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Abstract

Discrete choice models with unobserved hetero-
geneity are commonly used Econometric models
for dynamic Economic behavior which have been
adopted in practice to predict behavior of individ-
uals and firms from schooling and job choices to
strategic decisions in market competition. These
models feature optimizing agents who choose
among a finite set of options in a sequence of
periods and receive choice-specific payoffs that
depend on both variables that are observed by the
agent and recorded in the data and variables that
are only observed by the agent but not recorded
in the data. Existing work in Econometrics as-
sumes that optimizing agents are fully rational
and requires finding a functional fixed point to
find the optimal policy. We show that in an im-
portant class of discrete choice models the value
function is globally concave in the policy. That
means that simple algorithms that do not require
fixed point computation, such as the policy gra-
dient algorithm, globally converge to the optimal
policy. This finding can both be used to relax
behavioral assumption regarding the optimizing
agents and to facilitate Econometric analysis of
dynamic behavior. In particular, we demonstrate
significant computational advantages in using a
simple implementation policy gradient algorithm
over existing “nested fixed point” algorithms used
in Econometrics.
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1. Introduction
Dynamic discrete choice model with unobserved hetero-
geneity is, arguably, the most popular model that is currently
used for Econometric analysis of dynamic behavior of in-
dividuals and firms in Economics and Marketing (e.g. see
surveys in (Eckstein and Wolpin, 1989), (Dubé et al., 2002)
(Abbring and Heckman, 2007), (Aguirregabiria and Mira,
2010)). In this model, pioneered in Rust (1987), the agent
chooses between a discrete set of options in a sequence of
discrete time periods to maximize the expected cumulative
discounted payoff. The reward in each period is a function
of the state variable which follows a Markov process and is
observed in the data and also a function of an idiosyncratic
random variable that is only observed by the agent but is not
reported in the data. The unobserved idiosyncratic compo-
nent is designed to reflect heterogeneity of agents that may
value the same choice differently.

Despite significant empirical success in prediction of dy-
namic economic behavior under uncertainty, dynamic dis-
crete choice models frequently lead to seemingly unrealistic
optimization problems that economic agents need to solve.
For instance, (Hendel and Nevo, 2006a) features an elabo-
rate functional fixed point problem with constraints, which
is computationally intensive, especially in continuous state
spaces, for consumers to buy laundry detergent in the super-
market.

At the same time, rich literature on Markov Decision Pro-
cesses (cf. Sutton and Barto, 2018) have developed several
effective optimization algorithms, such as the policy gradi-
ent algorithm and its variants, that do not require solving for
a functional fixed point. The high-level takeaway message
“use police gradients” for dynamic discrete choice models
have been discussed in the machine learning community.
For example, Ermon et al. (2015) and Ho et al. (2016) justify
the advantage of policy gradient method by showing that
Dynamic Discrete Choice models are equivalent to Maxi-
mum Entropy IRL models under some conditions with an
algorithm close to policy gradient. However, the drawback
of the policy gradient and previous justification are that the
value function in a generic Markov Decision problem is
not concave in the policy. This means that gradient-based
algorithms have no guarantees for global convergence for
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a generic MDP. There is a recent trend which studies the
global convergence of the policy gradient algorithm under
different specific models and assumptions (e.g. Fazel et al.,
2018; Agarwal et al., 2019; Bhandari and Russo, 2019;
Wang et al., 2019; Jansch-Porto et al., 2020).

In this paper our main goal is to resolve the dichotomy in
empirical social science literature that the rationality of con-
sumers requires for them to be able to solve the functional
fixed point problem which is computationally intensive. Our
main theoretic contribution is the proof that, in the class of
dynamic discrete choice models with unobserved hetero-
geneity, under certain smoothness assumption, the value
function of the optimizing agent is globally concave in the
policy. This implies that a large set of policy gradient algo-
rithms that have a modest computational power requirement
for the optimizing agents have a fast convergence guarantee
in our considered class of dynamic discrete choice models.
The importance of this result is twofold.

First, it gives a promise that seemingly complicated dynamic
optimization problems faced by consumers can be solved
by relatively simple algorithms that do not require fixed
point computation or functional optimization. 1 This means
that the policy gradient-style methods have an important
behavioral interpretation. As a result, consumer behavior
following policy gradient can serve as a behavioral assump-
tion for estimating consumer preferences from data which
is more natural for consumer choice settings than other as-
sumptions that have been used in the past for estimation
of preferences (e.g. ε-regret learning in Nekipelov et al.,
2015).

