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Appendix

A. Proof Concentration Bounds
The proof of concentrations bounds of U/V-statistics are standard topics in probability and statistics. We provide proof here
for completeness. In addition, we show that the concentration bounds still hold in non-i.i.d. cases when Q = Qπ due to a
special martingale structure from Bellman equation.

A.1. Proof of Concentration Bound for U-statistics

Assume X is a random variable supported on X . Given some bounded bivariate function1 h : X 2 → [a, b], the U-statistics
of h is defined as:

U =
1

n(n− 1)

∑

1≤i6=j≤n

h(Xi, Xj) ,

where X1, X2, · · · , Xn ∼ X are i.i.d. random variables. It’s well known that U-statistics is an unbiased estimation for
EY,Z∼X [h(Y,Z)], and we include the concentration property of U-statistics for completeness.

For simplicity, we assume n = 2k, k ∈ Z when we discuss the concentration of U-statistics with Hoeffding’s inequality.

Theorem A.1 (Hoeffding’s Inequality for U-statistics).

P


|U − E[h]| ≥ (b− a)

√
log 2

δ

2k


 ≤ δ .

Proof. The proof is originated from Hoeffding (1963), and we restate the original proof here for the completeness.

We first introduce the following notation:

V (X1, X2, · · · , Xn) =
1

k

∑

i∈[k]

h(X2i−1, X2i) . (19)

It’s easy to see that E[V ] = E[h], and

U =
1

n!

∑

σ∈Sn

V (Xσ1 , Xσ2 , · · · , Xσn) ,

where Sn is the symmetric group of degree n (i.e. we take the summation over all of the permutation of set [n]).

With Chernoff’s bound, we can know

P [U ≥ δ] ≤ exp(−λδ)E[exp(λU)], ∀λ > 0 .

So we focus on the term E [exp(λU)]. With Jensen’s inequality, we have:

E[exp(λU)] = E

[
exp

(
λ

n!

∑

σ∈Sn

V (Xσ1
, Xσ2

, · · · , Xσn)

)]
≤ 1

n!

∑

σ∈Sn

E [exp(λV (Xσ1
, Xσ2

, · · · , Xσn))] .

Thus,

P[U − E[h] ≥ δ] ≤ 1

n!

∑

σ∈Sn

E [exp (λV (Xσ1
, Xσ2

, · · · , Xσn)− λE[h]− λδ)] .

1U-statistics are not limited to the bivariate functions, however, as the kernel loss we discuss in this paper is a bivariate function, we
focus on the bivariate function here.
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Notice that, V is sub-Gaussian with variance proxy σ2 = (b−a)2

4k . Thus, with the property of sub-Gaussian random variable,

E [exp (λV − λE[h]− λδ)] ≤ exp

(
λ2(b− a)2

8k
− λδ

)
, ∀λ > 0.

When λ = 4kδ
(b−a)2 , exp(λ

2(b−a)2

8k − λδ) achieves the minimum exp(− 2kδ2

(b−a)2 ). Thus,

P [U − E[h] ≥ δ] ≤ 1

n!

∑

σ∈Sn

exp

(
− 2kδ2

(b− a)2

)
= exp

(
− 2kδ2

(b− a)2

)
.

Moreover, with the symmetry of U , we have that:

P[|U − E[h]| ≥ δ] ≤ 2 exp

(
− 2kδ2

(b− a)2

)
,

which concludes the proof.

A.2. Concentration Bounds for V-statistics

We have the following equation for U-statistics and V-statistics

L̂VK(Q) =
n− 1

n
L̂UK(Q) +

∑

i∈[n]

`π,Q(τi, τi) ,

so we can upper bound |L̂VK(Q)− LK(Q)| via

|L̂VK(Q)− LK(Q)| ≤ n− 1

n
|L̂UK(Q)− LK(Q)|+

∣∣∣∣∣∣
1

n2

∑

i∈[n]

`π,Q(τi, τi)−
1

n
LK(Q)

∣∣∣∣∣∣
.

Thus, with the concentration bounds of L̂UK(Q), and the fact that |`π,Q(τi, τi)| ≤ `max, and |LK(Q)| ≤ `max, we have the
desired result.

