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Abstract
Contemporary work on learning in continuous
games has commonly overlooked the hierarchi-
cal decision-making structure present in machine
learning problems formulated as games, instead
treating them as simultaneous play games and
adopting the Nash equilibrium solution concept.
We deviate from this paradigm and provide a com-
prehensive study of learning in Stackelberg games.
This work provides insights into the optimization
landscape of zero-sum games by establishing con-
nections between Nash and Stackelberg equilibria
along with the limit points of simultaneous gra-
dient descent. We derive novel gradient-based
learning dynamics emulating the natural structure
of a Stackelberg game using the implicit function
theorem and provide convergence analysis for de-
terministic and stochastic updates for zero-sum
and general-sum games. Notably, in zero-sum
games using deterministic updates, we show the
only critical points the dynamics converge to are
Stackelberg equilibria and provide a local conver-
gence rate. Empirically, our learning dynamics
mitigate rotational behavior and exhibit benefits
for training generative adversarial networks com-
pared to simultaneous gradient descent.

1. Introduction
The emerging coupling between game theory and machine
learning can be credited to the formulation of learning
problems as interactions between competing objectives and
strategic agents. Indeed, generative adversarial networks
(GANs) (Goodfellow et al., 2014), robust supervised learn-
ing (Madry et al., 2018), reinforcement and multi-agent
reinforcement learning (Dai et al., 2018; Zhang et al., 2019),
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and hyperparameter optimization (Maclaurin et al., 2015)
problems can be cast as zero-sum or general-sum continu-
ous action games. To obtain solutions in a tractable manner,
gradient-based algorithms have gained attention.

Given the motivating applications, much of the contem-
porary work on learning in games has focused on zero-
sum games with non-convex, non-concave objective func-
tions and seeking stable critical points or local equilib-
ria. A number of techniques have been proposed includ-
ing optimistic and extra-gradient algorithms (Daskalakis
et al., 2018; Daskalakis & Panageas, 2018; Mertikopoulos
et al., 2019), gradient adjustments (Balduzzi et al., 2018;
Mescheder et al., 2017), and opponent modeling meth-
ods (Zhang & Lesser, 2010; Foerster et al., 2018; Letcher
et al., 2019; Schäfer & Anandkumar, 2019). However, only
a select number of algorithms can guarantee convergence
to stable critical points satisfying sufficient conditions for
a local Nash equilibrium (LNE) (Mazumdar et al., 2019;
Adolphs et al., 2019).

The dominant perspective in machine learning applications
of game theory has been focused on simultaneous play.
However, there are many problems exhibiting a hierarchical
order of play, and in a game theoretic context, such problems
are known as Stackelberg games. The Stackelberg equilib-
rium (Von Stackelberg, 2010) solution concept generalizes
the min-max solution to general-sum games. In the simplest
formulation, one player acts as the leader who is endowed
with the power to select an action knowing the other player
(follower) plays a best-response. This viewpoint has long
been researched from a control perspective on games (Basar
& Olsder, 1998) and in the bilevel optimization commu-
nity (Danskin, 1967; 1966; Zaslavski, 2012).

The work from a machine learning perspective on games
with a hierarchical decision-making structure is sparse and
exclusively focuses on zero-sum games. In the most relevant
theoretical work, Jin et al. (2019) show that all stable critical
points of simultaneous gradient descent with a timescale
separation between players approaching infinity satisfy suf-
ficient conditions for a local Stackelberg equilibrium (LSE).
The closest empirical work we are aware of is on unrolled
GANs (Metz et al., 2017), where the leader (generator) opti-
mizes a surrogate cost function that depends on parameters
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of the follower (discriminator) that have been ‘rolled out’
until an approximate local optimum is reached. This behav-
ior intuitively approximates a hierarchical order of play and
consequently the success of the unrolling method as a train-
ing mechanism provides some evidence supporting the LSE
solution concept. In this paper, we provide a step toward
bridging the gap between theory and practice along this
perspective by developing implementable learning dynam-
ics with convergence guarantees to critical points satisfying
sufficient conditions for a LSE.

Contributions. Motivated by the lack of algorithms focus-
ing on games exhibiting an order of play, we provide a study
of learning in Stackelberg games including equilibria char-
acterization, novel learning dynamics and convergence anal-
ysis, and an illustrative empirical study. The primary bene-
fits of this work to the community include an enlightened
perspective on the consideration of equilibrium concepts
reflecting the underlying optimization problems present in
machine learning applications formulated as games and an
algorithm that provably converges to critical points satisfy-
ing sufficient conditions for a LSE in zero-sum games.

We provide a characterization of LSE via sufficient condi-
tions on the players objectives and term points satisfying
the conditions differential Stackelberg equilibria (DSE). We
show DSE are generic amongst LSE in zero-sum games. This
means except on a set of measure zero in the class of zero-
sum continuous games, DSE and LSE are equivalent. While
the placement of differential Nash equilibria (DNE) amongst
critical points in continuous games is reasonably well un-
derstood, an equivalent statement cannot be made regarding
DSE. Accordingly, we draw connections between the so-
lution concepts in the class of zero-sum games. We show
that DNE are DSE, which indicates the solution concept in
hierarchical play games is not as restrictive as the solution
concept in simultaneous play games. Furthermore, we re-
veal that there exist stable critical points of simultaneous
gradient descent dynamics that are DSE and not DNE. This
insight gives meaning to a broad class of critical points pre-
viously thought to lack game-theoretic meaning and may
give some explanation for the adequacy of solutions not
satisfying sufficient conditions for LNE in GANs. To charac-
terize this phenomenon, we provide necessary and sufficient
conditions for when such points exist.

We derive novel gradient-based learning dynamics emulat-
ing the natural structure of a Stackelberg game from the
sufficient conditions for a LSE and the implicit function
theorem. The dynamics can be viewed as an analogue to
simultaneous gradient descent incorporating the structure
of hierarchical play games. In stark contrast to the simul-
taneous play counterpart, we show in zero-sum games the
only stable critical points of the dynamics are DSE and such
equilibria must be stable critical points of the dynamics. Us-

ing this fact and saddle avoidance results, we show the only
critical points the discrete time algorithm converges to given
deterministic gradients are DSE and provide a local conver-
gence rate. In general-sum games, we cannot guarantee the
only critical point attractors of the deterministic learning
algorithms are DSE. However, we give a local convergence
rate to critical points which are DSE. For stochastic gradi-
ent updates, we obtain analogous convergence guarantees
asymptotically for each game class.

Empirically, we show that our dynamics result in stable
learning compared to simultaneous gradient dynamics when
training GANs. To gain insights into the placement of DNE
and DSE in the optimization landscape, we analyze the eigen-
values of relevant game objects and observe convergence
to neighborhoods of equilibria. Finally, we show that our
dynamics can scale to computationally intensive problems.

2. Preliminaries
We now formalize the games we study, present equilibrium
concepts accompanied by sufficient condition characteriza-
tions, and formulate Stackelberg learning dynamics.

2.1. Game Formalisms

Consider a non-cooperative game between two agents where
player 1 is deemed the leader and player 2 the follower. The
leader has cost f1 : X → R and the follower has cost
f2 : X → R, where X = X1 ×X2 ∈ Rm with X1 ∈ Rm1

and X2 ∈ Rm2 denoting the action spaces of the leader
and follower, respectively.1 We assume throughout that
each fi is sufficiently smooth: fi ∈ Cq(X,R) for some
q ≥ 2. For zero-sum games, the game is defined by costs
(f1, f2) = (f,−f). In words, we consider the class of two-
player smooth games on continuous, unconstrained actions
spaces. The designation of ‘leader’ and ‘follower’ indicates
the order of play between the agents, meaning the leader
plays first and the follower second.

In a Stackelberg game, the leader and follower aim to solve
the following optimization problems, respectively:

min
x1∈X1

{f1(x1, x2)
∣∣ x2 ∈ arg min

y∈X2

f2(x1, y)}, (L)

min
x2∈X2

f2(x1, x2). (F)

This contrasts with a simultaneous play game in which
each player i is faced with the optimization problem
minxi∈Xi fi(xi, x−i). The learning algorithms we formu-
late are such that the agents follow myopic update rules
which take steps in the direction of steepest descent for the
respective optimizations problems.