Second, more importantly, our result showing fast conver-
gence of the policy gradient algorithm makes it an attractive
alternative to the search for the functional fixed point in this
class of problems. While the goal of the Econometric analy-
sis of the data from dynamically optimizing consumers is
to estimate consumer preferences by maximizing the likeli-
hood function, it requires to sequentially solve the dynamic
optimization problem for each value of utility parameters
along the parameter search path. Existing work in Eco-
nomics prescribes to use fixed point iterations for the value
function to solve the dynamic optimization problem (see
Rust, 1987; Aguirregabiria and Mira, 2007). The replace-
ment of the fixed point iterations with the policy gradient

1A conceptual advantage of policy gradient for problems stud-
ied in Econometrics can be thought of as follows. The literature of
Econometric models for dynamic Economic behavior considers the
optimization of individuals or small firms for whom the transfor-
mation probability in MDP is unknown and required learning. Due
to the uncertainty of transformation probability, the value function
iteration / policy iteration methods requires the construction of
empirical MDP (which might be impractical for individuals or
small firms), while the stochastic policy gradient does not require
estimation of such probability.

method significantly speeds up the maximization of the
likelihood function.

This makes the policy gradient algorithm our recommended
approach for use in Econometric analysis, and establishes
practical relevance of many newer reinforcement learning
algorithms from behavioral perspective for social sciences.

2. Preliminaries
In this section, we introduce the concepts of the Markov
decision process (MDP) with choice-specific payoff hetero-
geneity, the conditional choice probability (CCP) represen-
tation and the policy gradient algorithm.

2.1. Markov Decision Process

A discrete-time Markov decision process (MDP) with
choice-specific heterogeneity is defined as a 5-tuple
〈S,A, r, ε,P, β〉, where S is compact convex state space
with diam(S) ≤ S̄ < ∞, A is the set of actions, r :
S × A → R+ is the reward function, such that r(s, a) is
the immediate non-negative reward for the state-action pair
(s, a), ε are independent random variables, P is a Markov
transition model where where p(s′|s, a) defines the tran-
sition density between state s and s′ under action a, and
β ∈ [0, 1) is the discount factor for future payoff. We as-
sume that random variables ε are observed by the optimizing
agent and not recorded in the data. These variables reflect
idiosyncratic differences in preferences of different optimiz-
ing agents over choices. In the following discussion we
refer to these variables as “random choice-specific shocks.”

In each period t = 1, 2, . . . ,∞, the nature realizes the
current state st based on the Markov transition P given
the state-action pair (st−1, at−1) in the previous period
t− 1, and the choice-specific shocks εt = {εt,a}a∈A drawn
i.i.d. from distribution ε. The optimizing agent chooses
an action a ∈ A, and her current period payoff is sum of
the immediate reward and the choice-specific shock, i.e.,
r(s, a) + εt,a. Given initial state s1, the agent’s long-term
payoff is Eε1,s2,ε2,...

[∑∞
t=1 β

t−1r(st, at) + εt,at
]
. This ex-

pression makes it clear that random shocks ε play a cru-
cial role in this model by allowing us to define the ex ante
value function of the optimizing agent which reflects the
expected reward from agent’s choices before the agent ob-
serves realization of εt. When the distribution of shocks ε
is sufficiently smooth (differentiable), the corresponding ex
ante value function is smooth (differentiable) as well. This
allows us to characterize the impact of agent’s policy on the
expected value by considering functional derivatives of the
value function with respect to the policy.

In the remainder of the paper, we rely on the following
assumptions.
Assumption 2.1. The state space S is compact in R and
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the action space A is binary, i.e., A = {0, 1}.
Assumption 2.2. For all states s, the immediate reward
r(s, 0) for the state-action pair (s, 0) is zero i.e., r(s, 0) = 0,
and the immediate reward r(s, 1) for the state-action pair
(s, 1) is bounded between [Rmin, Rmax] where Rmin ≥ 0.

Assumption 2.3. Choice-specific shocks ε are Type I Ex-
treme Value random variables with location parameter 0 (cf.
Hotz and Miller, 1993) which are independent over choices
and time periods.

