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Appendix

A. Useful Definitions and Inequalities
Definition A.1 (σ-sub-Gaussian). A random variableX ∈ R is said to be sub-Gaussian with variance proxy σ2 if E [X] = µ
and satisfies,

E [exp(s(X − µ))] ≤ exp

(
σ2s2

2

)
,∀s ∈ R

Note the distribution defined on [0, 1] is a special case of 1/2-sub-Gaussian.
Fact A.2. Let X1, X2, · · · , Xn i.i.d drawn from a σ-sub-Gaussian, X = 1

n

∑n
i=1Xi and E[X] be the mean, then

P
(
X − E[X] ≥ a

)
≤ e−na

2/2σ2

and P
(
X − E[X] ≤ −a

)
≤ e−na

2/2σ2

Fact A.3 (Harmonic Sequence Bound). For t2 > t1 ≥ 2, we have

ln
t2
t1
≤

t2∑
t=t1

1

t
≤ ln

(
t2

t1 − 1

)
Fact A.4. For a Gaussian distributed random variable Z with mean µ and variance σ2, for any z,

P (|Z − µ| > zσ) ≤ 1

2
e−z

2/2

Lemma A.5 (Theorem 3 in (Auer et al., 2002a)). In ε-Greedy, for any arm k ∈ [K], t > K, n ∈ N+, we have

P
(
µ̂k(t− 1) ≤ µk −

∆k

n

)
≤ xt · e−xt/5 +

2σ2n2

∆2
k

e−∆2
kbxtc/2σ

2n2

, and

P
(
µ̂i∗(t− 1) ≥ µi∗ +

∆k

n

)
≤ xt · e−xt/5 +

2σ2n2

∆2
k

e−∆2
kbxtc/2σ

2n2

,

where xt = 1
2K

∑t
s=K+1 εs.

B. Ommited Proofs in Section 3
B.1. Proof of Lemma 3.2

Proof. Let Ci(T ) = max
{

81σ2 lnT
∆2
i

, 3Bi
∆i

}
. By Fact A.2, we have for any s ≥ 1 and ` ≥ Ci(T )

∀k, P

(
µk − µ̂k(t− 1) ≥ 3σ

√
lnT

nk(t− 1)

∣∣∣nk(t− 1) = s

)
≤ 1

T 9/2

P
(
µ̂i(t− 1)− µi ≥

∆i

3

∣∣∣ni(t− 1) = `

)
≤ 1

T 9/2

(7)

We first decompose E[ni(T )] as follows,

E [ni(T )] ≤ 1 + E

[
T∑

t=K+1

I{It = i, ni(t− 1) ≤ Ci(T )}

]
+ E

[
T∑

t=K+1

I{It = i, ni(t− 1) ≥ Ci(T )}

]

≤ 1 + Ci(T ) + E

[
T∑

t=K+1

I{It = i, ni(t− 1) ≥ Ci(T )}

]

≤ 1 + Ci(T ) +

T∑
t=K+1

P

(
UCBi(t) +

β
(i)
t−1

ni(t− 1)
≥ UCBi∗(t), ni(t− 1) ≥ Ci(T )

)
(8)
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We then bound the probability P
(

UCBi(t) +
β
(i)
t−1

ni(t−1) ≥ UCBi∗(t), ni(t− 1) ≥ Ci(T )

)
by union bound, and decompose

this probability term as follows,

P

(
UCBi(t) +

β
(i)
t−1

ni(t− 1)
≥ UCBi∗(t), ni(t− 1) ≥ Ci(T )

)

≤
t−1∑
s=1

t−1∑
`≥Ci(T )

P

(
UCBi(t) +

β
(i)
t−1

ni(t− 1)
≥ UCBi∗(t)

∣∣∣ni(t− 1) = `, ni∗(t− 1) = s

)
.

(9)

What remains is to upper bound the summand in the above term. Consider for 1 ≤ s ≤ t− 1 and Ci(T ) ≤ ` ≤ t− 1, we
have

P

(
UCBi(t) +

β
(i)
t−1

ni(t− 1)
≥ UCBi∗(t)

∣∣∣ni(t− 1) = `, ni∗(t− 1) = s

)

≤ P

(
µ̂i(t− 1) + 3σ

√
lnT

ni(t− 1)
+

∆i

3
≥ µ̂i∗(t− 1) + 3σ

√
lnT

ni∗(t− 1)

∣∣∣ni(t− 1) = `, ni∗(t− 1) = s

)

≤ P

(
µ̂i(t− 1) +

∆i

3
+

∆i

3
≥ µ̂i∗(t− 1) + 3σ

√
lnT

ni∗(t− 1)

∣∣∣∣∣ni(t− 1) = `, ni∗(t− 1) = s

)

The first inequality relies on the fact that ` ≥ Ci(T ) ≥ 3Bi
∆i
≥ 3β

(i)
t−1

∆i
and second inequality holds because ` ≥ Ci(T ) ≥

81σ2 lnT
∆2
i

. By union bound and Equation (7), we can further upper bound the last term in the above inequality by

P
(
µ̂i(t− 1)− µi ≥

∆i

3

∣∣∣ni(t− 1) = `

)
+ P

(
µi∗ − µ̂i∗(t− 1) ≥ 3σ

√
lnT

ni∗(t− 1)

∣∣∣ni∗(t− 1) = s

)

≤ 1

T 9/2
+

1

T 9/2
≤ 2

T 9/2

Combining Equations (8) and the fact that

T∑
t=K+1

t−1∑
s=1

t−1∑
`≥Ci(T )

2

tT/2
≤

T∑
t=K+1

2

T 2
≤ 2,

we complete the proof.

B.2. Proof of Theorem 3.3

We begin with a few notations. Let ISt denote the arm being pulled at time t for any investment strategy S, and ZSt =
{IS1 , · · · , ISt } denote the sequence of arms being pulled up to time t. Note that ZSt = {IS1 , · · · , ISt } can be viewed as a
stochastic process for any t. Let S(−i) denote the investment strategies of all arms excluding arm i. In addition, we denote
by (LSI, S(−i)) the strategy that arm i uses LSI strategy and the other arms adopt S(−i). For each arm j 6= i, S(j) only
depends on its own history, which means given fixed strategies S(−i), at any time t, each of the arms j 6= i will invest the
same budget if it has been pulled the same times and the true rewards are the same up to time t.