A.3. Concentration Bounds for Non I.I.D. Samples

In practice, the dataset D = {xi, ri, s′i}1≤i≤n can be obtained with a non i.i.d fasion (such as we collect trajectories in
the MDP follow by a policy π), which violates the assumption that samples from D are drawn independently. There are
concentration bounds for U-statistics with weakly dependent data. For example, Han (2018) considers the concentration of
U-statistics when the data are generated from a Markov Chain under mixing conditions. Here we show that, in the case when
Q = Qπ, the concentration inequality holds without requiring the i.i.d. or any mixing condition, thanks to a martingale
structure from the Bellman equation.

Proposition A.1. Assume the transitions are sampled from the MDP, i.e. s′ ∼ P(·|x), s̄′ ∼ P(·|x̄), then for any joint
measure ν of (x, x̄), we have the following property for Qπ:

E(x,x̄)∼ν,s′∼P(·|x),s̄′∼P(·|x̄)[K(x, x̄) · R̂πQπ(x) · R̂πQπ(x̄)] = 0 ,

For i.i.d. case, ν = µ× µ.

Proof. By the definition of Bellman error for Q-function, we have that

Es′∼P(·|x)

[
R̂πQπ(x)

]
= Ex′∼P(·|x)×π(·|s′)

[
R̂πQπ(x)

]
= 0 .

As we can first take expectation w.r.t s′ and s̄′, we can conclude the proof.
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Theorem A.2 (Concentration Bounds with Non I.I.D. Samples). Consider a set of random transition pairs {τi}ni=1 with
τi = (si, ai, ri, s

′
i). Assume the state-action pairs (si, ai)

n
i=1 are drawn from an arbitrary joint distribution, and given

(si, ai)
n
i=1, the local rewards and next states (ri, s

′
i)
n
i=1 is drawn independently from ri = r(si, ai) and s′i ∼ P(· | si, ai).

Then ∀δ ∈ (0, 1), we have the following concentration inequality for Qπ:

P



∣∣∣L̂UK(Qπ)

∣∣∣ ≥ 2`max

√
log 2

δ

n


 ≤ δ .

where `max is given via Lemma 3.1.

Proof. First, ∀ (x, s′), (x̄, s̄′) pair, where s′ ∼ P(·|x), s̄′ ∼ P(·|x̄), from the proof of Proposition A.1, we can know

Es′∼P(·|x),s̄′∼P(·|x̄)[K(x, x̄) · R̂πQπ(x) · R̂πQπ(x̄)] = 0 .

Then we revisit the definition of V in Equation (19):

V (X1, X2, · · · , Xn) =
1

k

∑

i∈[k]

h(X2i−1, X2i) .

For kernel Bellman statistic, Xi = (xi, s
′
i), where s′i ∼ P(·|xi), and h(Xi, Xj) = K(xi, xj) · R̂πQπ(xi) · R̂πQπ(xj).

With Proposition A.1, we have that

Ex2i−1,x2i,s′2i−1∼P(·|x2i−1),s′2i∼P(·|x2i)

[
K(x2i−1, x2i) · R̂πQπ(x2i−1) · R̂πQπ(x2i)

∣∣ x1, · · · , x2i−2

]
= 0 ,

as the expectation doesn’t depend on how we get x2i−1 and x2i, but s′2i−1 ∼ P(·|x2i−1), s′2i ∼ P(·|x2i). So we can view
V as a summation of bounded martingale differences.

By using the Azuma’s inequality for the martingale differences, we can show:

E [exp(λV )] ≤ exp

(
λ2(b− a)2

8k

)
.

So the Hoeffding-type bound still holds, following the derivation of Appendix A.1.

Remark We have proved that if the environment is Markovian, we still have the desired Hoeffding-type concentration bound
for Qπ, and our algorithms are still valid given non i.i.d. samples. However, in practice, we still need the data collecting
process to be ergodic (which is a general assumption (Puterman, 1994)), as we want to estimate Qπ over all of the S ×A.

Remark If we want to consider any Q function other than Qπ , the non i.i.d x will lead to an additional bias term, which can
be difficult to estimate empirically . We leave this as a future work.

Remark Notice that, here we only use the universal upper bound of `π,Q(τi, τi), so the bound for Qπ is still valid for non
i.i.d dataset D = {xi, ri, si}1≤i≤n if we use Hoeffding-type bound for U-statistics.