Assumption 2.1, 2.2, 2.3 are present in most of the papers
on dynamic decision-making in economics, marketing and
finance (e.g. Dubé et al., 2002; Aguirregabiria and Mira,
2010; Arcidiacono and Miller, 2011; Aguirregabiria and
Magesan, 2016; Müller and Reich, 2018). 2

The policy and the value function A stationary Markov
policy is a function σ : S × RA → A which maps the
current state s and choice-specific shock ε to an action. In
our further discussion we will show that there is a natural
more restricted definition of the set of all feasible policies
in this model.

Given any stationary Markov policy σ, the value function
Vσ : S → R is a mapping from the initial state to the
long-term payoff under policy σ, i.e.,

Vσ(s1) =

Eε1,s2,ε2,...

[ ∞∑
t=1

βt−1
{
r(st, σ(st, εt)) + εt,σ(st,εt)

}]
.

Since the reward is non-negative and bounded, and the dis-
count β ∈ [0, 1), value function Vσ is well-defined and
the optimal policy σ̃ (i.e., Vσ̃(s) ≥ Vσ(s) for all policies
σ and states s) exists. Furthermore, for all policies σ, the
following Bellman equation holds

Vσ(s) =

Eε
[
r(s, σ(s, ε)) + εσ(s,ε) + β Es′ [Vσ(s′)|s, σ(s, ε)]

] (1)

2.2. Conditional Choice Probability Representation

Based on the Bellman equation (1) evaluated at the optimal
policy, the optimal Conditional Choice Probability δ̃(a|s)
(i.e., the probability of choosing action a given state s in the
optimal policy σ̃) can be defined as

δ̃(a|s) = Eε[1{r(s, a) + εa + β Es′ [Vσ̃(s′)|s, a]

≥ r(s, a′) + εa′ + β Es′ [Vσ̃(s′)|s, a′] , ∀a′}]
2In this paper, we assume the immediate reward is lower

bounded by some non-negative value Rmin, which is necessary for
the characterization between the conditional choice probability δ
and threshold function π. To our knowledge, all empirical papers
in Economics and Marketing use dynamic discrete choice models
that satisfy this restriction.

where 1(E) is the indicator variable for event E . The optimal
policy σ̃ can, therefore, be equivalently characterized by
threshold function π̃(s, a) = r(s, a) + β Es′ [Vσ̃(s′)|s, a],
such that the optimizing agent chooses action a† which
maximizes the sum of the threshold and the choice-specific
shock, i.e., a† = argmaxa{π̃(s, a)+εa}. Similarly, all non-
optimal policies can be characterized by the corresponding
threshold functions denoted π.

Under Assumption 2.3 the conditional choice probability
δ can be explicitly expressed in terms of the respective
threshold π as (cf. Rust, 1996)

δ(a|s) = exp(π(s, a))

/(∑
a′∈A exp(π(s, a′))

)
.

We note that this expression induces a one-to-one mapping
from the thresholds to the conditional choice probabilities.
Therefore, all policies are fully characterized by their respec-
tive conditional choice probabilities. For notation simplicity,
since we consider the binary action space A = {0, 1}, and
the reward r(s, 0) is normalized to 0 we denote the imme-
diate reward r(s, 1) as r(s); denote the conditional choice
probability δ(0|s) as δ(s); and denote π(s, 1) as π(s).

In the subsequent discussion given that the characterization
of policy σ via its threshold is equivalent to its characteriza-
tion by conditional choice probability δ, we interchangeably
refer to δ as the “policy.” Then we rewrite the Bellman
equation for a given policy δ as

Vδ(s) =(1− δ(s)) r(s)− δ(s) log (δ(s))

− (1− δ(s)) log(1− δ(s))

+ β Eε,s′
[
Vδ(s

′)
∣∣∣s] (2)

Now we make two additional assumptions that are compat-
ible with standard assumptions in the Econometrics litera-
ture.

Assumption 2.4. For all states s ∈ S, the conditional
distribution of the next period Markov state p(·|s, 1) first-
order stochastically dominates distribution p(·|s, 0), i.e., for
all ŝ ∈ S, Prs′ [s′ ≤ ŝ|s, 1] ≤ Prs′ [s′ ≤ ŝ|s, 0].

Assumption 2.5. Under the optimal policy δ̃, the value
function is non-decreasing in states, i.e., Vδ̃(s) ≤ Vδ̃(s′) for
all s, s′ ∈ S s.t. s < s′.