Our proof of Theorem 3.3 relies on a carefully chosen coupling of the two stochastic processes ZS1

T , ZS2

T induced by
different investment strategies S1, S2, respectively.

Definition B.1 (Arm Coupling). Given any two investment strategies S1, S2, the Arm Coupling of ZS1

T and ZS2

T is a
coupling of these two stochastic processes such that the reward of any arm k ∈ [K] when pulled for the same times is the
same in these two random processes. In this case, we also say ZS1

T = {IS1
1 , · · · , IS1

T } and ZS2

T = {IS2
1 , · · · , IS2

T } are
Arm-Coupled.
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Our goal is to compare
(
LSI, S(−i)) and any other strategy S = (S(i), S(−i)) for arm i, using Arm Coupling. In the

remainder of this proof we will always fix all other arms’ manipulation strategy S(−i). Thus for convenience we simply omit
S(−i) in the superscript and use ZLSI

t and ZS
(i)

t to denote the two stochastic sequences of our interests. Let ZLSI
t:t′ denote the

stochastic process from time t to time t′ under
(
LSI, S(−i)) manipulation, and similarly for ZS

(i)

t:t′ . Similar notations and
simplifications are used for ni. We first show LSI is the dominant strategy for the arm when principal runs UCB algorithm,
given any history ht−1. Hence LSI is a dominant-strategy SPE.

The following lemma shows an interesting property about the two arm sequences ZLSI
t and any ZS

(i)

t pulled under these two
different investment strategies. That is, under Arm Coupling, all the arms — except for the special arm i — will be pulled
according to the same order after time t, given any history ht−1.

Lemma B.2. Suppose t ≥ K and the principal runs UCB algorithm. Let ZLSI
t:t′ (−i) [resp. ZS

(i)

t:t′ (−i)] denote the
subsequence of ZLSI

t:t′ [resp. ZS
(i)

t:t′ ] after deleting all i’s in the sequence. Then given any history ht−1 and time t, under Arm
Coupling, either ZLSI

t:t′ (−i) is a subsequence of ZS
(i)

t:t′ (−i) or vice versa.

Proof. We prove by induction on t′. When t′ = t, if I(LSI,S(−i))
t or ISt is i, the conclusion holds trivially. If ISt = k 6= i,

then k is the largest UCB term. Since the history ht−1 is fixed, UCB terms of each arm must be the same, thus, if ISt = k,
then ILSIt = k, as desired.

Now, assume the lemma holds for some t′(> t), and we now consider the case t′ + 1. This follows a case analysis.

If nLSIi (t : t′) = nS
(i)

i (t : t′), then we know that ZLSI
t:t′ (−i) and ZS

(i)

t:t′ (−i) have the same length. Since one of them is a
subsequence of the other by induction hypothesis, this implies that they are the same sequence. If one of ILSIt′+1, I

S(i)

t′+1 equals
i, say, e.g., ILSIt′+1 = i, then ZLSI

t:t′+1(−i) = ZLSI
t:t′ (−i) = ZS

(i)

t:t′ (−i) which is a subsequence of ZS
(i)

t:t′+1(−i), as desired. If
both ILSIt′+1, I

S(i)

t′+1 are not equal to i, then we claim that they must be the same arm. This is because they are the arm with
the highest UCB index after round t. Since ZLSI

t:t′ (−i) and ZS
(i)

t:t′ (−i) are the same sequence of arms, each arms are pulled
by exactly the same time in both stochastic processes from 0 to t′, given the fixed history ht−1. Moreover, due to Arm
Coupling, their rewards are also the same. Given the fixed strategies of the other arms S(−i), their manipulations will
also be the same. Therefore, the arm with the highest modified UCB terms must also be the same. Therefore, we have
ZLSI
t:t′+1(−i) = ZS

(i)

t:t′+1(−i), as desired.

If nLSIi (t : t′) > nS
(i)

i (t : t′), then we know that ZLSI
t:t′ (−i) is a strict subsequence of ZS

(i)

t:t′ (−i). Let l = |ZLSI
t:t′ (−i)| denote

the length of ZLSI
t:t′ (−i), and k̃ denote the (l + 1)th element in ZS

(i)

t:t′ (−i). We claim that ILSIt′+1 must be either i or k̃, which
implies ZLSI

t:t′+1(−i) is a subsequence of ZS
(i)

t:t′+1(−i) as desired. In particular, if ILSIt′+1 6= i, then the fact that k̃ is the (l+ 1)th
element in ZS

(i)

t:t′ (−i) implies that k̃ has the highest modified UCB term among all arms in [K] \ {i} when these arms are
pulled according to sequence ZS

(i)

t . Following the same argument above and Arm Coupling, we know that ILSIt′+1, the arm
with the highest modified UCB term, must equal k̃ if it does not equal i.

The case of nLSIi (t : t′) < nS
(i)

i (t : t′) can be argued similarly. This concludes the proof of the lemma.

The following lemma shows that under Arm Coupling, the number of times that arm i is pulled up to time T under strategy
LSI is always at least that under any other investment strategy S(i).

Lemma B.3. When the principal runs UCB algorithm, under Arm Coupling, given any history ht−1 and time t, we have
nLSIi (t : T ) ≥ nS(i)

i (t : T ) with probability 1 for any investment strategy S and T ≥ t ≥ K.

Proof. We still prove through induction. Given any fixed t ≥ K and history ht−1, for T = t, it holds trivially since if
IS

(i)

t = i then ILSIt must be i. We assume this lemma is true for t′ = T − 1 > t. For t′ = T , we consider the following two
cases.