1Our results hold more generally for action spaces that are
precompact subsets of the Euclidean space since they are local.
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2.2. Equilibria Concepts and Characterizations

Before formalizing learning rules, let us first discuss the
equilibrium concept studied for simultaneous play games
and contrast it with that which is studied in the hierarchi-
cal play counterpart. The typical equilibrium notion in
continuous games is the pure strategy Nash equilibrium in
simultaneous play games and the Stackelberg equilibrium
in hierarchical play games. Each notion of equilibria can
be characterized as the intersection points of the reaction
curves of the players (Basar & Olsder, 1998). We focus our
attention on local notions of the equilibrium concepts as is
standard in learning in games since the objective functions
we consider need not be convex or concave.

Definition 1 (Local Nash (LNE)). The joint strategy x∗ ∈ X
is a local Nash equilibrium on U1 × U2 ⊂ X1 ×X2 if for
each i ∈ {1, 2}, fi(x∗) ≤ fi(xi, x∗−i), ∀ xi ∈ Ui ⊂ Xi.

Definition 2 (Local Stackelberg (LSE)). Consider Ui ⊂
Xi for each i ∈ {1, 2}. The strategy x∗1 ∈ U1 is a local
Stackelberg solution for the leader if, ∀x1 ∈ U1,

supx2∈RU2
(x∗1)

f1(x∗1, x2) ≤ supx2∈RU2
(x1) f1(x1, x2),

where RU2(x1) = {y ∈ U2|f2(x1, y) ≤ f2(x1, x2),∀x2 ∈
U2}. Moreover, (x∗1, x

∗
2) for any x∗2 ∈ RU2

(x∗1) is a local
Stackelberg equilibrium on U1 × U2.

While characterizing existence of equilibria is outside
the scope of this work, we remark that Nash equilibria
exist for convex costs on compact and convex strategy
spaces and Stackelberg equilibria exist on compact strategy
spaces (Basar & Olsder, 1998, Thm. 4.3, Thm. 4.8, & §4.9).
This means the class of games on which Stackelberg equi-
libria exist is broader than on which Nash equilibria exist.
Existence of local equilibria is guaranteed if the neighbor-
hoods and cost functions restricted to those neighborhoods
satisfy the assumptions of the cited results.

Predicated on existence, equilibria can be characterized in
terms of sufficient conditions on player costs. We denote
Difi as the derivative of fi with respect to xi, Dijfi as the
partial derivative of Difi with respect to xj , and D(·) as the
total derivative.2 The following gives sufficient conditions
for a LNE as given in Definition 1.

Definition 3 (Differential Nash (DNE) Ratliff et al. (2016)).
The joint strategy x∗ ∈ X is a differential Nash equilibrium
if Difi(x

∗) = 0 and D2
i fi(x

∗) > 0 for each i ∈ {1, 2}.

Analogous sufficient conditions can be stated to character-
ize a LSE from Definition 2. Towards this end, given a
point x∗ at which D2f2(x∗) = 0 and det(D2

2f2(x∗)) 6= 0,
the implicit function theorem (Abraham et al., 1988, Thm.
2.5.7) implies that there exists a neighborhood U1 and

2Example: given f(x, r(x)), Df = D1f +Dr>D2f .

an implicit map r : x1 7→ x2 defined on U1. Further,
Dr ≡ −(D2

2f2)−1 ◦D21f2. Note that det(D2
2f2(x)) 6= 0

is a generic condition (cf. Lemma C.3). Let Df1(x1, r(x1))
be the total derivative of f1 and analogously, let D2f1 be
the second-order total derivative.
Definition 4 (Differential Stackelberg (DSE)). The joint
strategy x∗ = (x∗1, x

∗
2) ∈ X is a differential Stackelberg

equilibrium if Df1(x∗) = 0, D2f2(x∗) = 0, D2f1(x∗) >
0, and D2

2f2(x∗) > 0.

Game Jacobians play a key role in determining stability of
critical points. For simultaneous play, let

ω(x) = (D1f1(x), D2f2(x))

be the vector of individual gradients and

ωS(x) = (Df1(x), D2f2(x))

as the equivalent for the Stackelberg game. Observe that
Df1 is the total derivative of f1 with respect to x1 given
x2 is implicitly a function of x1, capturing the fact that the
leader operates under the assumption that the follower will
play a (local) best response to x1. The reaction curve of the
follower may not be unique. However, sufficient conditions
on a local Stackelberg solution x—i.e., D2f2(x) = 0 and
det(D2

2f2(x)) 6= 0—guarantee that Df1 is well defined
(cf. implicit mapping theorem).

The vector field ω(x) forms the basis of the well-studied
simultaneous gradient learning dynamics and the Jacobian
of the dynamics is given by

J(x) =

[
D2

1f1(x) D12f1(x)
D21f2(x) D2

2f2(x)

]
.

Similarly, the vector field ωS(x) serves as the foundation
of the learning dynamics we formulate in Section 2.4 and
analyze throughout. The Jacobian of the Stackelberg vector
field ωS(x) is given by

JS(x) =

[
D1(Df1(x)) D2(Df1(x))
D21f2(x) D2

2f2(x)

]
. (1)

A critical point is called non-degenerate if the determinant of
the vector field Jacobian is non-zero. We denote by C◦− and
C◦+ the open left and right half complex planes. Moreover, a
critical point x∗ of ẋ = −ω(x) is stable if spec(−J(x∗)) ⊂
C◦− or equivalently spec(J(x∗)) ⊂ C◦+. Similarly, a critical
point x∗ of ẋ = −ωS(x) is stable if spec(−JS(x∗)) ⊂ C◦−
or equivalently spec(JS(x∗)) ⊂ C◦+.

Noting that the Schur complement of JS(x) with respect to
D2

2f2(x) is identically D2f(x1, r(x1)), we give alternative
but equivalent sufficient conditions as those in Definition 4
in terms of JS(x). For a two-by-two block matrix such as
JS , we denote by S1(JS) the Schur complement of JS with
respect to D2

2f2. The proof of the following result is in
Appendix B.
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Proposition 1. Consider a game (f1, f2) defined by fi ∈
Cq(X,R), i = 1, 2 with q ≥ 2 and player 1 (without
loss of generality) taken to be the leader. Let x∗ satisfy
D2f2(x∗) = 0 and D2

2f2(x∗) > 0. Then Df1(x∗) = 0
and S1(JS(x∗)) > 0 if and only if x∗ is a DSE. Moreover,
in zero-sum games, S1(JS(x)) = S1(J(x)).

2.3. Genericity and Structural Stability

A natural question is how common is it for local equilibria to
satisfy sufficient conditions, meaning in a formal mathemat-
ical sense, what is the gap between necessary and sufficient
conditions in games. Towards addressing this, it has been
shown that DNE are generic amongst LNE and structurally
stable in the classes of zero-sum and general-sum contin-
uous games, respectively (Ratliff et al., 2016; Mazumdar
& Ratliff, 2019). The results say that except on a set of
measure zero in each class of games, DNE = LNE and the
equilibria persist under sufficiently smooth perturbations to
the costs. We give analogous results for DSE in the class
of zero-sum games in this section and provide proofs in
Appendix C. The following result allows us to conclude that
for a generic zero-sum game, DSE = LSE.

Theorem 1. For the class of two-player, zero-sum contin-
uous games (f,−f) where f ∈ Cq(Rm,R) with q ≥ 2,
DSE are generic amongst LSE. That is, given a generic
f ∈ Cq(Rm,R), all LSE of the game (f,−f) are DSE.

A critical point x∗ of the vector field ωS(x) is hyperbolic
if there are no eigenvalues of JS(x∗) with zero real part.
We now show that in generic zero-sum games, LSE are
hyperbolic critical points of the vector field ωS(x), which is
desirable property owing to the convergence implications.

Corollary 1. For the class of two-player, zero-sum continu-
ous games (f,−f) where f ∈ Cq(Rm,R) with q ≥ 2, LSE
are generically non-degenerate, hyperbolic critical points
of the vector field ωS(x).

As a final result in this section, we show that DSE are struc-
tural stable in the class of zero-sum games. Structural stabil-
ity ensures that differential Stackelberg equilibria are robust
and persist under smooth perturbations.