B. Proof of Lemmas
Lemma 3.1. Assume the reward function and the kernel function are bounded, i.e. supx |r(x)| ≤ rmax, supx,x̄ |K(x, x̄)| ≤
Kmax. Then we have

sup
x
|Qπ(x)| ≤ Qmax :=

rmax

1− γ ,

sup
τ,τ̄
|`π,Qπ (τ, τ̄)| ≤ `max :=

4Kmaxr
2
max

(1− γ)2
.
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Proof. Recall the definition of Qπ , we have

Qπ(x) = Eπ

[ ∞∑

t=0

γt|s0 = s, a0 = a

]
≤
( ∞∑

t=0

γt

)
rmax =

rmax

1− γ , ∀ x .

Recall the definition of `π,Qπ (τ, τ̄) in (6), we have

|`π,Qπ (τ, τ̄)| = |(Q(x)− r(x)− γQ(x′))K(x, x̄) (Q(x̄)− r(x̄)− γQ(x̄′))|
≤ sup

x,x̄
|K(x, x̄)| · sup

τ
(Q(x)− r(x)− γQ(x′))

2

≤ Kmax ·
(
rmax

1− γ + rmax + γ · rmax

1− γ

)2

=
4Kmaxr

2
max

(1− γ)2
.
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C. Accountable Off-Policy Evaluation for Average Reward (γ = 1)

In this section, we generalize our methods to the average reward setting where γ = 1. Denote by M = 〈S,A,P, r, γ〉 a
Markov decision process (MDP), where S is the state space; A is the action space; P(s′|s, a) is the transition probability;
r(s, a) is the average immediate reward; γ = 1 (undiscounted case). The expected reward of a given policy π is

ηπ = lim
T→∞

1

T + 1
Eπ

[
T∑

t=0

rt

]
.

In the discounted case (0 < γ < 1), the value function Qπ(s, a) is the expected total discounted reward when the initial
state s0 is fixed to be s, and a ∼ π(·|s): Qπ(s, a) = Eτ∼ππ [

∑∞
t=0 γ

trt|s0 = s, a0 = a]. If the Markov process is ergodic
(Puterman, 1994), the expected average reward does not depend on the initial states. In the average case, however, Qπ(s, a)
measures the average adjusted sum of reward:

Qπ(s, a) := lim
T→∞

Eπ

[
T∑

t=0

(rt − ηπ)
∣∣ s0 = s, a0 = a

]
,

which is referred to as the adjusted (state-action) value function.

Under this definition, (Qπ, ηπ) is the unique fixed-point solution to the following Bellman equation:

Q(s, a) = Es′∼P(·|s,a),a′∼π(·|s′)[r(s, a) +Q(s′, a′)− η] . (20)

To simplify notation, we still assume x = (s, a), x̄ = (s̄, ā), and x′ := (s′, a′) with s′ ∼ P(·|s, a), a′ ∼ π(·|s′). Define the
Bellman residual operator as

RπQ(x) = Es′∼P(·|s,a),a′∼π(·|s′) [r(x) +Q(x′)− η]−Q(x) ,

where Q is an estimation of adjusted value function, and η is an estimation of the expected reward. Note that RπQ(x)
depends on both Q and η, even though it is not indicated explicitly on notation. Given a (Q, η) pair, the kernel loss for γ = 1
can be defined as

LK(Q, η) := Ex,x̄∼µ[RπQ(x) ·K(x, x̄) · RπQ(x̄)] .

Given a set of observed transition pairs D = {τi}ni=1, and we can estimate LK(Q, η) with the following V-statistics:

L̂VK(Q, η) =
1

n2

n∑

i,j=1

`π,Q(τi, τj) ,

where

`π,Q(τi, τj) = R̂πQ(xi)K(xi, xj)R̂πQ(xj) ,

and

R̂πQ(xi) = r(xi) + Ea′i∼π(·|s′i) [Q(x′i)]− η −Q(xi).

Similarly, we can estimate LK(Q, η) via U-statistics:

L̂UK(Q, η) =
1

n(n− 1)

∑

1≤i6=j≤n

`π,Q(τi, τj) .
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C.1. Concentration Bounds for U-/V-statistics

Here we derive the concentration bounds of the U-/V-statistics for the average reward case, under the mild assumption that
the reward r(x) and Q(x) are bounded.

Lemma C.1. Assume the reward function, the adjusted (state-action) value function and the kernel function are uniformly
bounded, i.e. sups∈S,a∈A |r(x)| ≤ rmax, sups∈S,a∈A |Qπ(x)| ≤ Qmax, supx,x̄ |K(x, x̄)| ≤ Kmax. Then we have

sup
τ,τ̄
|`π,Qπ (τ, τ̄)| ≤ `max := 4Kmax(Qmax + rmax)2 .