(1) If nLSIi (t : T − 1) > nS
(i)

i (t : T − 1), then nLSIi (t : T ) ≥ nLSIi (t : T − 1) ≥ nS
(i)

i (t : T − 1) + 1 ≥ nS
(i)

i (t : T ), as
desired.
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(2) If nLSIi (t : T − 1) = nS
(i)

i (t : T − 1), then Lemma B.2 implies that ZLSI
t:T−1 and ZS

(i)

t:T−1 are the same sequence.
Therefore, the UCB term for each arm k ∈ [K] (excluding arm i) for LSI and S(i) are the same at time T . For arm i,
we have

ÛCB
(LSI,S(−i))

i (T ) = UCB
(LSI,S(−i))
i (T ) +

Bi

n
(LSI,S(−i))
i (T − 1)

= UCBSi (T ) +
Bi

nSi (T − 1)

≥ UCBSi (T ) +
β

(i)
T−1

nSi (T − 1)
= ÛCB

S

i (T ),

This implies that if IST = i, then we must also have I(LSI,S(−i))
T = i. Then n(LSI,S(−i))

i (T ) ≥ nSi (T ) still holds.

To sum up, n(LSI,S(−i))
i (t : T ) ≥ nSi (t : T ) holds with probability 1, concluding the proof.

B.3. Proof of Theorem 3.4

We show the lower bound of the regret by deriving the upper bound of the expected number of times that arm i∗ being
pulled, which is summarized in Lemma B.4. Given Lemma B.4 and Eq. (3), it is straightforward to conclude Theorem 3.4
for UCB principal.
Lemma B.4. Suppose each strategic arm i(i 6= i∗) uses LSI and ∆ = mini 6=i∗ ∆i, the expected number of times that
optimal arm i∗ being pulled up to time T is bounded by,

E [ni∗(T )] ≤ T −
∑
i6=i∗

Bi
2∆i

+O
(

lnT

∆2

)

Proof. Let ∆ = mini 6=i∗ ∆i, C(T ) = 36σ2 lnT
∆2 , Di = Bi

2∆i
. First, by Fact A.2, we have for any ` ≥ C(T ), s ≥ 1 and any i,

P

(
µi − µ̂i(t− 1) ≥ 3σ

√
lnT

ni(t− 1)

∣∣∣ni(t− 1) = s

)
≤ 1

T 9/2

P
(
µ̂i∗(t− 1)− µi∗ ≥

∆i

2

∣∣∣ni∗(t− 1) = `

)
≤ exp

(
−`∆

2
i

8σ2

)
≤ exp

(
−C(T )∆2

i

8σ2

)
≤ 1

T 9/2

(10)

First, we decompose E [ni∗(T )] as follows,

E [ni∗(T )] ≤ 1 + E

[
T∑

t=K+1

I{It = i∗, ni∗(t− 1) ≤ C(T )}

]
+ E

[
T∑

t=K+1

I{It = i∗, ni∗(t− 1) ≥ C(T )}

]

≤ 1 + E

[
T∑

t=K+1

I{It = i∗, ni∗(t− 1) ≤ C(T )}

]

+ E

[
T∑

t=K+1

I{It = i∗, ni∗(t− 1) ≥ C(T ),∀i 6= i∗, ni(t− 1) ≥ Di}

]

+ E

[
T∑

t=K+1

I (It = i∗, ni∗(t− 1) ≥ C(T ),∃i 6= i∗, ni(t− 1) ≤ Di)

]
(11)

For the first term in the above decomposition, it can be trivially bounded by C(T ). For the second term, since ni∗(t) ≤
T −

∑
i6=i∗ ni(t),∀t, we have

E

[
T∑

t=K+1

I{It = i∗, ni∗(t− 1) ≥ C(T ),∀i 6= i∗, ni(t− 1) ≥ Di}

]

≤ E

 T∑
t=K+1

I{It = i∗, ni∗(t− 1) ≤ T −
∑
i6=i∗

Di}

 ≤ T −∑
i 6=i∗

Bi
2∆i
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What remains is to bound the third term in Equations (11). By union bound, we have

E

[
T∑

t=K+1

I (It = i∗, ni∗(t− 1) ≥ C(T ),∃i 6= i∗, ni(t− 1) ≤ Di)

]

=
∑
i 6=i∗

T∑
t=K+1

P (It = i∗, ni∗(t− 1) ≥ C(T ), ni(t− 1) ≤ Di)

Note It = i∗ implies UCBi∗(t) ≥ ÛCBi(t), combining the facts that 3σ
√

lnT
ni∗ (t−1) ≤ ∆/2 and Bi

ni(t−1) ≥ 2∆i and
standard union bound, we have

P (It = i∗, ni∗(t− 1) ≥ C(T ), ni(t− 1) ≤ Di)

≤
Di∧t−1∑
s=1

t−1∑
`≥C(T )

P

(
µ̂i∗(t− 1) + 3σ

√
lnT

ni∗(t− 1)
≥ UCBi(t) +

Bi
ni(t− 1)

∣∣∣ni∗(t− 1) = `, ni(t− 1) = s

)

≤
Di∧t−1∑
s=1

t−1∑
`≥C(T )

P

(
µ̂i∗(t− 1) +

∆i

2
≥ µ̂i(t− 1) + 3σ

√
lnT

ni(t− 1)
+ 2∆i,

∣∣∣ni∗(t− 1) = `, ni(t− 1) = s

)

≤
Di∧t−1∑
s=1

t−1∑
`≥C(T )

P
(
µ̂i∗(t− 1)− µi∗ ≥

∆i

2

∣∣∣ni∗(t− 1) = `

)
+ P

(
µi − µ̂i(t− 1) ≥ 3σ

√
lnT

ni(t− 1)

∣∣∣ni(t− 1) = s

)
(12)

The last inequality is based on union bound, if both µ̂i∗(t− 1)−µi∗ < ∆/2 and µi− µ̂i(t− 1) < 3σ
√

lnT
ni(t−1) hold when

ni∗(t− 1) = `, ni(t− 1) = s, then

µ̂i∗(t− 1) +
∆i

2
< µi∗ +

∆

2
+

∆i

2
≤ µi + ∆i + ∆i

< µ̂i(t− 1) + 3σ

√
lnT

ni(t− 1)
+ 2∆i

Given Equation (10), we have

P (It = i∗, ni∗(t− 1) ≥ C(T ), ni(t− 1) ≤ Di) ≤
t−1∑
s=1

t−1∑
`=1

2

T 9/2
≤ 2

T 2

Combining Equation (11), we get

E [ni∗(T )] ≤ 1 + C(T ) + T −
∑
i 6=i∗

Bi
2∆i

+
∑
i 6=i∗

T∑
t=K+1

2

T 2

= T +
36σ2 lnT

∆2 −
∑
i6=i∗

Bi
2∆i

+ 1 +
2(K − 1)

T

Combining Lemma B.4 and Eq/ 3, we complete the proof for Theorem 3.4.