Assumption 2.4 implies that taking one action results in next-
period state distribution that first order stochastic dominants
the next-period state distribution if the other action is taken.
This assumption would be satisfied in multiple economic
setting such as, for example: The bus engine replacement
studied in Rust (1987): Replacing the engine today implies
that it is less likely that by the end of tomorrow the bus
mileage will be close to the maximum (think of the state as
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the negative mileage). Choice about schooling studied in
Card (2001): Getting a college degree increases the prob-
ability of getting a higher salary. Behavior of consumers
making purchasing decisions with respect to storable goods
studied in Hendel and Nevo (2006b): Purchasing a good
today implies lower probability of having low inventories
(and possibly running out of) the good tomorrow. Assump-
tion 2.5 suggests monotonicity of preferences of the decision
maker over states. That is, higher values of the state are
associated with higher utility, which would be true in all of
the situations described in Assumption 2.4: the larger is the
difference between the maximum mileage and the current
mileage, the cheaper it is to maintain the bus; the larger the
salary/the higher the inventory, the better off the person is.

Consider a myopic policy δ̄(s) = (exp(r(s)) + 1)−1 which
uses threshold π̄(s) = r(s). This policy corresponds to
agent optimizing the immediate reward without considering
how current actions impact future rewards. Under Assump-
tion 2.4 and Assumption 2.5, the threshold for optimal policy
is at least the threshold of myopic policy, i.e., π̃(s) ≥ π̄(s).
Hence, Lemma 2.1 holds.

Lemma 2.1. The optimal policy δ̃ chooses action 0 with
weakly lower probability than the myopic policy δ̄ in all
states s ∈ S, i.e., δ̃(s) ≤ δ̄(s).

2.3. MDP in Economics and Policy Gradient

Our motivation in this paper comes from empirical work in
Economics and Marketing where optimizing agents are con-
sumers or small firms who make dynamic decisions while
observing the current state s and the reward r(s, a) for their
choice a. These agents often have limited computational
power making it difficult for them to solve the Bellman
equation to find the optimal policy. They also may have
only sample access to the distribution of Markov transition
which further complicates the computation of the optimal
policy. In this context we contrast the value function it-
eration method which is based on solving the fixed point
problem induced by the Bellman equation and the policy
gradient method.

Value function iteration In the value function iterations,
e.g., discussed in Jaksch et al. (2010); Haskell et al. (2016),
the exact expectation in the Bellman equation (1) is replaced
by an empirical estimate and then functional iteration uses
the empirical Bellman equation to find the fixed point, i.e.,
the optimal policy. Under certain assumptions on MDPs,
one can establish convergence guarantees for the value func-
tion iterations, e.g., Jaksch et al. (2010); Haskell et al. (2016).
However, to run these iterations may require significant com-
putation power which may not be practical when optimizing
agents are consumers or small firms.

Policy gradient In contrast to value function iterations,
policy gradient algorithm and its variations are model-free
sample-based methods. At a high level, policy gradient
parametrizes policies {δθ}θ∈Θ by θ ∈ Θ and computes the
gradient of the value function with respect to the current
policy δθ and updates the policy in the direction of the
gradient, i.e., θ ← θ + α∇θVδθ . Though the individuals
considered in the Economic MDP models may not compute
the exact gradient with respect to a policy due to having only
sample access to the Markov transition, previous work has
provided approaches to produce an unbiased estimator of
the gradient. For example, REINFORCE (Williams, 1992)
updates the policy by θ ← θ + αR∇θ log(δθ(a|s)) where
R is the long-term payoff on path. Notice that this updating
rule is simple comparing with value function iteration. The
caveat of the policy gradient approach is the lack of its
global convergence guarantee for a generic MDP. In this
paper we show that such guarantee can be provided for the
specific class of MDPs that we consider.

3. Warm-up: Local Concavity of the Value
Function at the Optimal Policy

To understand the convergence of the policy gradient, in this
section we introduce our main technique and show that the
concavity of the value function with respect to policies is
satisfied in a fixed neighborhood around the optimal policy.
We rely on the special structure of the value function induced
by random shocks ε which essentially “smooth it” making it
differentiable. We then use Bellman equation (2) to compute
strong Fréchet functional derivatives of the value functions
and argue that the respective second derivative is negative
at the optimal policy. We use this approach in Section 4 to
show the global concavity of the value function with respect
to policies.