Proof. By definition, we have

sup
τ,τ̄
|`π,Qπ (τ, τ̄)| ≤ |rmax +Qmax − (−rmax)− (−Qmax)|2 · |K(x, x̄)|

≤ 4Kmax(Qmax + rmax)2.

With a similar derivation in Appendix A, we can have the same Hoeffding-type bounds for U/V-statistics as that of the
discounted case, which can be utilized to construct the confidence interval for ηπ .

C.2. Confidence Bounds for Average Reward

As our final target is to build the confidence interval for the average reward, we follow a similar idea as the discounted case
to obtain a high probability upper bound of the expected reward ηπ by solving the following optimization problem:

max
|η|≤rmax,Q∈F,

{
η s.t. L̂VK(Q, η) ≤ λK

}
,

where η is a scalar variable and Q ∈ F is the adjusted value function, which we want to jointly optimize.

C.3. Optimization in RKHS

Similar to the discounted case, we can use random feature approximation to speed up the optimization. In this case, the
optimization reduces to

η̂+ = max
|η|≤rmax,θ

{
η, s.t. (Zθ + η − v)

>
M (Zθ + η − v) ≤ λK

}
.

where the constants are the same as these defined in Section 4.2, except that Z = X −X ′.



Accountable Off-Policy Evaluation With Kernel Bellman Statistics

D. Experiments
In this section, we provide the details of the experiments, and some additional experiments for validating the effectiveness of
our method.

D.1. Experimental Details

Evaluation Environments We evaluate the proposed algorithms in Section 4 on two continuous control tasks: Inverted-
Pendulum and Puck-Mountain.

Inverted-Pendulum is a pendulum that has its center of mass above its pivot point. It has a continuous state space on R4.
We discrete the action space to be {−1,−0.3,−0.2, 0, 0.2, 0.3, 1}. The pendulum is unstable and would fall over without
careful balancing. We train a near optimal policy that can make the pendulum balance for a long horizon using deep Q
learnings, and use its softmax function as policies. We set the temperature to be higher for the behavior policies to encourage
exploration. We use the implementation from OpenAI Gym (Brockman et al., 2016) and change the dynamic by adding
some additional zero mean Gaussian noise to the transition dynamic.

Puck-Mountain is an environment similar to Mountain-Car, except that the goal of the task is to push the puck as high as
possible in a local valley whose initial position is at the bottom of the valley. If the ball reaches the top sides of the valley, it
will hit a roof and change the speed to its opposite direction with half of its original speeds. The reward was determined
by the current velocity and height of the puck. The environment has a R2 state space, and a discrete action space with
3 possible actions (pushing left, no pushing, and pushing right). We also add zero mean Gaussian perturbations to the
transition dynamic to make it stochastic.

Policy Construction We use the open source implementation2 of deep Q-learning to train a 32× 32 MLP parameterized
Q-function to converge. We then use the softmax policy of the learned Q-function with different temperatures as policies.
We set a default temperature τ = 0.1 (to make it more deterministic) for the target policy π. For behavior policies, we set
the temperature τ = 1 as default. We also study the performance of our method under behavior policies with different
temperatures to demonstrate the effectiveness of our method under behavior agnostic settings.

Hyperparameters Selection and Neural Feature Learning For all of our experiments, we use Gaussian RBF kernel
K(x, x̄) = exp

(
−||x− x̄||22/h2

)
in the kernel Bellman kernel (e.g., for Equation (5)). We evaluate the kernel Bellman loss

on a separate batch of training data, and find that we can set the bandwidth to h = 0.5, which will give a good solution.

When we parameterize Q function Q(x) := θ>Φ(x)with random Fourier features: Φ(x) := [cos(µ>i x + bi)]
m
i=1, where

µi ∼ N (0, 1
h2
0
I), bi ∼ Uniform([0, 2π]), and h0 is a bandwidth parameter. We select the bandwidth h0 from a candidate

set Π = {h1, h2, . . . , hk} by finding the smallest lower bound and largest upper bound on a separate validation data.
Specifically, for each hi ∈ Π, we follow the procedure of Algorithm 1 to calculate an upper and lower bounds for ηπ, and
select the lowest lower bound and the largest upper bound as our final bounds. Doing this ensures that our bounds are
pessimistic and safe. In our empirical experiments we set Π = {0.2, 0.5, 0.6, 0.8, 1.0}.
Following the similar procedure, we also select a set of neural features (the neural feature map before the last linear layer)
on the validation set, which have relatively lower kernel loss when we optimize the neural network. Similarly, we select two
different neural features for each environment and use the pessimisitc upper and lower bounds for all of our experiments.