B.4. Proof of Theorem 3.5

To prove Theorem 3.5, we first show the following Lemma.
Lemma B.5. Suppose all the strategic arms use LSIBR, and let time step n be the last time that a strategic arm spend
budget for some n ≤ T . Then for the three algorithms we consider (UCB, ε-Greedy and TS), the expected number of plays
of the optimal arm i∗ from time n+ 1 to T is bounded by,

E

[
T∑

t=n+1

I
{
It = i∗

}]
≤ E

[
nLSIi∗ (T )

]
= T −

∑
i6=i∗

Bi
2∆i

+O
(

lnT

∆2

)
.
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Proof. The proof follows a simple reduction to the setting with arms using LSI. By using LSIBR, any strategic arm i has no
budget to manipulate after (includes) time step n+ 1, which is analogous to the case that arm i has no budget to manipulate
after time K + 1 using LSI in unbounded reward setting. Then after time n+ 1, the µ̃i(t− 1) = µ̂i(t− 1) + Bi

ni(t−1) ,∀ ∈
[K], which shares the same formula with it in LSI setting. Finally, we notice that the proofs of the upper bounds of
E
[∑T

t=K+1 I{It = i∗}
]

in LSI settings (Lemma B.4, C.6 and Theorem C.7) don’t depend on the starting time step in the
summand. Therefore, the proofs in these previous results can be directly applied here.

Next, we prove Theorem 3.5 using the above Lemma.

Proof of Theorem 3.5. Let n be the last time step that any arm can spend the budget. First we show the upper bound of
E [nLSIBRi∗ (T )]. Note, from time 1 to n − 1, any strategic arm i always promote its reward to 1, which makes arm i the
"optimal arm" from time 1 to n (the arm selection at time n only depends on previous feedback). Then following the
standard analysis in stochastic MAB alogrithms (UCB, ε-Greedy and Thompson Sampling), E [nLSIBRi∗ (n)] ≤ O

(
lnn

(1−µi∗ )2

)
.

Thus, E [nLSIBRi∗ (T )] can be bounded by,

E
[
nLSIBRi∗ (T )

]
≤ E

[
nLSIi∗ (T )

]
+O

(
lnn

(1− µi∗)2

)
.

Consequently, we can show the lower bound of regret when all strategic arms use LSIBR, as follows

E
[
RLSIBR(T )

]
≥ E

[
RLSI(T )

]
−O

(
∆ lnT

(1− µi∗)2

)
.

C. Omitted Proofs in Section 4
C.1. Proof of Theorem 4.1

To prove this theorem, we instead prove the following Lemma C.1 to bound E[ni(T )] for each arm i 6= i∗. Given this
Lemma, it is then easy to show Theorem 4.1.

Lemma C.1. Suppose the principal runs the ε-Greedy algorithm with εt = min{1, cKT } when t > K, where the constant
c = max

{
20, 36σ2

∆2
i

}
. Then for any strategic manipulation strategy S, the expected number of times of arm i being pulled

up to time T can be bounded by

E [ni(T )] ≤ 3Bi
∆i

+O
(

lnT

∆2
i

)
.

Proof. Let Ci = 3Bi
∆i
, xt = 1

2K

∑t
s=K+1 εs and for t ≥ bcKc+ 1, Given Fact A.3, we have

xt ≥
bcKc∑
s=K+1

εs
2K

+

t∑
t=bcKc+1

εs
2K
≥ bcKc −K +

c

2

t∑
s=bcKc+1

1

s
≥ bcKc −K +

c

2
ln

t

bcKc+ 1
(13)

We do the decomposition for E[ni(T )] as follows,

E [ni(T )] ≤ 1 + E

[
T∑

t=K+1

I{It = i, ni(t− 1) ≤ Ci}

]
+ E

[
T∑

t=K+1

I{It = i, ni(t− 1) ≥ Ci}

]

≤ 1 + Ci +

T∑
t=K+1

εt
K

+ E

[
T∑

t=K+1

(1− εt) · I
{
µ̃i(t− 1) ≥ µ̂i∗,t−1, ni(t− 1) ≥ Ci

}]

≤ 1 + Ci +

T∑
t=K+1

εt
K

+

T∑
t=bcKc+1

P
(
µ̂i(t− 1) +

βt−1

ni(t− 1)
≥ µ̂i∗(t− 1), ni(t− 1) ≥ Ci

)
(14)
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The last inequality holds because εt = 1 when t ≤ bcKc and 1− εt ≤ 1,∀t. What remains is to bound the last term above.
Since ni(t− 1) ≥ Ci, βt−1 ≤ Bi,∀t ≤ T , this term is always upper bounded by

P
(
µ̂i(t− 1) +

βt−1

ni(t− 1)
≥ µ̂i∗(t− 1), ni(t− 1) ≥ Ci

)
≤ P

(
µ̂i(t− 1) +

Bi
Ci
≥ µ̂i∗(t− 1)

)
= P

(
µ̂i(t− 1) +

∆i

3
≥ µ̂i∗(t− 1)

) (15)

By union bound, we have P
(
µ̂i(t− 1) + ∆i

3 ≥ µ̂i∗(t− 1)
)
≤ P

(
µ̂i(t− 1) ≥ µi + ∆i

3

)
+ P

(
µ̂i∗(t− 1) ≤ µi∗ − ∆k

3

)
.