Theorem 2. For the class of two-player, zero-sum contin-
uous games (f,−f) where f ∈ Cq(Rm,R) with q ≥ 2,
DSE are structurally stable: given f ∈ Cq(Rm1 ×Rm2 ,R),
ζ ∈ Cq(Rm1×Rm2 ,R), and a DSE (x1, x2) ∈ Rm1×Rm2 ,
there exists neighborhoods U ⊂ R of zero and V ⊂
Rm1 × Rm2 such that ∀ t ∈ U there exists a unique DSE

(x̃1, x̃2) ∈ V for the zero-sum game (f + tζ,−f − tζ).

Before moving on, we remark that important classes of
non-generic games certainly exist. In games where the cost
function of the follower is bilinear, LSE can exist which do
not satisfy the sufficient conditions outlined in Definition 4.

Algorithm 1 Deterministic Stackelberg Learning Dynamics

1: Input: x0 ∈ X , learning rates γ1, γ2 > 0
2: for k = 0, 1, . . . do
3: ωS,1 ← D1f1(xk)−D21f2(xk)>(D2

2f2(xk))−1D2f1(xk)
4: ωS,2 ← D2f2(xk)
5: x1,k+1 ← x1,k − γ1ωS,1
6: x2,k+1 ← x2,k − γ2ωS,2
7: end for

As a simple example, x∗ = (0, 0) is a LSE for the zero-sum
game defined by f(x1, x2) = x1x2 and not a DSE since
D2

2f2(x) = 0 ∀ x ∈ X . Since such games belong to a
degenerate class in the context of the genericity result we
provide, they naturally deserve special attention and algo-
rithmic methods. While we do not focus our attention on
this class of games, we do propose some remedies to allow
our proposed learning algorithm to successfully seek out
equilibria in them. In the experiments section, we discuss
a regularized version of our dynamics that injects a small
perturbation to cure degeneracy problems leveraging the
fact that DSE are structurally stable. Further details can be
found in Appendix H.1. Finally, for bimatrix games with
finite actions it is common to reparameterize the problem
using a softmax function to obtain mixed policies on the
simplex (Fudenberg et al., 1998). We explore this viewpoint
in Appendix H.3 on a parameterized bilinear game.

2.4. Stackelberg Learning Dynamics

Recall that ωS(x) = (Df1(x), D2f2(x)) is the vector field
for Stackelberg games and it, along with its Jacobian JS(x),
characterize sufficient conditions for a DSE. Letting ωS,i
be the i–th component of ωS , the leader total derivative is
ωS,1(x) = D1f1(x) − D21f2(x)>(D2

2f2(x))−1D2f1(x).
The Stackelberg learning rule we study for each player in
discrete time is given by

xi,k+1 = xi,k − γi,khS,i(xk). (2)

In deterministic learning players have oracle gradient access
so that hS,i(x) = ωS,i(x). We study convergence for deter-
ministic learning in Section 4.1 and Algorithm 1 provides ex-
ample pseudocode. In stochastic learning players have unbi-
ased gradient estimates and hS,i(xk) = ωS,i(xk) + wk+1,i

where {wi,k} is player i’s noise process. We provide con-
vergence analysis for stochastic learning in Section 4.2.

3. Implications for Zero-Sum Settings
Before presenting convergence analysis of the update in
(2), we draw connections between Nash and Stackelberg
equilibria in zero-sum games and discuss the relevance to
applications such as adversarial learning. To do so, we evalu-
ate the limiting behavior of the dynamics from a continuous
time viewpoint since the discrete time system closely ap-
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proximates this behavior for suitably selected learning rates.
While we provide the intuition behind the results here, the
formal proofs of the results are in Appendix D.

Let us first show that for zero-sum games, all stable critical
points of ẋ = −ωS(x) are DSE and vice versa.

Proposition 2. In zero-sum games (f,−f) with f ∈
Cq(X,R) for q ≥ 2, a joint strategy x ∈ X is a stable
critical point of ẋ = −ωS(x) if and only if x is a DSE.
Moreover, if f is generic, a point x is a stable critical point
of ẋ = −ωS(x) if and only if it is a LSE.

The result follows from the structure of the Jacobian of
ωS(x), which is lower block triangular with player 1 and
2 as the leader and follower, respectively. Proposition 2
implies that with appropriate stepsizes the update rule in (2)
will only converge to Stackelberg equilibria and thus, unlike
simultaneous gradient descent, will not converge to spurious
locally asymptotically stable points that lack game-theoretic
meaning (see, e.g., Mazumdar et al. (2020)).

This previous result begs the question of which stable critical
points of the dynamics ẋ = −ω(x) are DSE? The following
gives a partial answer to the question and also indicates that
recent works seeking DNE are also seeking DSE.

Proposition 3. In zero-sum games (f,−f) with f ∈
Cq(X,R) for q ≥ 2, DNE are DSE. Moreover, if f is generic,
LNE are LSE.

This result follows from the facts that the conditions of
a DNE imply S1(J(x)) > 0 and that non-degenerate DNE

are generic amongst LNE within the class of zero-sum
games (Mazumdar & Ratliff, 2019). In the zero-sum set-
ting, the fact that Nash equilibria are a subset of Stackelberg
equilibria for finite games is well-known (Basar & Olsder,
1998). We extend this result locally to continuous action
space games. Similar to our work and concurrently, Jin et al.
(2019) show that LNE are local min-max solutions.

In Proposition D.1 of Appendix D, we show the previous
results imply all DNE are stable critical points of both ẋ =
−ω(x) and ẋ = −ωS(x). This leaves the question of the
meaning of stable points of ẋ = −ω(x) which are not DNE.

Finding Meaning in Spurious Stable Critical Points. We
focus on the question of when stable fixed points of ẋ =
−ω(x) are DSE and not DNE. It was shown by Jin et al.
(2019) that not all stable points of ẋ = −ω(x) are local
min-max or local max-min equilibria since one can con-
struct a function such that D2

1f(x) and −D2
2f(x) are both

not positive definite but the real parts of the eigenvalues
of J(x) are positive. It appears to be much harder to char-
acterize when a stable critical point of ẋ = −ω(x) is not
a DNE but is a DSE since it requires the follower’s individ-
ual Hessian to be positive definite. Indeed, it reduces to a
fundamental problem in linear algebra in which the relation-

Figure 1. Example demonstrating existence of DSE and DSE that
are not DNE: G = (f,−f) where f is defined in (3) with a =
0.15, b = 0.25. There are two stable points of simultaneous
gradient descent which are DSE, but not DNE.

ship between the eigenvalues of the sum of two matrices is
largely unknown without assumptions on the structure of
the matrices (Knutson & Tao, 2001).

In Appendix E, we provide necessary and sufficient condi-
tions for attractors at which the follower’s Hessian is positive
definite to be DSE. Taking intuition from the expression
S1(J(x)) = D2

1f(x) − D21f(x)>(D2
2f(x))−1D21f(x),

the conditions are derived from relating spec(D2
1f) to

spec(D2
2f) viaD12f . To illustrate this fact, consider the fol-

lowing example in which stable points are DSE and not DNE—
meaning points x ∈ X at which D2

1f(x) ≯ 0, −D2
2f(x) >

0 and spec(−J(x∗)) ⊂ C◦− and S1(J(x)) > 0.

Example: Non-Nash Attractors are Stackelberg. Con-
sider the zero-sum game defined by

f(x) = −e−0.01(x
2
1+x

2
2)((ax21 +x2)2 + (bx22 +x1)2). (3)

Let player 1 be the leader who aims to minimize f with re-
spect to x1 taking into consideration that player 2 (follower)
aims to minimize −f with respect to x2. In Fig. 1, we show
the trajectories for different initializations for this game; it
can be seen that simultaneous gradient descent can lead to
stable critical points which are DSE and not DNE. In fact, it
is the case that all stable critical points with −D2

2f(x) > 0
are DSE in games on R2 (see Corollary E.1, Appendix E).

