be



Learning with Multiple Complementary Labels

conceptually diluted after decomposition. et al. (2017) that an unbiased estimator of the original clas-

si cation risk can be obtained from only complementarily

In order to solve the above problems, we further prOpos?abeled data, when the loss function satis es certain condi-

an unbiased risk estimator (Section 4.2) for learning with,; : ) :

) tions. Speci cally, they used the multi-class loss functions
MCLs, which processes each set of MCLs as a whole. Our : I :
. . ) . . with the one-versus-all strategy and the pairwise comparison
risk estimator is conceptually consistent, and builds a protos-trate (Zhang, 2004):
type baseline for the new problem setting that may inspire oy 9 o

more specially designed methods for this new setting in the S5, f pxq g ﬁ vy fypxa T feXa;
future. Then, we theoretically derive an estimation error S f ’ f f .
bound, which guarantees that the empirical risk minimizer ~"¢ g3 yr g TyXA TeXQs

as the number of training data approaches in nity. Fur~p zq 1, such as sigmoid losgzq = and ramp
thermore, we improve the risk estimator into minimizing loss'rq 4 maxp0; ming2; 1 zqq ¢
2 ) ]

properly chosen upper bounds for practical implementation
(Section 4.3), and we show that they bring bene ts to gral-ater, another different assumption was used by Yu et al.
dient update. Experimental results show that the wrapper€2018). They assumed that all other labels except the cor-
work well for learning with MCLs while the (improved) risk rect label are chosen to be the complementary label with
estimator is even better on various benchmark datasets. different probabilities, and proposed to estimate the class
transition probability matrix for model training. Although
they showed that the minimizer of their learning objective
2. Related Work coincides with the minimizer of the original classi cation

In this section, we introduce some notations and brie yrisk, they did not provide an unbiased risk estimator.

review the formulations of multi-class classi cation and Recently,

, a more general unbiased risk estimator (Ishida
complementary-label learning.

et al., 2019) was proposed, which does not rely on speci c
losses or models. Their formulation is as follows:

%
Suppose the feature spaceXisP R with d dimensions ~ Erree f X G 8 . Lifxgy pk 1d fxgyp:

and the label space¥ t 1;2;:::;kuwith k classes, the Y 3)
instancex P X with its class labey PY is sampled from

an unknown probability distribution with densippx;yg  For this formulation, they showed that due to the negative
Ordinary multi-class classi cation aims to induce a learning term, the empirical risk could be unbounded below, which
functionf pxq: RY N Rk that minimizes the classi cation leads to over- tting. In order to alleviate this issue, the

risk: authors further proposed modi ed versions by using the
max operator and the gradient ascent strategy.
R Eypvog L f ; 1
Ha Eppya L Txay @) In summary, although the above methods have provided
whereL fxqy is a multi-class loss function. The pre- solid theoretical foundations and achieved promising per-

dicted label is given ag ~ argmaypy fy X g wheref ,pxq formance for complementary-label learning, they are all
is they-th coordinate of pxg restricted to the case where each example is associated with

a single CL. In this paper, we propose a novel problem
setting that allows MCLs for each example.

2.1. Multi-Class Classi cation

2.2. Complementary-Label Learning

Suppose the dataset for complementary-label learning
denoted bytpx;; gigu' ;, whereg; PY is a complementary
label ofx;, and each complementarily labeled example isin this section, we rst introduce our problem setting where
sampled fromppx ; gg Ishida et al. (2017; 2019) assumed each example is associated with MCLs, and then provide a
thatppx ; gqis expressed as: corresponding real-world motivation.

s, Multiple Complementary Labels

o

BGRA 1y g PRKYG (2) 3.1 Data Generation Process

This assumption implies that all other labels except theéSuppose the given dataset for learning with MCLs is rep-
correct label are chosen to be the complementary labeksented a tp x;; %iqd ;, where¥® is a set of com-
with uniform probabilities. This is reasonable as we doplementary labels for the instange. It is obvious that
not have extra labeling information except a complementearning with MCLs is a generalization of complementary-
tary label. Under this assumption, it was proved by Ishiddabel learning that learns with a single CL. Speci cally, if
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¥ contains only one complementary label with probability set'¥ with sizes (i.e., [¥] s), the following equality
1, we obtain a complementary-label learning problem. Inholds:

addition, if ¥, containsk 1 complementary labels where s

k denotes the total number of classes, we obtain an ordinary ppy P¥ | x;sq K (6)
multi-class classi cation problem. It is easy to know that

for all i, ¥ cannot be the empty set nor the full label set,The proof is provided in Appendix A.2.