Based on Lemma A.5, we have

P
(
µ̂i(t− 1) +

∆i

3
≥ µ̂i∗(t− 1)

)
≤ 2xt · e−xt/5 + 18σ2

∆2
i
e−∆2

kbxtc/18σ2

(16)

We observe the fact that xt ≥ bcKc−K+ c
2 ln t

bcKc+1 > 5. Given xe−x/5 ≤ ye−y/5,∀x ≥ y ≥ 5 and e−x ≤ e−y,∀x ≥ y,
we have

xte
−xt/5 ≤

(
bcKc −K + c

2 ln t
bcKc+1

)
e−

c
10 ln t

bcKc+1 =
(
bcKc −K + c

2 ln t
bcKc+1

)
·
(
bcKc+1

t

)c/10

σ2

∆2
i
e−∆2

i bxt−1c/18σ2 ≤ σ2

∆2
i
e−∆2

i c ln t
bcKc+1

/36σ2

= σ2

∆2
i

(
bcKc+1

t

)c∆2
i /36σ2

Combining the above inequalities and Fact A.3, we can bound

T∑
t=bcKc+1

2xt · e−xt/5 +
18σ2

∆2
i

e−∆2
i bxtc/18σ2

≤
T∑

t=bcKc+1

(
2bcKc − 2K + c ln

(
t

bcKc+ 1

))
·
(
bcKc+ 1

t

)2

+
18σ2

∆2
i

bcKc+ 1

t

≤ (bcKc −K) · 2(bcKc+ 1)2π2

3
+

(
c+

18σ2

∆2
i

) T∑
t=bcKc+1

bcKc+ 1

t

≤ (bcKc −K) · 2(bcKc+ 1)2π2

3
+ (bcKc+ 1)

(
c+

18σ2

∆2
i

)
ln

T

bcKc

(17)

The first inequality in the above holds because c ≥ max{20, 36σ2

∆2
i
}, and the second inequality is based on the fact that

lnx < x,∀x > 1 and
∑T
t=1

1
t2 ≤

π2

3 . The last inequality is the implication of Fact A.3. Moreover, utilizing Fact A.3, we
bound

∑T
t=K+1

εt
K in the following way,

T∑
t=K+1

εt
K

=

bcKc∑
t=K+1

1

K
+

T∑
t=bcKc+1

εt
K
≤ bcKc −K

K
+ c ln

T

bcKc
, (18)

Combining Equations (14), (15), (16) and (18), we complete the proof.

C.2. Proof of Lemma 4.3

We bound the terms in the decomposition of E[ni(T )] in Eq. (6) using Lemma C.2 – Lemma C.5.

Lemma C.2 (Lemma 2.16 in (Agrawal & Goyal, 2017)). Let xi = µi + ∆i

3 and yi = µi∗ − ∆i

3 ,

E

[
T∑

t=K+1

I
{
It = i, Eµi (t),Eθi (t)

}]
≤ 18 lnT

∆2
i

+ 1

Lemma C.3 (Eq. (4) in (Agrawal & Goyal, 2017)).
∑T
t=K+1 P

(
It = i, Eµi (t),Eθi (t)

)
≤
∑T−1
s=K+1 E

[
1

pi,τi∗,s+1
− 1

]



The Intrinsic Robustness of Stochastic Bandits to Strategic Manipulation

Lemma C.4 (Extension of Lemma 2.13 in (Agrawal & Goyal, 2017)). Let yi = µi∗ − ∆i

3 ,

E
[

1

pi,τi∗,s+1
− 1

]
≤

{
e11/4σ2

+ π2

3 ∀s
4

T∆2
i

if s ≥ 72 ln(T∆2
i )·max{1,σ2}
∆2
i

Proof. This lemma extends Lemma 2.13 in (Agrawal & Goyal, 2017) to our setting, and we mainly emphasize the required
changes to the proof. Using the same notation as in (Agrawal & Goyal, 2017), let Θj denote the Gaussian random variable
follows N (µ̂i∗(τj + 1), 1

j ), given Fτj . Let Gj be the geometric random variable denoting the number of consecutive
independent trials until a sample of Θj becomes greater than yi. Let γ ≥ 1 be an integer and z = 2σ

√
ln γ. Then we

have E
[

1
pi,τj+1

− 1
]

= E[Gj ]. Following the same argument proposed in (Agrawal & Goyal, 2017), we have for any

γ > e11/4σ2

,

P(Gj < γ) ≥
(

1− 1

γ2

)
P
(
µ̂i∗ +

z√
j
≥ yi

)
For ni∗(t− 1) = j, Fτj , we have

P
(
µ̂i∗(τj + 1) +

z√
j
≥ yi

)
≥ P

(
µ̂i∗(τj + 1) +

z√
j
≥ µi∗

)
≥ 1− e−

z2

2σ2

= 1− e−4σ2 ln γ/2σ2

= 1−
(

1

γ

)2

Then P (Gj < γ) ≥ 1− 1
γ2 − 1

γ2 = 1− 2
t2 . Therefore,

E[Gj ] =

T∑
γ=0

P(Gj ≥ γ) ≤ e11/4σ2

+
∑
γ≥1

2

t2
≤ e11/4σ2

+
π2

3

By the proof of Lemma 2.13 in (Agrawal & Goyal, 2017), we have for any Di(T ) ≥ 0,

E
[

1

pi,τj+1
− 1

]
≤ 1(

1− 1
2e
−Di(T )∆2

i /72
) (

1− e−Di(T )∆2
i /72σ2

)
Since Di(T ) =

72 ln(T∆2
i )·max{1,σ2}
∆2
i

, we have both 1− 1
2e
−Di(T )∆2

i /72 and 1− e−Di(T )∆2
i /72σ2

are larger than or equal to

1− 1
T∆2

i
. Thus, E

[
1

pi,τj+1
− 1
]

can be bounded by 4
T∆2

i
when j ≥ Di,T .

Lemma C.5.