Constructing Existing Estimators in Post-hoc Diagnosis Since we only need to demonstrate the effectiveness of our
proposed post-hoc diagnosis process, we simply parameterize Q as a linear function of a small set of random Fourier features
(Q(·) = θ>Φ(·)), and estimate θ by minimizing the kernel Bellman loss by running gradient descent for different numbers
of iterations. For the experiments in Inverted-Pendulum (Figure 2), Q̂1 (resp. Q̂2) are obtained when we run a large (resp.
small) number of iterations in training, so that Q̂1 is relatively accurate while Q̂2 is not. For Puck-Mountain in Figure 3, the
error of both Q̂1 and Q̂2 are relatively large.

2https://github.com/openai/baselines.
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Figure 3. Post-hoc diagnosis on Puck-Mountain. We set the discounted factor γ = 0.95, the horizon length T = 100, number of
transitions n = 500, failure probability δ = 0.10, temperature of the behavior policy τ = 1, and the feature dimension 10 as default. The
rest of the parameters are the same as that in Section 5.

D.2. Additional Experiments

Post-hoc Diagnosis Experiments on Puck-Mountain Figure 3 (a)-(f) show the diagnosis results for two estimations of
Q-function (Q̂1 and Q̂2) on Puck-Mountain. Here both Q̂1 and Q̂2 have relatively large bias, but Q̂1 tends to overestimate
ηπ (see Figure 3(a)), while Q̂2 tends to underestimate ηπ (see Figure 3).

Figure 3(a)-(c) show that as we increase the number of transitions, the norm of the debiasing term Qdebias becomes larger.
This is because when we have more data, we have a relatively tight confidence bound and we need a more complex debias
function to provide good post-hoc correction. Figure 3 (d)-(f) demonstrate the performance of our algorithms when we
change the failure probability δ.

Comparison with Thomas et al. (2015a) As a comparison, we implement the method from Thomas et al. (2015a), which
uses concentration inequality to construct confidence bounds on an importance sampling (IS) based estimator. Following
Thomas et al. (2015a), we assume the expected reward is normalized as follows

ρπnormalize :=
Eπ
[∑T

t=1 γ
t−1rt

]
−Rmin

Rmax −Rmin
, (21)

where
∑T
t=1 γ

t−1rt is the discounted return of a trajectory following policy π, and Rmax and Rmin are the upper and lower
bounds on

∑T
t=1 γ

t−1rt; see Thomas et al. (2015a) for the choice of Rmax and Rmin.

Given a set of trajectories {(s(i)
t , a

(i)
t , r

(i)
t )Tt=1}1≤i≤N generated by behavior policy π0, we have
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Figure 4. IS-based confidence lower bounds Thomas et al. (2015a) on Inverted-Pendulum following the same setting as that in Section
5. We use the results of random Fourier feature in Figure 1 as our lower bound. For Thomas et al. (2015a), we set the threshold
value to be c = 10−5 in (a) & (b), and the number of episodes N = 2000 in (b) & (c). For our method, we only use n = 50 × 20
number of transition pairs in (b). We report the normalized reward based on the procedure in Thomas et al. (2015a) (ρnormalize =
(
∑T

t=1 γ
t−1rt −Rmin)/(Rmax −Rmin)).

ρ̂πIS :=
1

N

N∑

i=1

Xi, with Xi = Ri︸︷︷︸
return

T∏

t=1

π(a
(i)
t |s(i)

t )

π0(a
(i)
t |s(i)

t )︸ ︷︷ ︸
importance weight

, (22)

where Ri is reward the i-th trajectory from the data (normalized as shown in Eq (21)). Theorem 1 in Thomas et al. (2015a)
provides a concentration inequality for constructing lower bound of ρπnormalize based on a truncated importance sampling
estimator. Let {ci}Ni=1 be a set of positive real-valued threshold and δ ∈ (0, 1) and Yi = min{Xi, ci}, we have with
probability at least 1− δ,

ρπnormalize ≥
(

N∑

i=1

1

ci

)−1 N∑

i=1

Yi
ci

︸ ︷︷ ︸
empirical mean

−
(

N∑

i=1

1

ci

)−1

7N ln(2/δ)

3(N − 1)
︸ ︷︷ ︸

term that goes to zero as 1/N asN →∞

−
(

N∑

i=1

1

ci

)−1
√√√√ ln(2/δ)

N − 1

N∑

i,j=1

(
Yi
ci
− Yj
cj

)2

︸ ︷︷ ︸
term that goes to zero as 1/

√
N asN →∞

.