By ∆ we denote the convex compact set that contains all con-
tinuous functions δ : S → [0, 1] such that 0 ≤ δ(·) ≤ δ̄(·).
The Bellman equation (2) defines the functional Vδ(·). Re-
call that Fréchet derivative of functional Vδ(·), which maps
bounded linear space ∆ into the space of all continuous
bounded functions of s, at a given δ(·) is a bounded lin-
ear functional DVδ(·) such that for all continuous h(·) with
‖h‖2 ≤ H̄: Vδ+h(·) − Vδ(·) = DVδ(·)h(·) + o(‖h‖2).
When functional DVδ(·) is also Fréchet differentiable, we
refer to its Fréchet derivative as the second Fréchet deriva-
tive of functional Vδ(·) and denote it D2Vδ(·).

Theorem 3.1. Value function Vδ is twice Freéchet differ-
entiable with respect to δ at the choice probability δ̃ cor-
responding to optimal policy and its Fréchet derivative is
negative at δ̃ in all states s, i.e., D2Vδ̃(s) ≤ 0.

We sketch the proof idea of Theorem 3.1 and defer its formal
proof to Supplementary Material. Start with the Bellman
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equation (2) of the value function, the Fréchet derivative
of the value function is the fixed point of the following
Bellman equation

DVδ(s) =(log(1− δ(s))− log(δ(s))− r(s))
+ β (Es′ [Vδ(s′)|s, 0]− Es′ [Vδ(s′)|s, 1])

+ β Eε,s′ [DVδ(s′)|s] ,
(3)

and

D2Vδ(s) =− 1

δ(s)(1− δ(s))
− 2βEs′ [DVδ(s′)|s, 1]

+ 2βEs′ [DVδ(s′)|s, 0]

+ β Es′
[
D2Vδ(s

′)|s
]
.

(4)

A necessary condition for its optimum yielding δ̃ is
DVδ̃(s) = 0 for all states s. As a result, equation (4) implies
that its second Fréchet derivative is negative for all states,
i.e.,D2Vδ̃(s) ≤ 0.

The Bellman equation (4) of the second Fréchet derivative
suggests that D2Vδ(s) ≤ 0 for all states s if

2β(Es′ [DVδ(s′)|s, 0]− Es′ [DVδ(s′)|s, 1])

≤ 1

δ(s)(1− δ(s))
(5)

The first term in the inequality (5) is always positive for all
policies in ∆, but the second term can be arbitrary small.
In the next section, we will introduce a nature smoothness
assumption on MDP (i.e., Lipschitz MDP) and show that the
local concavity can be extended to global concavity, which
implies that the policy gradient algorithm for our problem
converges globally under this assumption.

4. Global Concavity of the Value Function
In this section, we introduce the notion of the Lipschitz
Markov decision process, and Lipschitz policy space. We
then restrict our attention to this subclass of MDPs. Our
main result shows the optimal policy belongs to the Lips-
chitz policy space and the policy gradient globally converges
in that space. We defer all the proofs of the results in this
section to Supplementary Material.

4.1. Lipschitz Markov Decision Process

Lipschitz Markov decision process has the property that for
two state-action pairs that are close with respect to Euclidean
metric in S , their immediate rewards r and Markovian tran-
sition P should be close with respect to the Kantorovich or
L1-Wasserstein metric. Kantorovich metric is, arguable, the
most common metric used used in the analysis of MDPs (cf.

Hinderer, 2005; Rachelson and Lagoudakis, 2010; Pirotta
et al., 2015).

Definition 4.1 (Kantorovich metric). For any two proba-
bility measures p, q, the Kantorovich metric between them
is

K(p, q) =

sup
f

{∣∣∣∣∫
X

fd(p− q)
∣∣∣∣ : f is 1-Lipschitz continuous

}
.