: Y k
hence% P¥ where¥ t 2% H Yuand¥| 2 2 Theorem 2. In the above setting, the distribution of col-

For the generation process of each example with MCLs, wéected data where the correct labely P Y) is not included
assume that it relies on the size of the set of MCLs. Let usn the label se® (¥ P ¥) is the same as Eq. (4), i.e.,
represent the size of the complementary label set by a ran-

dom variables, and assums is sampled from a distribution ppc; ¥ |y R¥aq px; ¥q (7)
ppsg In this way, we assume that each training example
i ; ¥ gis drawn from the following data distribution: The proof is provided in Appendix A.3.

s k1 . .
p;¥q o ps joep ¥ s jg (49 4. Learning with Multiple Complementary

Labels
where
$ . ° . ) In this section, we rst present two wrappers that enable us
_ o & w1 yre PEGYGf %1 to use any ordinary complementary-label learning approach
B ¥ s ja %0_ ! otherwise for learning with MCLs. Then, we present an unbiased risk

estimator for learning with MCLs as a whole, and establish

Itis clear that whempps ~ 1q 1, our introduced distri- 2" estimation error bound.

bution reduces to the assumed distribution (e.g., Eq. (2)) in
ordinary complementary-label learning approaches (Ishid4-1- Wrappers

etal, 2017; 2019). Then, we show tmak; ¥qis avalid  since ordinary complementary-label learning approaches

probability distribution by the following theorem. cannot directly deal with MCLs, it would be natural to ask
Theorem 1. The following equality holds: whether there exist some strategies that can enable us to
» » use any existing complementary-label learning approach for
ppx; $ax df 1 (5) learning with MCLs.
X

Motivated by this, we propose two wrappers that decom-
pose each example with MCLs into multiple examples, each
with a single CL. Speci cally, suppose a training exam-
ple with MCLs is given agx;; $qwhere® t %;;%u.
Then ordinary complementary label learning approaches
Here, we present a real-world motivation for the assumednay learn fronpx; ; g1qandp;; $. According to whether
data distribution. decomposition is after shuf ing the training set, there are

, ) , i two decomposition strategies (wrappers) when we optimize
Since directly choosing the correct label is hard for labelersg 555 function by a stochastic optimization algorithm:
it would be easier if a labeling system can randomly choose

a label set and ask labelers whether the correct label ifecomposition after Shufe.  Given the shuf ed train-
included in the proposed label set or not. Given a pattern ing set with MCLSs, in each mini-batch, we decompose each
suppose the labeling system rst randomly samples the siz€xample into multiple examples, each with a single CL.
s of the proposed label set froppsg and then randomly Decomposition before Shuf e.

and uniformly chooses a speci c label set with sezom it MCLs, we drive a new training set by decomposing

¥. In this way, the collected label sets that do not includegach example into multiple examples, each with a single CL.
the correct label precisely follow the same distribution asrnen we shuf e the derived training set.

Eq. (4). We will demonstrate this fact in the following.

The proof is provided in Appendix A.1.