E

[
T∑

t=K+1

I
{
It = i, Eµi (t)

}]
≤ max

{6Bi
∆i

,
144σ2 lnT

∆2
i

}
+ 1 (19)

Proof. Let Ci(T ) = max
{

6Bi
∆i
, 144σ2 lnT

∆2
i

}
. We first decompose the left hand side in Equation (19) as below,

E

[
T∑

t=K+1

I
{
It = i, Eµi (t)

}]
≤ E

[
T∑

t=K+1

I
{
It = i, Eµi (t), ni(t− 1) ≤ Ci(T )

}]

+ E

[
T∑

t=K+1

I
{
It = i, Eµi (t), ni(t− 1) ≥ Ci(T )

}] (20)
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The first term in the above decomposition is trivially bounded by ci(T ). What remains is to bound second term

E

[
T∑

t=K+1

I
{
It = i, Eµi,t, ni(t− 1) ≥ ci(T )

}]

≤
T∑

t=K+1

P
(
Eµi,t, ni(t− 1) ≥ Ci(T )

)

≤
T∑

t=K+1

P
(
µ̂i,t−1 +

βt−1

ni(t− 1)
≥ xi

∣∣∣ni(t− 1) ≥ Ci(T )

)

≤
T∑

t=K+1

P
(
µ̂i,t−1 +

βt−1

ni(t− 1)
≥ xi

∣∣∣ni(t− 1) ≥ Ci(T )

)

By union bound, we have

P
(
µ̂i,t−1 +

βt−1

ni(t− 1)
≥ xi

∣∣∣ni(t− 1) ≥ Ci(T )

)
≤

t−1∑
s=ci(T )

P
(
µ̂i,t−1 +

Bi
ni(t− 1)

≥ xi
∣∣∣ni(t− 1) = s

)

≤
t−1∑

s=ci(T )

e−
s·(xi−µi−Bis )

2

2σ2 ≤
t−1∑
s=1

1

T 2

The last inequality above uses Fact (A.2) and the fact s ≥ ci(T ) ≥ 6Bi
∆i

and s ≥ 144σ2 lnT
∆2
i

. Then the second term of the

right hand side in Equations 20 can be bounded by
∑T
t=K+1

∑t−1
s=1

1
T 2 ≤ 1.

C.3. Proof of Proposition 4.4

We complete the proofs for ε-Greedy principal and Thompson Sampling separately. Similar to UCB principal, we derive
the upper bound of E[ni∗(T )] when all strategic arms use LSI manipulation strategy, shown in Lemma C.6 (for ε-Greedy
principal) and Theorem C.7 (for Thompson Sampling). Then Proposition 4.4 is straightforward.

ε-Greedy principal.

Lemma C.6. ∀t > K, let εt = min{1, cKt }, where a constant c = max
{

20, 16σ2

∆2
k
,∀k ∈ [K]

}
, Bi be the total budget for

strategic arm. The expected number of plays of arm i∗ up to time T , if all strategic arms use LSI, is bounded by

E [ni∗(T )] ≤ T −
∑
i 6=i∗

Bi
2∆i

+O
(

lnT

∆2

)

Proof. Let Ci = Bi
2∆i

, xt = 1
2K

∑t
s=K+1 εs and for t ≥ bcKc+ 1, by Equation (13) xt ≥ bcKc −K + c

2 ln t
bcKc+1 .
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We first bound the probability of P
(
µ̂i∗(t− 1) ≥ µ̃i(t− 1)

∣∣∣ni(t− 1) ≤ Ci
)

for t ≥ K + 1,

P
(
µ̂i∗(t− 1) ≥ µ̃i(t− 1), ni(t− 1) ≤ Ci

)
= P

(
µ̂i∗(t− 1) ≥ µ̂i(t− 1) +

Bi
ni(t− 1)

, ni(t− 1) ≤ Ci
)

≤ P
(
µ̂i∗(t− 1) ≥ µ̂i(t− 1) + 2∆i

)
≤ P

(
µ̂i∗(t− 1) ≥ µi∗ +

∆i

2

)
+ P

(
µ̂i(t− 1) ≤ µi −

∆i

2

)
≤ 2xt · e−xt/5 +

8σ2

∆2
i

e−∆2
i bxtc/8σ

2

(By Lemma A.5)

(21)

We can decompose the expected number of plays of the optimal arm i, E[ni∗,T ], as follows,

E [ni∗(T )] = 1 + E

[
T∑

t=K+1

I{It = i∗,∀i 6= i∗ni(t− 1) ≥ Ci}

]

+ E

[
T∑

t=K+1

I{It = i∗,∃i 6= i∗, ni(t− 1) ≤ Ci}

] (22)

The first term in the above decomposition can be bounded by T −
∑
i6=i∗ Ci. This is because

E

[
T∑

t=K+1

I
{
It = i∗,∀i 6= i∗, ni(t− 1) ≥ Ci

}]

≤ E

 T∑
t=K+1

I
{
It = i∗, ni∗(t− 1) ≤ T −

∑
i 6=i∗

Ci
} ≤ T −∑

i 6=i∗
Ci.

By union bound, the second term is bounded by
∑
i 6=i∗ E

[∑T
t=K+1 I{It = i∗, ni(t− 1) ≤ Ci}

]
. Then, we bound the

above summand using Equations (21) and the fact that 1− εt = 0 when t ≤ bcKc,

E

[
T∑

t=K+1

I{It = i∗, ni(t− 1) ≤ Ci}

]

≤
T∑

t=K+1

εt
K

+

T∑
t=K+1

(1− εt) · P
(
µ̂i∗(t− 1) ≥ µ̃i(t− 1), ni(t− 1) ≤ Ci

)

≤
T∑

t=K+1

εt
K

+

T∑
t=bcKc+1

2xt · e−xt/5 +
8σ2

∆2
i

e−∆2
i bxtc/8σ

2

(23)

What remains is to bound the last term in the above equations. Following the same arguments and proof procedure in
Equations (17), we can bound

T∑
t=bcKc+1

2xt · e−xt/5 +
8σ2

∆2
i

e−∆2
i bxtc/8σ

2

≤ (bcKc −K) · 2(bcKc+ 1)2π2

3
+ (bcKc+ 1)

(
c+

8σ2

∆2
i

)
ln

T

bcKc

(24)
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By Eq. (18), we have

E[ni∗(T )] ≤ T −
∑
i 6=i∗

Bi
2∆i

+
bcKc
K

+ c ln
T

bcKc

+
∑
i 6=i∗

(
(bcKc −K) · 2(bcKc+ 1)2π2

3
+ (bcKc+ 1)

(
c+

8σ2

∆2
i

)
ln

T

bcKc

)

≤ T −
∑
i 6=i∗

Bi
2∆i

+O
(

lnT

∆2

)

Thompson Sampling principal. Here we slightly abuse notations, and use Eµi∗(t) to denote the event that µ̂i∗(t− 1) ≤ vi
whereas Eθi∗(t) to denote the event that θi∗(t) ≤ wi, where µi∗ < vi < wi.