This example, along with Propositions E.1 and E.2 in Ap-
pendix E, implies some stable critical points of ẋ = −ω(x)
which are not DNE are in fact DSE. This is a meaningful
result since recent works have proposed schemes to avoid
stable critical points which are not DNE as they have been
thought to lack game-theoretic meaning (Adolphs et al.,
2019; Mazumdar et al., 2019). Moreover, some recent em-
pirical studies show a number of successful approaches to
training GANs do not converge to DNE, but rather to stable
fixed points of the dynamics at which the follower is at
a local optimum (Berard et al., 2020). This may suggest
reaching DSE is desirable in GANs.

The ‘realizable’ assumption in the GAN literature says the
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discriminator network is zero near an equilibrium parameter
configuration (Nagarajan & Kolter, 2017). The assumption
implies the Jacobian of ẋ = −ω(x) is such that D2

1f(x) =
0. Under this assumption, we show stable critical points
which are not DNE are DSE given −D2

2f(x) > 0.

Proposition 4. Consider a zero-sum GAN satisfying the
realizable assumption. Any stable critical point of ẋ =
−ω(x) at which−D2

2f(x) > 0 is a DSE and a stable critical
point of ẋ = −ωS(x).

4. Convergence Analysis
In this section, we provide convergence guarantees for both
the deterministic and stochastic settings. In the former, play-
ers have oracle access to their gradients at each step while in
the latter, players are assumed to have an unbiased estimator
of the gradient appearing in their update rule. Proofs of the
deterministic results can be found in Appendix F and the
stochastic results in Appendix G.

4.1. Deterministic Setting

Consider the deterministic Stackelberg update

xk+1 = xk − γ1ωSτ (xk) (4)

where ωSτ (xk) is the m-dimensional vector with entries
D1f1(xk) − D>21f2(xk)(D2

2f2(xk))−1D2f1(xk) ∈ Rm1

and τD2f2(xk) ∈ Rm2 , and τ = γ2/γ1 is the “timescale”
separation. We refer to (4) as the τ -Stackelberg update. The
Jacobian of ωSτ (x) is denoted JSτ (x); it is equivalent to
JS with the m2 ×m block row multiplied by τ .

To get convergence guarantees, we apply well known results
from discrete time dynamical systems. For a dynamical sys-
tem xk+1 = F (xk), when the spectral radius ρ(DF (x∗)) of
the Jacobian at fixed point is less than one, F is a contraction
at x∗ so that x∗ is locally asymptotically stable (cf. Propo-
sition F.1, Appendix F). In particular, ρ(DF (x∗)) ≤ c < 1
implies that ‖DF‖ ≤ c + ε < 1 for ε > 0 on a neigh-
borhood of x∗ (Ortega & Rheinboldt, 1970, 2.2.8). Hence,
Proposition F.1 implies that if ρ(DF (x∗)) = 1 − κ < 1
for some κ, then there exists a ball Bp(x∗) of radius p > 0
such that for any x0 ∈ Bp(x∗), and some constant K > 0,
‖xk − x∗‖2 ≤ K(1− κ

2 )k‖x0 − x∗‖2 using ε = κ
4 .

For a zero-sum setting defined by cost function f ∈
Cq(X,R) with q ≥ 2, recall that S1(J(x)) = D2

1f(x) −
D21f(x)>(D2

2f(x))−1D21f(x) is the first Schur comple-
ment of the Jacobian J(x).

Theorem 3 (Zero-Sum Rate of Convergence.). Con-
sider a zero-sum game defined by f ∈ Cq(X,R)
with q ≥ 2. For a DSE x∗ with α =
min{λmin(S1(J(x∗))), λmin(−τD2

2f(x∗))} and β =
max{λmax(S1(J(x∗))), λmax(−τD2

2f(x∗))} and learn-

ing rate γ1 = 1/(2β), the τ–Stackelberg update converges
locally with a rate of O((1− α

4β )k).

Corollary 2 (Zero-Sum Finite Time Guarantee). Given
ε > 0, under the assumptions of Theorem 3, τ -Stackelberg
learning obtains an ε-DSE in d 4βα log(‖x0 − x∗‖/ε)e itera-
tions for any x0 ∈ Bδ(x∗) with δ = α/(4Lβ) where L is
the local Lipschitz constant of I − γ1JSτ (x∗).

The proofs leverage the structure of the Jacobian JSτ , which
is lower block diagonal, along with the above noted result
from dynamical systems theory. The key insight is that at a
given x, the spectrum of JSτ (x) is the union of the spectrum
of S1(J(x)) and −τD2

2f(x) for zero-sum settings.

We now show a discrete-time analogue to Proposition 2.

Proposition 5. Consider a zero-sum game defined by
f ∈ Cq(X,R), q ≥ 2. Suppose that γ1 ≤ 1/L where
max{spec(S1(J(x))) ∪ spec(−τD2

2f(x))} ≤ L. Then, x
is a stable critical point of τ–Stackelberg update if and only
if x is a DSE.

The next result shows that τ -Stackelberg avoids saddle
points almost surely in general-sum games. We remark
that DSE are never saddle points in zero-sum games.

Theorem 4 (Almost Sure Avoidance of Saddles). Consider
a general sum game defined by fi ∈ Cq(X,R), q ≥ 2 for
i = 1, 2 and where, without loss of generality, player 1 is the
leader. Suppose that ωSτ is L-Lipschitz and that γ1 < 1/L.
The τ–Stackelberg learning dynamics converge to saddle
points of ẋ = −ωSτ (x) on a set of measure zero.

In the zero-sum setting, ωSτ being Lipschitz is equivalent
to max{spec(S1(J(x))) ∪ spec(−τD2

2f(x))} ≤ L. The
only critical points of τ -Stackelberg learning in the zero-
sum case are either saddles, unstable points, or DSE which
comprise all the stable critical points due to the structure of
the Jacobian JSτ . Consequently, the previous pair of results
imply that the only critical points τ -Stackelberg learning
converges to in zero-sum games are DSE almost surely.

We now provide a convergence guarantee for deterministic
general-sum games. However, the convergence guarantee is
no longer a global guarantee to the set of attractors of which
critical points are DSE since there is potentially stable critical
points which are not DSE. This can be seen by examining
the Jacobian which is no longer lower block triangular.

Given a critical point x∗, let α = λ2min( 1
2 (J>Sτ (x∗) +

JSτ (x∗))) and β = λmax(JSτ (x∗)>JSτ (x∗)).

Theorem 5 (General Sum Rate of Convergence). Consider
a general sum game (f1, f2) with fi ∈ Cq(X,R), q ≥ 2 for
i = 1, 2 and where, without loss of generality, player 1 is
the leader. For a DSE x∗ such that J>Sτ (x∗) + JSτ (x∗) > 0,
the τ–Stackelberg update with learning rate γ1 =

√
α/β

converges locally with a rate of O((1− α
2β )k/2).
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Corollary 3 (General Sum Finite Time Guarantee). Given
ε > 0, under the assumptions of Theorem 5, τ–Stackelberg
learning obtains an ε–DSE in d 4βα log (‖x0 − x∗‖/ε)e iter-
ations for any x0 ∈ Bδ(x∗) with δ = α/(2Lβ) where L is
the local Lipschitz constant of I − γ1JSτ (x).

4.2. Stochastic Setting

In the stochastic setting, players use updates of the form

xi,k+1 = xi,k − γi,k(ωS,i(xk) + wi,k+1) (5)

where γ1,k = o(γ2,k) and {wi,k+1} is a stochastic pro-
cess for each i = 1, 2. The results in this section as-
sume the following. The maps Df1 : Rm → Rm1 ,
D2f2 : Rm → Rm2 are Lipschitz, and ‖Df1‖ < ∞. For
each i ∈ {1, 2}, the learning rates satisfy

∑
k γi,k = ∞,∑

k γ
2
i,k <∞. The noise processes {wi,k} are zero mean,

martingale difference sequences: given the filtration Fk =
σ(xs, w1,s, w2,s, s ≤ k), {wi,k}i∈I are conditionally inde-
pendent, E[wi,k+1| Fk] = 0 a.s., and E[‖wi,k+1‖| Fk] ≤
ci(1 + ‖xk‖) a.s. for some constants ci ≥ 0, i ∈ I.