3.2. Real-World Motivation

Given the training set

S . Both the above decomposition strategies enable us to use
We start by considering the case where the labeling systeqiirary ordinary complementary-label learning approaches

has already sampled the sigef the proposed label set. ¢4 |earning with MCLs. However, the derived training
Then we have the following lemma. data with many single CLs may not match the originally
Lemma 1. Given the sampled sizeof the proposed label assumed data distribution (i.e., Eq. (2)) for complementary-
set, for any patterix with its correct labely and any label label learning, since these CLs are completely derived from
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problem, we propose an unbiased estimator of the original

Table 1.Supervision information for a set of MCLs (with sigg classi cation risk for learning with MCLs as a whole

Setting \#TP #FP  Supervision Purity

We rst relate the data distribution with ordinary labels to

Many single CLs s gk 2cs Lpk 1q that with MCLs by the following lemma.
AsetofMCLs| 1 k s 1 Ypk sq

MCLs while the data distribution with MCLs is relevant
to the size of each set of MCLs. As a consequence, the ., - 1 k1 k 1.
. . ppx;yq , . —L
learning consistency would no longer be guaranteed even i1 J P¥)
if the complementary-label learning approach inside the v ) L
wrappers is originally risk-consistent or classi er-consistent V1€re ¥/ is the set of all the possible label sets with gize
that include a specic labey PY, i.e.,
Moreover, since ordinary complementary-label learning ap-
proaches can only learn with a single CL for each example at ¥t ¥PY¥|yP¥;[¥| ju
atime and treat each example independently, the supervision
information for each set of MCLs would be conceptually The proof is provided in Appendix B.1.
diluted. We demonstrate this issue by Table 1. As shown

in Table 1, there are two settings according to whether t§3a5€d on Lemma 2, we derive an unbiased estimator of the
decompose a set of MCLs into many single CLs or notordinary classi cation risk Eq. (1) by the following theorem.

Since all the non-complementary labels have the possibilitfftheorem 3. The ordinary classi cation risk Eq. (1) can be
to be the correct label, we specially count how many timesquivalently expressed as

the correct label serves as a non-complementary label (de- 1

noted by #TP), and how many times the other labels except RAEq = . pps jdRjdg (8)
the correct label serve as a non-complementary label (de- 11

noted by #FP). Then the supervision purity is calculated byyhere

(HTP)/(#HTP+#FP).

Clearly, the wrappers follow the setting where a set of MCLs

is decomposed into many single CLs. If the size of the sejn(g
of MCLs is s, then #TP equals, since the correct label
would serve as a non-complementary labeldtimes after 15 fxg¥ : ’ - L fxgy
decomposition, and the other labels except the correct label ky 1
would serve as a hon-complementary labeldor s 71 ’
ls sp 1qg pk 20 times, hence the supervision ]
purity would bes{ps p k 2gsq 1{pk 1g However, ] ) . ]
for the setting where the set of MCLs is not decomposed? he proof is provided in Appendix B.2.

we can easily know that the correct label serves as a nofis easy to verify that Eq. (8) reduces to Eq. (3) wipps
complementary label once, and the other labels expect th_g] 1. Which means, our approach is a generalization
correct label serve as anon-complementary labétfos 1 of shida et al. (2019). Furthermore, according to Corollary

times, hence the supervision purityifpk  sq These 2 in|shida etal. (2019), our approach is also a generalization
observations clearly show that the supervision informatioryf |shida et al. (2017).

is diluted after decomposing MCLs ¢ 2), which also ) i
motivate us to take a set of MCLs as a whole set. In thé>iven the dataset with MCLE tp xi; ¥iqd ;, we can

following, we will introduce our proposed unbiased risk @mPpirically approximates  jgby n; {n wheren; de-
estimator, which is able to learn with MCLs as a whole,  Notes the number of examples whose complementary label
set size i§ . By further taking into account Egs. (8)-(10),

4.2. Unbiased Risk Estimator we can obtain the following empirical approximation of the
unbiased risk estimator introduced in Theorem 3:

The above example has shown that the supervision informa- 1. n .

tion is diluted after decomposition. The basic reason lies Rgfq =~ L fxiqy

in that ordinary complementary-label learning approaches b1 YRR

are designed by only considering the data distribution with k 1]%] L fpigyt @ (11)

a single CL, i.e.ppx; $g However, the data distribution % yiPe

with MCLs ppx ; ¥ qbecomes much different, and the wrap-

pers fail to capture such distribution because they do noEstimation Error Bound. Here, we derive an estima-

treat MCLs as a whole for each example. To solve thigion error bound for the proposed unbiased risk estimator