Definition 4.2 (Lipschitz MDP). A Markov decision pro-
cess is (Lr, Lp)-Lipschitz if

∀s, s′ ∈ S |r(s)− r(s′)| ≤ Lr |s− s′|
∀s, s′ ∈ S, a, a′ ∈ A

K(p(·|s, a), p(·|s′, a′)) ≤ Lp (|s− s′|+ |a− a′|)

4.2. Characterization of the Optimal Policy

Our result in Section 3, demonstrates that the second Fréchet
derivative of Vδ with respect to δ is negative for a given pol-
icy δ when inequality (5) holds. To bound the second term of
(5) from below, i.e., Es′ [DVδ(s′)|s, 0]− Es′ [DVδ(s′)|s, 1],
it is sufficient to show that Fréchet derivative DVδ(·) is
Lipschitz-continuous. Even though we already assume that
the Markov transition is Lipschitz, it is still possible that
DVδ is not Lipschitz: Bellman equation (3) for DVδ de-
pends on policy δ(s) via log(1− δ(s))− log(δ(s)), which
can be non-Lipschitz in state s for general policies δ. There-
fore, to guarantee Lipschitzness of the Fréchet derivative
of the value function it is necessary to restrict attention to
the space of Lipschitz policies. In this subsection, we show
that this restriction is meaningful since the optimal policy is
Lipschitz.

Theorem 4.1. Given (Lr, Lp)-Lipschitz MDP, the optimal
policy δ̃ satisfies∣∣∣∣∣log

(
1− δ̃(s)
δ̃(s)

)
− log

(
1− δ̃(s†)
δ̃(s†)

)∣∣∣∣∣
≤
(
Lr +

2βRmaxLp
1− β

) ∣∣s− s†∣∣
for all state s, s† ∈ S where Rmax = maxs∈S r(s) is the
maximum of the immediate reward r over S.

4.3. Concavity of the Value Function with respect to
Lipschitz Policies

In this subsection, we present our main result showing the
global concavity of the value function for our specific class
of Lipschitz MDPs with unobserved heterogeneity over the
space of Lipschitz policies.

Definition 4.3. Given (Lr, Lp)-Lipschitz MDP, define its
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Lipschitz policy space ∆ as

∆ = {δ :δ(s) ≤ δ̄(s) ∀s ∈ S and∣∣∣∣log

(
1− δ(s)
δ(s)

)
− log

(
1− δ(s†)
δ(s†)

)∣∣∣∣
≤
(
Lr +

2βRmaxLp
1− β

) ∣∣s− s†∣∣ ∀s, s† ∈ S} ,
where δ̄ is the myopic policy.

Theorem 4.1 and Lemma 2.1 imply that the optimal policy δ̃
lies in this Lipschitz policy space ∆ for any Lipschitz MDP.
Definition 4.4 (Condition for global convergence). We say
that (Lr, Lp)-Lipschitz MDP satisfies the sufficient condi-
tion for global convergence if

2βLp
1− 2βLp

(
2Lr +

4βRmaxLp
1− β

)
≤
(

exp(Rmin) + 1
)2

exp(Rmin)
and 2βLp < 1.

(6)

Definition 4.4 is a general theoretical condition for the
global convergence for dynamic discrete choice model un-
der unobserved heterogeneity. It mainly characterize the
relation between the Lipschitz-smoothness, range of reward
and the upper bound of discount factor. For a specific MDP
(i.e., Rust model studied in experiment section), directly us-
ing Definition 4.4 will ensure the convergence for discount
factor less than 0.5 without any additional restrictions on the
utility model. However, the guarantee can improved with
some additional knowledge of the structure of the model,
or the optimal policy. In experiment section (Section 5),
since the optimal policy in Rust model is monotone, by fur-
ther restricting to policy space of all monotone policies, our
experiment suggests that the convergence happen even for
discount factor equal 0.9 or 0.99.

With the condition for global convergence (Definition 4.4),
we develop the main result in our paper.
Theorem 4.2. Given (Lr, Lp)-Lipschitz MDP which satis-
fies the condition for global convergence (6), value function
Vδ is concave with respect to policy δ in the Lipschitz policy
space ∆, i.e., D2Vδ(s) ≤ 0 for all s ∈ S, δ ∈ ∆.

The main technique used in the proof of Theorem 4.2 is
to develop an Lipschitz smoothness bound on the Fréchet
derivative of the respective value function DVδ(·) by intro-
ducing a contracting mapping and applying the fixed point
theorem on it. We defer its formal proof to Supplementary
Material.

4.4. The Rate of Global Convergence of the Policy
Gradient Algorithm

In this subsection, we establish the rate of global conver-
gence a simple version of the policy gradient algorithm

assuming oracle access to the Fréchet derivative of the value
function. While this analysis provides only a theoretical
guarantee, as discussed in Section 2.3, in practice the in-
dividuals are able to produce an unbiased estimator of the
exact gradient. As a result, the practical application of the
policy gradient algorithm would only need to adjust for the
impact of stochastic noise in the estimator.