The primary technical machinery we use in this section is
stochastic approximation theory (Borkar, 2008) and tools
from dynamical systems. The convergence guarantees in
this section are analogous to that for deterministic learn-
ing but asymptotic in nature. We first provide a non-
convergence guarantee: the dynamics avoid saddle points in
the stochastic learning regime.
Theorem 6 (Almost Sure Avoidance of Saddles.). Consider
a game (f1, f2) with fi ∈ Cq(Rm1 × Rm2 ,R), q ≥ 2 for
i = 1, 2 and where without loss of generality, player 1 is
the leader. Suppose that for each i = 1, 2, there exists a
constant bi > 0 such that E[(wi,t · v)+|Fi,t] ≥ bi for every
unit vector v ∈ Rmi . Then, Stackelberg learning converges
to strict saddle points of the game on a set of measure zero.

We also give asymptotic convergence results. These re-
sults, combined with the non-convergence guarantee in The-
orem 6, provide a broad convergence analysis for this class
of learning dynamics. Theorem G.3 in Appendix G.3 pro-
vides a global convergence guarantee in general-sum games
to the stable critical point, which may or may not be a
DSE, under assumptions on the global asymptotic stability
of critical points of the continuous time limiting singularly
perturbed dynamical system. In zero-sum games, we know
that the only critical points of the continuous time limiting
system are DSE. Hence, Corollary G.2 in Appendix G.3
gives a global convergence guarantee in zero-sum games to
the DSE under identical assumptions.

Relaxing these assumptions, the following proposition pro-
vides a local convergence result which ensures that sample
points asymptotically converge to locally asymptotic trajec-
tories of the continuous time limiting singularly perturbed
system, and thus to stable DSE.

Theorem 7. Consider a general sum game (f1, f2) with
fi ∈ Cq(X,R), q ≥ 2 for i = 1, 2 and where, without loss
of generality, player 1 is the leader and γ1,k = o(γ2,k). Con-
sider a differential Stackelberg equilibrium x∗ = (x∗1, x

∗
2).

There exists a neighborhood U = U1×U2 of x∗ = (x∗1, x
∗
2)

such that for any x0 ∈ U , xk converges almost surely to x∗.

5. Experiments
We now present experiments showing the role of DSE in the
optimization landscape of GANs and the empirical bene-
fits of training GANs with Stackelberg learning compared
to simultaneous gradient descent (simgrad). All detailed
experiment information is given in Appendix H.

Example 1: Learning a Covariance Matrix. We consider
a data generating process of x ∼ N (0,Σ), where the co-
variance Σ is unknown and the objective is to learn it using
a Wasserstein GAN. The discriminator is configured to be
the set of quadratic functions defined as DW (x) = x>Wx
and the generator is a linear function of random input noise
z ∼ N (0, I) defined by GV (z) = V z. The matrices W ∈
Rm×m and V ∈ Rm×m are the parameters of the discrimi-
nator and the generator, respectively. The Wasserstein GAN
cost for the problem f(V,W ) =

∑m
i=1

∑m
j=1Wij(Σij −∑m

k=1 VikVjk). We consider the generator to be the leader
minimizing f(V,W ). The discriminator is the follower
and it minimizes a regularized cost function defined by
−f(V,W ) + η

2 Tr(W>W ), where η ≥ 0 is a tunable regu-
larization parameter. The game is formally defined by the
costs (f1, f2) = (f(V,W ),−f(V,W ) + η

2 Tr(W>W )),
where player 1 is the leader and player 2 is the follower. In
equilibrium, the generator picks V ∗ such that V ∗(V ∗)> =
Σ and the discriminator selects W ∗ = 0. Further details are
given in Appendix C from Daskalakis et al. (2018).

We compare the deterministic gradient update for Stack-
elberg learning with simultaneous learning, and analyze
the distance from equilibrium as a function of time. We
plot ‖Σ − V V >‖2 for the generator’s performance and
‖W +W>‖2 for the discriminator’s performance in Fig. 2
for varying dimensions m with learning rates γ1 = γ2/4 =
0.01 and a fixed regularization of η = 0.5. The covariance
matrix is chosen to be Σ = UUT + I where U ∼ N (0, 1).
We observe that Stackelberg learning converges to an equi-
librium in fewer iterations. For zero-sum games, our theory
provides reasoning for this behavior since at any critical
point the eigenvalues of the game Jacobian are purely real.
This is in contrast to simultaneous gradient descent, whose
Jacobian can admit complex eigenvalues, known to cause
rotational forces in the dynamics.

GAN training details. We now train GANs in which each
player is parameterized by a neural network. The genera-
tor is always taken to be the leader and the discriminator
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(a) m = 2 (b) m = 5 (c) m = 10 (d) m = 2 (e) m = 5 (f) m = 10

Figure 2. Stackelberg learning more effectively estimates covariance Σ as compared to simgrad. Errors given by ‖Σ − V V T ‖2 and
‖W +WT ‖2 are shown in (a)–(c) and trajectory plots of elements of W and V V T in (d)–(f) showing the cycling of simgrad.

(a) Gen. (b) Dis. (c) J (d) D2f1 (e) D2
1f1 (f) D2

2f2

(g) Gen. (h) Dis. (i) J (j) D2f1 (k) D2
1f1 (l) D2

2f2

Figure 3. The generator and discriminator performances for simgrad and Stackelberg are shown in (a)–(b) and (g)–(h), respectively. We
show the 5 smallest and 15 largest real eigenvalues parts of relevant game objects in (c)–(f) for simgrad and (i)–(l) for Stackelberg.

the follower in this set of experiments. Moreover, for both
Stackelberg learning and simultaneous gradient descent we
pass the gradient information of each player into the Adam
optimizer (Kingma & Ba, 2015). To ensure the follower’s
Hessian is well-conditioned in the leader update, we regular-
ize the implicit map of the follower so that the leader gradi-
ent is given by ωS,1 = D1f1(x)+Drη(x)>D2f1(x) where
Drη(x)> = −D21f2(x)>

(
D2

2f2(x) + ηI
)−1

and η is the
regularization parameter. We also employ regularization in
the follower’s implicit map when computing eigenvalues
of D2f1(x) to determine whether an approximate critical
point is in a neighborhood of a DSE. We provide details on
the derivation of the regularized leader update along with a
notion of a regularized DSE and specifics on the eigenvalue
computation in Appendix H.1 and H.2.

Example 2: Learning a Mixture of Gaussians. We train
a GAN to learn a mixture of Gaussian distribution. The
generator and discriminator networks have two and one hid-
den layers, respectively; each hidden layer has 32 neurons.
We train using a batch size of 256, a latent dimension of
16, with decaying learning rates. For both the diamond and
circle configurations, 10 initial seeds were simulated for
each set of learning dynamics and behavior was generally
consistent across them for both algorithms. The experiments
were run for 60,000 batches and the eigenvalues evaluated

at that stopping point. We show detailed information for the
best run of each algorithm in terms of KL-divergence and
in Appendix H.4.1 examine all runs.

Diamond configuration. This experiment uses the satu-
rating GAN objective and Tanh activations. In Fig. 3a–3b
and Fig. 3g–3h we show a sample of the generator and the
discriminator for simgrad and the Stackelberg dynamics at
the end of training. Each learning rule converges so that the
generator can create a distribution that is close to the ground
truth and the discriminator is nearly at the optimal probabil-
ity throughout the input space. In Fig. 3c–3f and Fig. 3i–3l,
we show eigenvalues from the game that present a deeper
view of the convergence behavior. We observe from the
eigenvalues of J that both sets of dynamics converge to
neighborhoods of points that are stable for the simultaneous
dynamics and they appear to be in a neighborhood of a DSE
since the eigenvalues of D2f1 and D2

2f2 are nearly all posi-
tive. Interestingly, however, since the eigenvalues of D2

1f1
are nearly all zero and not all positive and this was consis-
tent across the runs, it appears that the result may reflect the
realizable assumption (cf. Sec. 3) as well as convergence
to a DSE that is not a DNE. Given the good generator and
discriminator performance, it is worth further empirical in-
vestigation to determine if DSE that are not DNE are desirable
in GANs and if successful methods reach them.
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(a) Real (b) 10k (c) 20k (d) 40k (e) 60k (f) 10k (g) 20k (h) 40k (i) 60k

(j) J (k) D2f1 (l) D2
1f1 (m) D2

2f2

(n) J (o) D2f1 (p) D2
1f1 (q) D2

2f2

Figure 4. Stackelberg learning improves learning stability: simgrad generator in (b)–(e) and Stackelberg learning generator in (f)–(i). We
show the 5 smallest and 15 largest real eigenvalue parts of relevant game objects in (j)–(m) for simgrad and (n)–(q) for Stackelberg.