Lemma 2. The following equality holds:

;¥5s jq;

Ripfd: Egpeis jofS TXG¥ s 9)

1.
ylP\3L faxgy : (10)



Learning with Multiple Complementary Labels

based orRademacher complexifBartlett & Mendelson, To demonstrate the above conjecture, we would like to
2002). LetF €tf : RY N RXube the hypothesis class, insert bounded and unbounded losses into Eq. (11), for
0 : argmin; pr R g be the empirical risk minimizer, comparison studies. Note that we assume that the soft-
andf argmin; o R gbe the true risk minimizer. Be- max function is absored in each loss, and denote by
sides, we de ne t~he functional spaGg for the labely PY p yIxq expdypkqa{p Jk 1 exppf; xqqcthe predicted
asG t g:x N fymxq|f PFu Then, we have the probability of the instancg belonging to clasg, where
following theorem. denotes the parameters of the madeln this way, we list

Theorem 4. Assume the loss functidogf pcg yq is the compared loss functions as follows.

Lipschitz with respect tbpxq 1 8q forally PY. Categorical Cross Entropy (CCE):
LetCL  sUPpx 1 prypy L XGygandR,pG gbe the
Rademacher complexity & given the sample size Then, L ccef xgyq logp py|xq
forany | O, with probability at leastL. Mean Absolute Error (MAE):
RpPqy Rpf q Lmaepf Xgyq 2 2p py|xg
] k 1pps o 4? 2kk 1q.F R K o Mean Square Error (MSE):
- - n; [N 5 k .
i1 J y1 o nj Luse p<gya 1 2ppylxa ~ = p gixe:
—— Generalized Cross Entropy (GCE) (Zhang & Sabuncu,
whereC; p4k 4 2C. 9 >— forallj P 2018):

tl;:::;k  luandn; denotes the number of examples L 1 xdaia:
whose complementary label set sizg.is ccell xqyq pl p pyixdafa;

. i whereq P ®; 1sis a user-de ned hyper-parameter. We
The de nition of Rademacher complexity and the proof of setq 07, as suggested by Zhang & Sabuncu (2018).
Theorem 4 are provided in Appendix C. Theorem 4 shows  partially Huberised Cross Entropy (PHuber-CE)
that the empirical risk minimizer converges to the true risk (Menon et al., 2020):

minimizer with high probability as the number of training

data approaches in nity. It is worth noting that this bound is L pruber-cef X G Y logp pylxgif p pylxa¥

not only related to the Redemacher complexity of the func- P pyixq log 1; else

tion class, but alse andk. This observation accords with where | 0Ois a user-de ned hyper-parameter. We set

our intuition that the learning task will be harder if the num- 10, because it works well in Menon et al. (2020).

ber of classek increases or the size of the complementary

label sets decreases. The detailed derivations of the above loss functions and
their bounds are provided in Appendix D. Among these

4.3. Practical Implementation losses, CCE is unbounded while others are bounded. We

) ) o ) will experimentally demonstrate (Figure 1) that by insert-
In this section, we present the practical implementation Ofng the above losses into Eq. (11), bounded loss is sig-

our proposed formulation and improvements of the used l0S§; cantly better than unbounded loss. Furthermore, we
functions. As described above, we have provided a generglynquct a deeper analysis of MAE because MAE has the
unbiased risk estimator that is able to use arbitrary |°S§pecial property that MAE is not only bounded, but also

functions. There arises a question: Can all loss functiongaﬂs es the symmetric condition (Ghosh et al., 2017), i.e.