Since we assume that individuals know the immediate re-
ward function r, the algorithm can be initialized at the my-
opic policy δ̄ with threshold π̄(s) = r(s), which is in the
Lipschitz policy space ∆. From Lemma 2.1 it follows that
the myopic policy is pointwise in S greater than the optimal
policy, i.e., δ̄(s) ≤ δ̃(s). Consider policy δ with threshold
π(s) = r(s) + β

1−βRmax − β
2Rmin. Note that Bellman

equation (2) implies that V (s) is between Rmin

2 and Rmax

1−β
for all states s. Thus, policy δ pointwise bounds the optimal
policy δ̃ from below, i.e., δ(s) ≤ δ̃(s). Our convergence
rate result applies to the policy gradient within the bounded
Lipschitz policy set ∆̂.
Definition 4.5. Given (Lr, Lp)-Lipschitz MDP, define its
bounded Lipschitz policy space ∆̂ as

∆̂ = {δ :δ(s) ≤ δ(s) ≤ δ̄(s) ∀s ∈ S and∣∣∣∣log

(
1− δ(s)
δ(s)

)
− log

(
1− δ(s†)
δ(s†)

)∣∣∣∣
≤
(
Lr +

2βRmaxLp
1− β

) ∣∣s− s†∣∣ ∀s, s† ∈ S} .
For simplicity of notation, we introduce constants m and M
which only depend on β, Rmin, Rmax, Lr and Lp, whose
exact expressions are deferred to the supplementary material
for this paper.
Theorem 4.3. Given a (Lr, Lp)-Lipschitz MDP, which sat-
isfies the condition for global convergence (6) and constants
m and M defined above, for any step size α ≤ 1

M , the pol-
icy gradient initialized at the myopic policy δ̄ and updating
as δ ← α∇δVδ in the bounded Lipschitz policy space ∆̂
after k iterations, it produces policy δ(k) satisfying

Vδ̃(s)− Vδ(k)(s) ≤
(1− αm)k

(exp(Rmin) + 1)
2 at all s ∈ S.

Our analysis follows the standard steps establishing conver-
gence of the conventional gradient descent algorithm which
bounds the second Fréchet derivative of the value function
Vδ with respect to the policy δ from above and from below
by m and M respectively. The formal proof is deferred to
Supplementary Material.

5. Empirical Application
To demonstrate the performance of the algorithm, we use
the data from Rust (1987) which made the standard bench-
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mark for the Econometric analysis of MDPs. Even most re-
cent Econometric papers on single-agent dynamic decision-
making use this setup to showcase their results (e.g. Arcidi-
acono and Miller, 2011; Aguirregabiria and Magesan, 2016;
Müller and Reich, 2018).

The paper estimates the cost associated with maintaining and
replacing bus engines using data from maintenance records
from Madison Metropolitan Bus City Company over the
course of 10 years (December, 1974—May, 1985). The data
contains monthly observations on the mileage of each bus
as well as the dates of major maintenance events (such as
bus engine replacement).

Rust (1987) assumes that the engine replacement decisions
follow an optimal stopping policy derived from solving a
dynamic discrete choice model of the type that we described
earlier. Using this assumption and the data, he estimates the
cost of operating a bus as a function of the running mileage
as well as the cost of replacing the bus engine. We use his
estimates of the parameters of the return function and the
state transition probabilities (bus mileage) to demonstrate
convergence of the gradient descent algorithm.

In (Rust, 1987) the state st is the running total mileage of
the bus accumulated by the end of period t. The immediate
reward is specified as a function of the running mileage as:

r(st, a, θ1) =

{
−RC + εt1, if a = 1

−c(st, θ1) + εt0, if a = 0

where RC is the cost of replacing the engine, c(st, θ1) is the
cost of operating a bus that has st miles.3

Following Rust (1987), we take c(st, θ1) = θ1st. Further, as
in the original paper, we discretize the mileage taking values
into an even grid of 2,571 intervals. Given the observed
monthly mileage, (Rust, 1987) assumes that transitions on
the grid can only be of increments 0, 1, 2, 3 and 4. Therefore,
transition process for discretized mileage is fully specified
by just four parameters θ2j = Pr[st+1 = st + j|st, a = 0],
j = 0, 1, 2, 3. Table 1 describes parameter values that we
use directly from Rust (1987).