(a) Real images. (b) Fake images. (c) Inception scores.

Figure 5. Stackelberg learning on the MNIST dataset.

Circle configuration. We demonstrate improved perfor-
mance and stability when using Stackelberg learning dy-
namics in this example. We use ReLU activation functions
and the non-saturating objective and show the performance
in Fig. 4 along the learning path for the simgrad and Stack-
elberg learning dynamics. The former cycles and performs
poorly until the learning rates have decayed enough to sta-
bilize the training process. The latter converges quickly to
a solution that nearly matches the ground truth distribution.
We observed this behavior consistently across the runs. In
a similar fashion as in the covariance example, the leader
update is able to reduce rotations. We show the eigenvalues
after training and see that for this configuration, simgrad
converges to a neighborhood of a DNE and the Stackelberg
dynamics converge again to the neighborhood of a DSE that
is not a DNE. This provides further evidence that DSE may
be easier to reach, and can provide suitable performance.

Example 3: MNIST GAN. To demonstrate that the Stack-
elberg learning dynamics can scale to high dimensional
problems, we train a GAN on the MNIST dataset using
the DCGAN architecture (Radford et al., 2015) adapted to
handle 28× 28 images. We simulate 10 random seeds and
in Fig. 5c show the mean Inception score along the training

process along with the standard error of the mean. The
Inception score is calculated using a LeNet classifier follow-
ing (Berard et al., 2020). We show a real sample in Fig. 5a
and a fake sample in Fig. 5a after 7500 batches from the
run with the fifth highest inception score. The Stackelberg
learning dynamics are able to converge to a solution that
generates realistic handwritten digits and get close to the
maximum inception score in a stable manner. The primary
purpose of this example is to show that the learning dynam-
ics including second order information and an inverse is
not an insurmountable problem for training with millions
of parameters. We detail how the update can be computed
efficiently using Jacobian-vector products and the conjugate
gradient algorithm in Appendix H.2.

6. Conclusion
We study learning dynamics in Stackelberg games. This
class of games pertains to any application in which there
is an order of play. However, the problem has not been
extensively analyzed in the way the learning dynamics of
simultaneous play games have been. Consequently, we are
able to give novel convergence results and draw connections
to existing work focused on learning Nash equilibria.
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A. Guide to the Appendix
Appendix B. Proof of the sufficient conditions for differential Stackelberg equilibria in terms of the Schur complement

given in Proposition 1.

Appendix C. Proofs of the genericity and structural stability of differential Stackelberg equilibria in zero-sum games from
Section 2.3.

Appendix D. Proofs of the results on the connections between the limit points of simultaneous play learning and Stackelberg
play learning along with Nash and Stackelberg equilibria in zero-sum games from Section 3.

Appendix E. Necessary and sufficient conditions for stable critical points of the simultaneous play dynamics ẋ = −ω(x)
such that D2

1f(x) ≯ 0 and −D2
2f(x) > 0 to be differential Stackelberg equilibria in zero-sum games.

Appendix F. Proofs of the deterministic convergence results for Stackelberg learning from Section 4.1.

Appendix G. Proofs of the stochastic convergence results from Section 4.2. This appendix includes a number of extensions
not included in the paper. In particular, we provide convergence guarantees for the leader assuming the
follower plays an exact best response, and extended analysis for the case where the follower is performing
individual gradient updates.

Appendix H Further details on the numerical experiments and supplemental experiments beyond that included in the paper.

B. Proof of Sufficient Conditions for Differential Stackelberg in Terms of Schur Complement
Proposition 1. Consider a game (f1, f2) defined by fi ∈ Cq(X,R), i = 1, 2 with q ≥ 2 and player 1 (without loss of
generality) taken to be the leader. Let x∗ satisfyD2f2(x∗) = 0 andD2

2f2(x∗) > 0. ThenDf1(x∗) = 0 and S1(JS(x∗)) > 0
if and only if x∗ is a differential Stackelberg equilibrium. Moreover, in zero-sum games, S1(JS(x)) = S1(J(x)).

Proof. The implicit function theorem implies that there exists neighborhoods U1 of x∗1 and W of D2f2(x∗1, x
∗
2) and a unique

Cq mapping r : U1 ×W → Rm2 on which D2f2(x1, r(x1)) = 0. The first Schur complement of JS is

S1(JS(x)) = D1(Df1(x1, x2))−D2(Df1(x1, x2))(D2
2f2(x1, x2))−1D21f2(x1, x2)

where
D1(Df1(x1, x2)) = D2

1f1(x1, x2) +D12f1(x1, x2)Dr(x1) +D2f1(x1, x2)D2r(x1)3

and
D2(Df1(x1, x2)) = D12f1(x1, x2) +Dr(x1)>D2

2f1(x1, x2).

Now, we also have that the total derivative of Df1(x1, r(x1)) is given by

D(Df1(x1, r(x1))) = D2
1f1(x1, r(x1)) +D12f1(x1, r(x1))Dr(x1) +D2f1(x1, r(x1))>D2r(x1)

+ (D12f1(x1, r(x1)) +Dr(x1)>D2
2f1(x1, r(x1))Dr(x1)

Note also that by the implicit function theorem, Dr(x1) = −(D2
2f2(x1, x2))−1D21f2(x1, x2)|x2=r(x1). Hence, we have

that D(Df1(x1, r(x1))) = S1(JS(x))|x2=r(x1).

C. Structural Stability and Genericity in Zero-Sum Continuous Stackelberg Games
This section is dedicated to showing that for a generic zero-sum q-differentiable game, all local Stackelberg equilibria of
the game are differential Stackelberg equilibria, and further they are structurally stable. Analogous results are known for
differential Nash equilibria (Ratliff et al., 2014; Mazumdar & Ratliff, 2019).

We first show that all differential Stackelebrg equilibria are non-degenerate—that is, det(JS(x)) 6= 0 for any differential
Stackelberg equilibrium x.

Proposition C.1. In zero-sum q-differentiable continuous games, all differential Stackelberg equilibria are non-degenerate,
hyperbolic critical points of the vector field ωS(x).

3Note that D2r(x1) denotes the appropriately dimensioned tensor so that D2f1(x1, x2)D2r(x1) is m1 × m1 dimensional. In
particular, D2f1(x1, x2) is a 1×m2 dimensional row vector and we take D2r(x1) to be a m2 ×m1 ×m1 dimensional tensor so that
D2f1(x1, x2)D2r(x1) means in Einstein summation notation (D2f1(x))i(D

2r(x1))ijk.
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Proof. The Jacobian of the vector field ωS(x) given in (1) is lower block triangular in zero-sum games at a differen-
tial Stackelberg equilibria since D2(Df1(x)) = 0. Hence, det(JS(x)) 6= 0 if and only if det(D1(Df(x))) 6= 0 and
det(−D2

2f(x)) 6= 0. Since differential Stackelberg are such that D1(Df(x)) > 0 and −D2
2f(x) > 0, the fact that all

differential Stackelberg are non-degenerate follows immediately. Further, the lower block triangular structure implies that
spec(JS(x)) = spec(S1(J(x))) ∪ spec(−D2

2f(x)). Hence, all differential Stackelberg equilibria are hyperbolic.

For a zero-sum q-differentiable game G = (f,−f), if we let DSE(G) be the differential Stackelberg equilibria, NDSE(G) the
non-degenerate differential Stackelberg equilibria, and LSE(G) the local Stackelberg equilibria, then we know that

NDSE(G) = DSE(G) ⊆ LSE(G)

where the first equality is a consequence of Proposition C.1. What we show in the remainder is that for generic f ∈ Cq(X,R),
the game G = (f,−f) is such that

LSE(G) = DSE(G).