(23)

The RHS provides a lower bound of ρπnormalized based the empirical trajectories. Following the settings in Thomas et al.
(2015a), we set the threshold values to be a constant c, that is, ci = c for all i = 1, . . . , N .

We evaluate the method on Inverted-Pendulum under the same default settings as our experiments in the paper. Figure
4(a)-(c) show the results of the high confidence lower bound. We can see that the IS lower bounds are almost vacuous (i.e.,
very close to zero) and it does not help very much when we increase the number of episodes (up to N = 2000) or the failure
probability δ. This is because there is only small overlap between the target policy π and behavior policy π0 in this case and
when the horizon length is large (T = 50), making the IS estimator degenerate. Although we need to point out that to get
tighter lower bound with our method, we assume the true Qπ is in the function space F that we choose, and also assume the
horizon length T →∞ to make the confidence bound provably hold.
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E. Discussion on Reproducing Kernel Hilbert Space
We provide proof of Proposition 4.2 and discussion for Section 4.2.

Proof of Proposition 4.2. Consider the Lagrangian of the constrained optimization (10), we have:

L(Q,λ1, λ2) =Ex∼µ0×π[Q(x)]− λ1(L̂K(Q)− λK)− λ2(‖Q‖2H − ρ)

=〈Q, f0〉 −
λ1

n2


∑

i,j

(〈Q, fi〉 − ri)K(xi, xj)(〈Q, fj〉 − rj)


− λ2(‖Q‖2H)− C,

where λ1, λ2 are Lagrangian multipliers with respect to the two constraints, and C is a constant related to λ1, λ2, λK and ρ.
We rewrite Q into

Q =

n∑

k=0

αkfk +Q⊥,

where Q⊥ is in the orthogonal subspace to the linear span of f0, f1, ..., fn, that is, 〈fi, Q⊥〉 = 0, ∀i ∈ [n]. By decomposin
Q into

∑n
k=0 αkfk and Q⊥, we have

L(Q,λ1, λ2) + C =〈Q, f0〉 −
λ1

n2


∑

i,j

(〈Q, fi〉 − ri)K(xi, xj)(〈Q, fj〉 − rj)


− λ2(‖Q‖2H)

=〈
n∑

k=0

αkfk +Q⊥, f0〉 −
λ1

n2




n∑

i,j=1

(〈
n∑

k=0

αkfk +Q⊥, fi〉 − ri)K(xi, xj)(〈
n∑

k=0

αkfk +Q⊥, fj〉 − rj)




− λ2(‖
n∑

k=0

αkfk‖2H + ‖Q⊥‖2H)

=〈
n∑

k=0

αkfk, f0〉 −
λ1

n2




n∑

i,j=1

(〈
n∑

k=0

αkfk, fi〉 − ri)K(xi, xj)(〈
n∑

k=0

αkfk, fj〉 − rj)




− λ2(‖
n∑

k=0

αkfk‖2H + ‖Q⊥‖2H)

≤〈
n∑

k=0

αkfk, f0〉 −
λ1

n2




n∑

i,j=1

(〈
n∑

k=0

αkfk, fi〉 − ri)K(xi, xj)(〈
n∑

k=0

αkfk, fj〉 − rj)`




− λ2(‖
n∑

k=0

αkfk‖2H) := L(α, λ1, λ2),

where the optimum Q will have Q⊥ = 0 and L(α, λ1, λ2) is the Lagrangian w.r.t. to coefficient α. Collecting the term we
can reform the optimization w.r.t. α as

η̂+ := max
{αi}0≤i≤n

{
[c>α+ λη], s.t. α>Aα+ b>α+ d ≤ 0, α>Bα ≤ ρ.

}

where Bij = 〈fi, fj〉HK0
, ∀0 ≤ i, j ≤ n is the inner product matrix of {fi}0≤i≤n underHK0

, c as the first column of B
and B1 be the remaining sub-matrix. Let Mij = K(xi, xj) be the kernel matrix, Ri = ri be the vector of reward from data,
then A = 1

n2B1MB>1 , b = − 1
n2B1MR and d = 1

n2R
>MR− λK .