\r/]v;);;t\i/\\ﬁll in our approach? Unfortunately, the answer is ; Lwae fXqy 2k 2. which means the sum of

the losses over all classes is a constant for arbitrary examples.
The original classi cation risk estimator in Eq. (1) includes However, is MAE good enough? Previous studies (Wang
an expectation over a non-negative lassR* r ks N R ,  etal., 2019; Zhang & Sabuncu, 2018) have already shown
hence the expected risk and the empirical approximation arthat MAE suffers from the optimization issue, which would
both lower-bounded by zero. However, our proposed riskaffect its practical performance. To alleviate this problem,
estimator in Theorem 3 contains a negative term. Althoughve further improve MAE by proposing two upper-bound
the expected risk estimator is unbiased, the empirical estim&urrogate loss functions. Speci cally, by using MAE in
tor may become unbounded below if the used loss functiofEg. (11), we obtain

is unbounded, thereby leading to over- tting. Similar issues K 1.

have also been shown by Ishida et al. (2019); Kiryo et al. Rpf q W SRS, Lvae fXigy

(2017). The above analysis suggests that a bounded loss is K :

probably better than an unbounded loss, in our empirical uL]l\./IAE fxiq$ Zi: (12)

risk estimator (i.e., Eq. (11)). ¥
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(2) MNIST, linear (b) MNIST, MLP (c) Fashion MNIST, linear (d) Fashion MNIST, MLP

(e) Kuzushiji MNIST, linear  (f) Kuzushiji MNIST, MLP (g) CIFAR-10, ResNet (h) CIFAR-10, DenseNet

Figure 1.Experimental results of different loss functions for different datasets and models. Dark colors show the mean accuracy of 5 trials
and light colors show the standard deviation.

whereLi,e fxig® : 1 ire P [ IXxig andZ; W o would be large. In other wordg,exp andL oG pay

is a constant independent 6fix;q It is clear that more attention to hard examples whose sum of the predicted
minimizing Ly, f XiG ¥ is equivalent to minimizing con dences of all the non-complementary labels is small.

yry, Lmae fpX;yq.

Based on this fact, we further introduce two upper-bound®- EXperiments

surrogate loss functions &fyae: In this section, we conduct extensive experiments to evaluate

s . . the performance of our proposed approaches including the
ire, PP Ixiq ; two wrappers, the unbiased risk estimator with various loss
functions and the two upper-bound surrogate loss functions.

Lexedf i ¥ g  exp
Liocd ig®a  log . pRXiq:

One can easily verify thdt, . is upper bounded bygxp ~ Datasets. We use ve widely—used.penchmark datasets
andL og Using the two inequalited z o expp zq MNIST (LeCun et al., 1998), Kuzushiji-MNIST (Clanuwat

andl Za |Og z, respective'y_ By replacing ]MAE by et al., 2018), Fashion-MNIST (XiaO et al., 2017), 20News-
L Loc andL o in Eq. (12), we obtain two new methods for groups (Lang, 1995), and CIFAR-10 (Krizhevsky et al.,
learning with MCLs. We explain the advantage.gfxe and 2009), and four datasets from the UCI repository (Blake

LLOG OverLJMAE by C|ose|y examining their gradients: & MerZ, 1998) We use four base models inCIUding lin-
" ear model, MLP modeld:500k), ResNet (34 layers) (He
BL e r pplxig ifj R¥; et al., 2016), and DenseNet (22 layers) (Huang et al., 2017).
B . 0; else The detailed descriptions of these datasets with the cor-
Bl - i R® responding base models are provided in Appendix E.1.
EXP rpa l)f'q Wexp, IH] ¥ To generate MCLs, we instantiappsq ~ © {p2* 2q
B 0; else ) s .
" ) N @Ptl;, ;k 1u,which meangpsqrepresents the ratio
Bl ios r pAlxiqg woe ifj R¥; of the number of label sets whose sizes i® the number
B 0; else of all possible label sets. For each instaxgewe rst
° ) randomly sampls from ppsg, and then uniformly and ran-
wherewexp  €xp jre, P AIXiq andwioe domly sample a complementary label Setwith sizes (i.e.,

ire P g IXxiq ' From their gradients, we can clearly pp¥q 1{ ksl ).
observe that 1, basically treats each example equally,
while L gxp andL oG give more weights to dif cult exam-
ples. Concretely, if ire, P [ |xiqis small, bothwgxp and

Approaches. We absorb ve ordinary complementary-
label learning approaches in the two wrappers (introduced