In particular, we show that the set of zero-sum q-differentiable games admitting any local Stackelberg equilibria which are
degenerate differential Stackelberg equilibria is of measure zero in Cq(Rm,R).

C.1. Mathematical Preliminaries

In this appendix, we provide some additional mathematical preliminaries; the interested reader should see standard references
for a more detailed introduction (Lee, 2012; Abraham et al., 1988).

A smooth manifold is a topological manifold with a smooth atlas. Euclidean space, as considered in this paper, is a
smooth manifold. For a vector space E, we define the vector space of continuous (p + s)–multilinear maps T ps (E) =
Lp+s(E∗, . . . , E∗, E, . . . , E;R) with s copies of E and p copes of E∗ and where E∗ denotes the dual. Elements of T ps (E)
are tensors on E, and T ps (X) denotes the vector bundle of such tensors (Abraham et al., 1988, Definition 5.2.9).

Consider smooth manifolds X and Y of dimension nx and ny respectively. An k–jet from X to Y is an equivalence class
[x, f, U ]k of triples (x, f, U) where U ⊂ X is an open set, x ∈ U , and f : U → Y is a Ck map. The equivalence relation
satisfies [x, f, U ]k = [y, g, V ]k if x = y and in some pair of charts adapted to f at x, f and g have the same derivatives
up to order k. We use the notation [x, f, U ]k = jkf(x) to denote the k–jet of f at x. The set of all k–jets from X to Y is
denoted by Jk(X,Y ). The jet bundle Jk(X,Y ) is a smooth manifold (see Hirsch, 1976, Chapter 2 for the construction).
For each Ck map f : X → Y we define a map jkf : X → Jk(X,Y ) by x 7→ jkf(x) and refer to it as the k–jet extension.

Definition C.1. Let X , Y be smooth manifolds and f : X → Y be a smooth mapping. Let Z be a smooth submanifold of
Y and u a point in X . Then f intersects Z transversally at u (denoted f t Z at u) if either f(u) /∈ Z or f(u) ∈ Z and
Tf(u)Y = Tf(u)Z + (f∗)u(TuX).

For 1 ≤ k < s ≤ ∞ consider the jet map jk : Cs(X,Y )→ Cs−k(X, Jk(X,Y )) and let Z ⊂ Jk(X,Y ) be a submanifold.
Define ⋂

| s(X,Y ; jk, Z) = {h ∈ Cs(X,Y )| jkh t Z}. (6)

A subset of a topological space X is residual if it contains the intersection of countably many open–dense sets. We say a
property is generic if the set of all points of X which possess this property is residual (Broer & Takens, 2010).

Theorem C.1. (Jet Transversality Theorem, Hirsch, 1976, Chapter 2). Let X , Y be C∞ manifolds without boundary, and
let Z ⊂ Jk(X,Y ) be a C∞ submanifold. Suppose that 1 ≤ k < s ≤ ∞. Then,

⋂
| s(X,Y ; jk, Z) is residual and thus dense

in Cs(X,Y ) endowed with the strong topology, and open if Z is closed.

Proposition C.2. (Golubitsky & Guillemin, 1973, Chapter II.4, Proposition 4.2). LetX,Y be smooth manifolds and Z ⊂ Y
a submanifold. Suppose that dimX < codimZ. Let f : X → Y be smooth and suppose that f t Z. Then, f(X) ∩ Z = ∅.

C.2. Genericity

We show that local Stackelberg equilibria of zero-sum games are generically non-degenerate differential Stackelberg
equilibria. Towards this end, we utilize the well-known fact that non-degeneracy of critical points is a generic property of
sufficiently smooth functions.

Lemma C.1 (Broer & Takens, 2010, Chapter 1). For Cq(Rm,R) functions with q ≥ 2 it is a generic property that all the
critical points are non-degenerate.
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The above lemma implies that for a generic function f ∈ Cq(Rm,R), the Hessian

H(x) =

 D
2
1f(x) · · · D1mf(x)

...
. . .

...
Dm1f(x) · · · D2

mf(x)


is non-degenerate at critical points—that is, det(H(x)) 6= 0. For a generic function f , we know that det(D2

i f(x)) 6= 0
(cf. Lemma C.3). The simultaneous learning dynamics game Jacobian in zero-sum games is given by

J(x) =

[
D2

1f(x) D12f(x)
−D21f(x) −D2

2f(x)

]
where J(x) is obtained by taking the Jacobian of the vector field (D1f(x),−D2f(x)). Moreover the Schur complement of
J(x) is given by

S1(J(x)) = D2
1f(x)−D>21f(x)(D2

2f(x))−1D21f(x).

Furthermore, the Stackelberg game Jacobian in zero-sum games is given by

JS(x) =

[
D1(Df(x)) D2(Df(x))
−D21f(x) −D2

2f(x)

]
.

where JS(x) is obtained by taking the Jacobian of the vector field (Df(x),−D2f(x)). At critical points defined by x such
that ωS(x) = (Df(x),−D2f(x)) = 0 we note that

JS(x) =

[
S1(J(x)) 0
−D21f(x) −D2

2f(x)

]
.

The structure is lower block triangular since

D2(Df(x)) = D12f(x) +Dr(x1)>D2
2f(x) = D12f(x)−D12f(x)(D2

2f(x))−1D2
2f(x) = 0.

Lemma C.2. Consider f ∈ Cq(Rm,R), q ≥ 2 and the corresponding zero-sum game G = (f,−f). For any critical
point defined by x ∈ Rm such that ωS(x) = 0, det(H(x)) 6= 0 ⇐⇒ det(J(x)) 6= 0 and, if det(−D2

2f(x)) 6= 0, then
det(H(x)) 6= 0 ⇐⇒ det(JS(x)) 6= 0.

Proof. Consider a fixed x = (x1, x2) ∈ Rm1 × Rm2 . Note that H(x) is equal to J(x) with the last m2 rows scaled each
by −1. Hence, J(x) = PH(x) where P = blockdiag(Im1 ,−Im2) with each Imi the mi ×mi identity matrix, so that
det(H(x)) = (−1)m2 det(J(x)), which in turn proves the first equivalence. For the second equivalence, suppose that
det(−D2

2f(x)) 6= 0 so that JS(x) is well-defined. Then, using the Schur decomposition of J(x) it is easily seen that
det(J(x)) = det(S1(J(x))) det(−D2

2f(x)) = det(JS(x)) where the last equality holds since JS(x) is a lower block
triangular matrix with S1(J(x)) and −D2

2f(x) on the diagonal at critical points. Hence, the result.

This equivalence between the non-degeneracy of the Hessian and the game Jacobian J (and the relationship to the determinant
of JS via the Schur decomposition) allows us to lift the generic property of non-degeneracy of critical points of functions to
critical points of the Stackelberg learning dynamics.

The Jet Transversality Theorem and Proposition C.2 can be used to show a subset of a jet bundle having a particular set of
desired properties is generic. Indeed, consider the jet bundle Jk(X,Y ) and recall that it is a manifold that contains jets
jkf : X → Jk(X,Y ) as its elements where f ∈ Ck(X,Y ). Let Z ⊂ Jk(X,Y ) be the submanifold of the jet bundle that
does not possess the desired properties. If dimX < codim Z, then for a generic function f ∈ Ck(X,Y ) the image of the
k–jet extension is disjoint from Z implying that there is an open–dense set of functions having the desired properties.

Without loss of generality, we let player 1 be the leader.

Lemma C.3. Consider f ∈ Cq(Rm1+m2 ,R), q ≥ 2 such that D2
i f ∈ Rmi×mi . It is a generic property that

det(D2
i f(x)) 6= 0 for any i = 1, 2.
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Proof. Let us start with f ∈ Cq with q ≥ 3. First, critical points of a function f are such that Dif(x) = 0, i = 1, 2.
Furthermore, the J2(Rm,R) bundle associated to f is diffeomorphic to Rm×R×Rm×Rm(m+1)/2 and the 2-jet extension
of f at any point x ∈ Rm is given by (x, f(x), Df(x), D2f(x)).