We use the gradient descent algorithm to update the policy
threshold π : ε1 + π ≥ ε0 ⇒ a = 1, where a = 1 denotes
the decision to replace the engine. We set the learning rate
using the RMSprop method4.

3Although at first glance the setup in (Rust, 1987) does not
directly correspond to the model described in the theoretical section
of the paper (which is a more classic presentation for the models if
this type in the Economics literature), it can be recast in a way so
that the two models were aligned. The reason we did not do that is
that we wanted to preserve the original notation of Rust’s paper.

4We use standard parameter values for RMSProp method: β =
0.1, ν = 0.001 and ε = 10−8. The performance of the the
method was very similar to that when we used ADAM to update
the threshold values.

Table 1. parameter values in from Rust (1987).

Parameter Value

RC 11.7257
θ1 0.001× 2.45569

(θ20, θ21, θ22, θ23) (0.0937, 0.4475, 0.4459, 0.0127)
β 0.99

We use “the lazy projection” method to guarantee the
search over Lipschitz policy space. The policy space is
parametrized by the vector of thresholds (π1, . . . , πN ) cor-
responding to discretized state space (s1, . . . , sN ). It is ini-
tialized at the myopic policy, i.e. π(0)

1 = u(s1), . . . , π
(0)
N =

u(sN ). At step k the algorithm updates the thresholds to
the value π(k∗)

i = π
(k−1)
i − αDδ(k−1)V (si)L(π

(k−1)
i )(1−

L(π
(k−1)
i )), where L(·) is the logistic function and pol-

icy δ
(k)
j = L(π

(k−1)
j ) for i, j = 1, . . . , N. To make

the“lazy projection” updated values π(k∗)
i are adjusted to

the closest monotone set of values π(k)
1 ≤ π

(k)
2 ≤ . . . ≤

π
(k)
N . The algorithm terminates at step k where the norm

maxi |DVδ(k)(si)| ≤ τ for a given tolerance τ .5 The formal
definition of lazy projection is Algorithm 1.

Algorithm 1 “Lazy projection”, (π1, . . . , πN ): thresholds
corresponding to discretized STATE space (s1, . . . , sN );
L(·): logistic function; policy δj = L(πj); α: step size; τ :
termination tolerance

1: π(0)
1 ← u(s1), . . . , π

(0)
N ← u(sN ) // Initialize π(0) at

the myopic policy
2: while maxi |DVδ(k)(si)| ≤ τ do
3: π

(k∗)
i ← π

(k−1)
i − αDδ(k−1)Vδ(k−1)(si) L(π

(k−1)
i )

(1− L(π
(k−1)
i )) for all i ∈ [N ]

4: (π
(k)
1 , . . . , π

(k)
N )← the closest monotone thresholds

of (π
(k∗)
1 , . . . , π

(k∗)
N ) // Lazy projection

5: end while
6: return (π

(k)
1 , . . . , π

(k)
N )

Figure 1 demonstrates convergence properties of our con-
sidered version of the policy gradient algorithm. We used
the “oracle” versions of the gradient and the value function
that were obtained by solving the corresponding Bellman
equations. We initialized the algorithm using the myopic
threshold π̄(s) = −RC + c(s, θ1); with the convergence

5To optimize the performance of the method it is also pos-
sible to consider a mixed norm of the form maxi |π(k)(si) −
π(k−1)(si)| + λmaxi |DVδ(k)(si)|∞ ≤ τ for some calibrated
weight λ. This choice would control both the rate of decay of the
gradient and the advancement of the algorithm in adjusting the
thresholds.
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criterion set to be based on the value maxi |DVδ(si)|6.

In the original model in (Rust, 1987), the discount factor
used when estimating parameters of the cost function was
very close to 1. However, performance of the algorithm
improves drastically when the discount factor is reduced.
This feature is closely related to the Hadamard stability
of the solution of the Bellman equation (e.g. observed in
Bajari et al., 2013) and is not algorithm-specific. In all of
the follow-up analysis by the same author (e.g. Rust, 1996)
the discount factor is set to more moderate values of .99
or .9 indicating that these performance issues were indeed
observed with the settings in (Rust, 1987). Figure 1 (resp.
Figure 3) illustrate the performance of the algorithm for the
case where the discount factor is set to 0.99 (resp. 0.9). 7.
For the same convergence criterion, the algorithm converges
much faster.
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