Theorem C.7.

E[ni∗(T )] ≤ T −
∑
i 6=i∗

Bi
2∆i

+O
(

lnT

∆2

)

Proof. We decompose the expected number of plays of the optimal arm i∗ as follows,

E[ni∗(T )] ≤ 1 +

T∑
t=K+1

P
(
It = i∗, Eµi∗(t)

)
+

T∑
t=K+1

P
(
It = i∗, Eθi∗(t), E

µ
i∗(t)

)

+

T∑
t=K+1

P
(
It = i∗, Eθi∗(t), E

µ
i∗(t)

)
Then we bound each of the above terms. Lemma C.8, C.9 and C.12 show the upper bound of each term and complete the
proof.

Lemma C.8. Let vi = µi∗ + ∆i

3 ,

T∑
t=K+1

P
(
It = i∗, Eµi∗(t)

)
≤ 18σ2

∆2
i

Proof. Following the proof of Lemma 2.11 in (Agrawal & Goyal, 2017), we have

T∑
t=K+1

P
(
It = i∗, Eµi∗(t)

)
≤
T−1∑
s=1

P
(
Eµi∗(τi∗,s+1)

)
=

T−1∑
s=1

P (µ̂i∗(τi∗,s+1) > vi)

≤
T−1∑
s=1

exp

(
−s(vi − µi

∗)2

2σ2

)
≤ 2σ2

(vi − µi∗)2

The first inequality holds because each summand on the right hand side in this inequality is a fixed number since the
distribution of µ̂i∗(τi∗,s+1) only depends on s. The second inequality is based on Fact A.4 and the third inequality goes
through because

∑∞
k=1 e

−kx ≤ 1
x ,∀x > 0.

Notice that Lemma C.3 holds independently with the identity of the arm. Then the following Lemma can be directly implied.

Lemma C.9. Let vi = µi∗ + ∆i

3 and wi = µi∗ + 2∆i

3

T∑
t=K+1

P
(
It = i∗, Eθi∗(t), E

µ
i∗(t)

)
≤ 18 lnT

∆2
i

+ 1
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Proof. The proof of Lemma 2.16 in (Agrawal & Goyal, 2017) can be directly applied here by regarding arm i∗ as a standard
sub-optimal arm i.

What remains is to bound
∑T
t=K+1 P

(
It = i∗, Eθi∗(t), E

µ
i∗(t)

)
. To this end, we show some auxiliary lemmas in the

following. Lemma C.10 mimics Lemma 2.8 in (Agrawal & Goyal, 2017), which bridges the probability that arm i∗ will be
pulled and the probability that arm i will be pulled at time t. Lemma C.11 bounds the term E

[
1

qi,τi,s+1
− 1
]

by a reduction
to the case shown in Lemma C.3.

Lemma C.10. For any instantiation Ft−1 of Ft−1, let qi,t := P
(
θi(t) > wi

∣∣∣Ft−1

)
, we have

P
(
It = i∗, Eθi∗(t), E

µ
i∗(t)

∣∣∣Ft−1

)
≤ 1− qi,t

qi,t
P
(
It = i, Eθi∗(t), E

µ
i∗(t)

∣∣∣Ft−1

)
Proof. Since Eµi∗(t) is only determined by the instantiation Ft−1 of Ft−1, we can assume event Eµi∗(t) is true without loss
of generality. Then, it is sufficient to show that for any Ft−1 we have

P
(
It = i∗

∣∣∣Eθi∗(t), Ft−1

)
≤ 1− qi,t

qi,t
P
(
It = i,

∣∣∣Eθi∗(t), Ft−1

)
Note, given Eθi∗(t), It = i∗ implies θj(t) ≤ wi,∀j, meanwhile, θi(t) is independent with θj(t), j 6= i, given Ft−1 = Ft−1.
Therefore, we have

P
(
It = i∗

∣∣∣Eθi∗(t), Ft−1

)
≤ P

(
θj(t) ≤ wi,∀j

∣∣∣Eθi∗(t), Ft−1

)
= P

(
θi(t) ≤ wi

∣∣∣Ft−1

)
· P
(
θj(t) ≤ wi,∀j 6= i

∣∣∣Eθi∗(t), Ft−1

)
On the other side,

P
(
It = i

∣∣∣Eθi∗(t), Ft−1

)
≥ P

(
θi(t) > wi ≥ θj(t),∀j 6= i

∣∣∣Eθi∗(t), Ft−1

)
= P

(
θi(t) > wi

∣∣∣Ft−1

)
· P
(
θj(t) ≤ wi,∀j 6= i

∣∣∣Eθi∗(t), Ft−1

)
Thus, the above two inequalities implies the correctness of the Lemma.

Lemma C.11. Let wi = µi∗ + 2∆i

3 . For any s ≥ 1, given ni(τi,s) ≤ Bi
2∆i

, we have

E
[

1

qi,τi,s+1
− 1
∣∣∣ni(τi,s) ≤ Bi

2∆i

]
≤

{
e11/4σ2

+ π2

3 ∀s
1

T∆i
if s ≥ Li(T )

where Li(T ) =
72 ln(T∆2

i )·max{1,σ2}
∆2
i

.