Random Feature Approximation Consider the random feature representation of kernel K0

K0(x, x′) = Ew∼µ[φ(x,w)φ(x′, w)], (24)
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where µ is a distribution of random variable w. Every function f in the RKHSHK0
associated with K0 can be represented

as
f(x) = Ew∼µ[φ(x,w)αf (w)],

whose RKHS norm equals
‖f‖2HK0

= Ew∼µ[αf (w)2].

To approximate K0, we draw an i.i.d. sample {wi} from µ to approximate K0 with

K̂0(x, x′) =
1

m

m∑

i=1

φ(x,wi)φ(x′, wi). (25)

Similarly, each f ∈ H
K̂0

can be represented as

f(x) =
1

m

m∑

i=1

φ(x,wi)αi

and its corresponding RKHS norm is

‖f‖2H
K̂0

=
1

m

m∑

i=1

α2
i .

Denote by θ = α/m, then we have f(x) = θ>Φ(x) and ‖f‖2H
K̂0

= m ‖θ‖22, which is the form used in the paper.

The result below shows that when Qπ is included inHK0
but may not be included inHK̂0

, we can still get a provably upper
bound by setting the radius of the optimization domain properly large.

Theorem E.1. Let K0 be a positive definite kernel with random feature expansion in (24) and K̂0 defined in (25) with
{wi}mi=1 i.i.d. drawn from µ. Assume ‖φ‖∞ = supx,w |φ(x,w)| < 0. Define

η+
K0

= max
Q∈HK0

{η(Q), s.t. L̂K(Q) ≤ λ, ‖Q‖2HK0
≤ ρ}. (26)

Let Q∗ be the optimal solution of (26) and Q∗(·) = Ew∼µ[φ(·, w)α∗(w)]. Assume C := varw∼µ((α∗(w))2) < ∞. For
δ ∈ (0, 1), define

η+

K̂0
= max
Q∈H

K̂0

{η(Q), s.t. L̂K(Q) ≤ λ, ‖Q‖2H
K̂0

≤ ρ′}. (27)

If we set ρ′ ≥ ρ+
√

C
δm , then we have with probability at least 1− 2δ

η+
K0
≤ η+

K̂0
+ ‖φ‖∞

√
ρ

δm
.

Therefore, if Qπ belongs toHK0
(and hence ηπ ≤ η+

K0
), then η+

K̂0
+ ‖φ‖∞

√
ρ
δm provides a high probability upper bound

of ηπ .

Proof. Following Q∗(·) = Ew∼µ[φ(·, w)α∗(w)], we have α∗ satisfies

‖Q∗‖2HK0
= Ew∼µ

[
(α∗(w))2

]
≤ ρ. (28)

Let

Q̃(·) =
1

m

m∑

i=1

φ(·, wi)α∗(wi),

for which we have

‖Q̃‖2H
K̂0

=
1

m

m∑

i=1

α∗(wi)
2.
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By Chebyshev inequality, we have with probability at least 1− δ

‖Q̃‖2H
K̂0

≤ ‖Q∗‖2HK0
+

√
1

δm
varw∼µ(α∗(w)2) ≤ ρ+

√
C

δm
.

If ρ′ ≥ ρ+
√

C
δm , then Q̃ is included in the optimization set of (27), and hence

η(Q̃) ≤ η+

K̂0
. (29)

On the other hand, because η(Q) is a linear functional, we have

η(Q̃)− η(Q∗) =
1

m

m∑

i=1

Φ(wi)α
∗(wi)− Ew∼µ[Φ(wi)α

∗(w)],

where Φ(w) = η(φ(·, w)). Note that

varw∼µ(Φ(w)α∗(w)) ≤ ‖φ‖2∞ Ew∼µ
[
(α∗(w))2

]
≤ ‖φ‖2∞ ρ,

where we used (28). By Chebyshev inequality, we have with probability at least 1− δ

|η(Q̃)− η(Q∗)| ≤
√
‖φ‖2∞ρ
δm

.

Combining this with (29), we have, with probability at least 1− 2δ,

η+
K0

= η(Q∗) = η(Q̃) + (η(Q∗)− η(Q̃)) ≤ η+

K̂0
+

√
‖φ‖2∞ρ
δm

.