Proof. We prove this Lemma by a reduction to Lemma C.4. First, we observe θi(τi,s + 1) ∼ N
(
µ̃i(τi,s),

1
ni(τi,s)

)
, where

µ̃i(τi,s) = µ̂i(τi,s) + Bi
ni(τi,s)

. Given ni(τi,s) ≤ Bi
∆i

, we have µ̃i(τi,s) ≥ µ̂i(τi,s) + 2∆i. Let ζi(τi,s + 1) denote the random

variable of Gaussian distribution N
(
µ̂i(τi,s),

1
ni(τi,s)

)
. By the fact that a Gaussian random variable a ∼ N (m,σ2) is

stochastically dominated by any b ∼ N (m′, σ2) when m < m′, we have for any Ft−1 of Ft−1

qi,τi,s+1 = P
(
θi(τi,s + 1) > wi

∣∣∣Ft−1

)
≥ P

(
ζi(τi,s + 1) + 2∆i > wi

∣∣∣Ft−1

)
= P

(
ζi(τi,s + 1) > µi −

∆i

3

∣∣∣Ft−1

)
:= ηi,τi,s+1

Therefore, E
[

1
qi,τi,s+1

− 1
]
≤ E

[
1

ηi,τi,s+1
− 1
]
. Denote ui := µi − ∆i

3 . Recall

pi,τi,s+1 = P
(
θi∗(τi∗,s + 1) > µi∗ −

∆i

3

∣∣∣Ft−1

)
,



The Intrinsic Robustness of Stochastic Bandits to Strategic Manipulation

we observe ηi,τi,s+1 is analogous to pi,τi,s+1 in formula, when we replace µi and µ̂i(τi,s + 1) by µi∗ and µ̂i∗(τi∗,s + 1)
respectively (i.e. change arm i by i∗). Recall the proof in Lemma C.3, it only depends on the relationship between
yi = µi∗ − ∆i

3 and µi∗ , which is the same as ui and µi in ηi,τi,s+1. Thus, the proof of Lemma C.3 can be directly applied

here to bound E
[

1
ηi,τi,s+1

− 1
]
.

Lemma C.12.

T∑
t=K+1

P
(
It = i∗, Eθi∗(t), E

µ
i∗(t)

)
≤ T −

∑
i 6=i∗

Bi
2∆i

+
∑
i6=i∗

((
e11/4σ2

+
π2

3

)
· 72 ln(T∆2

i ) ·max{1, σ2}
∆2
i

+
4

∆2
i

)

Proof. We first decompose the target term by thresholding ni(t− 1) as follows,

T∑
t=K+1

P
(
It = i∗, Eθi∗(t), E

µ
i∗(t)

)
≤ E

[
T∑

t=K+1

I
{
It = i∗, Eθi∗(t), E

µ
i∗(t),∀i 6= i∗, ni(t− 1) ≥ Bi

2∆i

}]

+

T∑
t=K+1

P
(
It = i∗, Eθi∗(t), E

µ
i∗(t),∃i 6= i∗, ni(t− 1) ≤ Bi

2∆i

)
(25)

For the first term in above decomposition, it can be trivially upper bounded by T −
∑
i 6=i∗

Bi
2∆i

. By union bound and
Lemma C.10, we can bound the second term as follows,

T∑
t=K+1

P
(
It = i∗, Eθi∗(t), E

µ
i∗(t),∃i 6= i∗, ni(t− 1) ≤ Bi

2∆i

)

≤
∑
i6=i∗

T∑
t=K+1

P
(
It = i∗, Eθi∗(t), E

µ
i∗(t),∃i 6= i∗, ni(t− 1) ≤ Bi

2∆i

)

=
∑
i6=i∗

T∑
t=K+1

E
[
P
(
It = i∗, Eθi∗(t), E

µ
i∗(t), ni(t− 1) ≤ Bi

2∆i

∣∣∣Ft−1

)]

=
∑
i6=i∗

T∑
t=K+1

E
[

1− qi,t
qi,t

· P
(
It = i, Eθi∗(t), E

µ
i∗(t), ni(t− 1) ≤ Bi

2∆i

∣∣∣Ft−1

)]

≤
∑
i6=i∗

T∑
t=K+1

E
[

1− qi,t
qi,t

· P
(
It = i, Eθi∗(t), E

µ
i∗(t)

∣∣∣ni(t− 1) ≤ Bi
2∆i

,Ft−1

)]

=
∑
i6=i∗

T∑
t=K+1

E
[

1− qi,t
qi,t

· I
{
It = i, Eθi∗(t), E

µ
i∗(t)

}∣∣∣ni(t− 1) ≤ Bi
2∆i

]

Observe that qi,t = P
(
θi(t) > wi

∣∣∣Ft−1

)
changes only at the time step after each pull of arm i. Therefore we can bound
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the above term by,

T−1∑
s=1

E

1− qi,τi,s+1

qi,τi,s+1
·
τi,s+1∑

t=τi,s+1

I
{
It = i, Eθi∗(t), E

µ
i∗(t)

}∣∣∣ni(τi,s) ≤ Bi
2∆i


≤

T−1∑
s=1

E
[

1− qi,τi,s+1

qi,τi,s+1

∣∣∣ni(τi,s) ≤ Bi
2∆i

]
Combining Lemma C.11 and Equation (25), we complete the proof.

D. Additional Simulations
We report our simulation results for bounded rewards in this section. Similarly, we also consider a stochastic bandit
setting with three arms. The reward of each arm lies within the interval [0, 1]. The distributions of rewards of each
arm are Beta(1, 1), Beta(2, 1) and Beta(3, 1) respectively. In ε-Greedy algorithm, we use a different εt parameter, i.e.
εt = min{1, 20

t }. We run simulations for the same settings as those in Section 5 and report the results in Figure 3 and 4.
These figures illustrate similar performances for bounded rewards as for unbounded rewards.

Figure 3: [0, 1] bounded rewards: plots of regret with ln t for UCB principal (left), ε-Greedy principal (middle), and Thompson Sampling
principal (right), as B1 and B2 vary. We set B3 = 0 for the three algorithms.

Figure 4: [0, 1] bounded rewards: plots of regret with total budget B of strategic arms (arm 1 and 2) for UCB principal (left), ε-Greedy
principal (middle), and Thompson Sampling principal (right), as Bi varies.