Now, let us denote by S(k) the space of k × k symmetric matrices, and consider the subset of J2(Rm,R) defined by

Di = Rm × R× {0} × Zi(mi)× Rm1×m2 × S(m−mi)

where Z(mi) = {A ∈ S(mi)| det(A) = 0}. The set Z(mi) is algebraic; hence, we can use the Whitney stratification
theorem (Gibson et al., 1976, Ch. 1, Thm. 2.7) to get that each Z(mi) is the union of submanifolds of co-dimension at least
1. Hence, it is the union of sub-manifolds of codimension at least one and, in turn, Di is the union of sub-manifolds of
codimension at least m+ 1. Thus, it follows from the Jet Transversality Theorem C.1 (by way of Proposition C.2 since
m+ 1 > m) that for a generic function f , the image of the 2-jet extension j2f is disjoint from Di. Hence, for such an f ,
for each x that is a critical point, the Hessian of f is such that det(D2

i f(x)) 6= 0.

Furthermore, if we consider the subset D ⊂ J2(Rm,R) defined by

D = Rm × R× {0} × Z(mi)× Rm1×m2 × Z(m−mi),

then both Z(mi) and Z(m −mi) are algebraic, and so they each are of co-dimension at least one. In turn, D is the the
union of sub-manifolds of codimension at least m+ 2. Applying the Jet Transversality Theorem C.1 again, we get that for
such an f , for each x that is a critical point, the Hessian of f is such that det(D2

i f(x)) 6= 0 for i ∈ {1, 2}.

The extension to the q ≥ 2 setting follows directly from the fact that non-degeneracy is an open condition in the C2

topology, and any function can be C2 approximated by a C3 function (see, e.g., Hirsch, 2012, Thm. 2.4), which can then be
approximated by a function without critical points such that det(D2

i f(x)) = 0 (by the above argument), which we will call
coordinate degenerate. This, in turn, implies that functions without critical points that are coordinate-degenerate are dense in
the C2 space of functions.

While the theorems we leverage from differential geometry and dynamical systems theory are similar, the architecture of
the proof of the following theorem deviates quite a bit from (Ratliff et al., 2014; Mazumdar & Ratliff, 2019) due to the
heirarchical structure of the game.

Theorem 1. For the class of two-player, zero-sum continuous games (f,−f) where f ∈ Cq(Rm,R) with q ≥ 2, differential
Stackelberg are generic amongst local Stackelberg. That is, given a generic f ∈ Cq(Rm,R), all local Stackelberg of the
game (f,−f) are differential Stackelberg.

Proof. Let J2(Rm,R) denote the second-order jet bundle containing 2–jets j2f such that f : Rm → R. Then, J2(Rm,R)

is locally diffeomorphic to Rm × R × Rm × R
m(m+1)

2 and the 2–jet extension of f at any point x ∈ Rm is given by
(x, f(x), Df(x), D2f(x)).

By Lemma C.3, we know that

D2 = Rm × R× {0} × Z(m2)× Rm1+m2 × S(m1)

has co-dimension at least m+ 1 in J2(Rm,R) so that there exists an open dense set of functions F2 ⊂ Cq(Rm,R) such
that det(D2

2f(x)) 6= 0 at critical points (i.e., where (D1f(x), D2f(x)) = (0, 0)).

Now, we also know that there is an open dense set of functions F1 in Cq(Rm,R) such that det(H(x)) 6= 0 at critical
points. The intersection of open dense sets is open dense. Let F = F1 ∩ F2. Now, for any f ∈ F , we have that at critical
points det(H(x)) 6= 0 and det(D2

2f(x)) 6= 0. Hence, by Lemma C.2, det(JS(x)) 6= 0 for all f ∈ F , and in particular,
det(S1(x)) 6= 0.

For all functions f ∈ F , the critical points of ωS(x) = (Df(x),−D2f(x)) coincide with the critical points of the function
f . Indeed,

(D1f(x), D2f(x)) = (0, 0) ⇐⇒ (Df(x),−D2f(x)) = (0, 0)

since for all f ∈ F , det(D2
2f(x)) 6= 0 and D2f(x) = 0 so that the Cq implicit map at a critical point D2f(x) = 0 is

well-defined.
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Thus, we have constructed an open dense set F ⊂ Cq(Rm,R) such that for all f ∈ F , if x ∈ Rm is a local Stackelberg
equilibrium for (f,−f), then x is a non-degenerate differential Stackelberg equilibrium. Indeed, suppose f ∈ F and
x ∈ Rm is a local Stackelberg equilibrium. Then, a necessary condition is that −D2f(x) = 0 and −D2

2f(x) ≥ 0. However,
since f ∈ F , we have that det(−D2

2f(x)) = (−1)m2 det(D2
2f(x)) 6= 0 so that, in fact, −D2

2f(x) > 0. Hence, a local
Stackelberg equilibrium such that −D2f(x) = 0 and −D2

2f(x) > 0 necessarily satisfies ωS(x) = 0 and S1(x) ≥ 0.
However, again since f ∈ F , and det(S1(x)) 6= 0 so that, in fact, S1(x) > 0. Furthermore, due to the lower block triangular
structure of JS(x), det(−D2

2f(x)) = (−1)m2 det(D2
2f(x)) 6= 0 and det(S1(x)) 6= 0 also imply that det(JS(x)) 6= 0,

which completes the proof.

Necessary conditions4 for a local Stackelberg solution for the leader follow from necessary conditions in nonlinear
optimization and can be used in conjunction with Theorem 1 to show that local Stackelberg equilibria are generically
hyperbolic—that is, for any local Stackelberg equilibrium x, there are no eigenvalues of JS(x) with zero real part.

Lemma C.4 (Necessary Conditions for Local Stackelberg). Consider a game (f1, f2) defined by fi ∈ Cq(X,R), i = 1, 2
with q ≥ 2 and player 1 (without loss of generality) taken to be the leader. Suppose that x∗ = (x∗1, x

∗
2) is a local Stackelberg

equilibrium such that the follower (player 2) is at a strict local minimum so that D2f2(x∗1, x
∗
2) = 0 and D2

2f2(x∗1, x
∗
2) > 0.

Then, Df1(x∗1, x
∗
2) = 0 and D2f1(x∗1, x

∗
2) ≥ 0.

Proof. The proof is straightforward. Indeed, suppose that given x∗1, x∗2 is a strict local minimum for the follower. By the
implicit function theorem (Abraham et al., 1988, Thm. 2.5.7), there exists a Cq map r : x1 7→ x2 defined on a neighborhood
of x∗1 such that r(x∗1) = x∗2 and Dr ≡ −(D2

2f2)−1 ◦D21f2. Hence, necessary conditions for the leader reduce to necessary
conditions on the problem minx1

f1(x1, r(x1)).

The following corollary is a direct consequence of Theorem 1 and Lemma C.4.

Corollary 1. For the class of two-player, zero-sum continuous games (f,−f) where f ∈ Cq(Rm,R) with q ≥ 2, local
Stackelberg equilibria are generically non-degenerate, hyperbolic critical points of the vector field ωS(x).

C.3. Structural Stability

We now show that (non-degenerate) differential Stackelberg are structurally stable, meaning that they persist under smooth
perturbations within the class of zero-sum games.

Theorem C.2. For zero-sum games, differential Stackelberg equilibria are structurally stable: given f ∈ Cr(Rm1×Rm2 ,R),
ζ ∈ Cr(Rm1 × Rm2 ,R), and a differential Stackelberg equilibrium (x1, x2) ∈ Rm1 × Rm2 , there exists neighborhoods
U ⊂ R of zero and V ⊂ Rm1 × Rm2 such that for all t ∈ U there exists a unique differential Stackelberg equilibrium
(x̃1, x̃2) ∈ V for the zero-sum game (f + tζ,−f − tζ).

Proof. Let Rm = Rm1 × Rm2 . Define the smoothly perturbed cost function f̃ : Rm × R → R by f̃(x, y, t) =
f(x, y)+tζ(x, y), and ω̃S : Rm×R→ T ∗(Rm) by ω̃S(x, y, t) = (Df̃(x, y)),−D2f̃(x, y)), for all t ∈ R and (x, y) ∈ Rm.

Since (x1, x2) is a differential Stackelberg equilibrium, Dω̃S(x, y, 0) is necessarily non-degenerate. Invoking the implicit
function theorem (Abraham et al., 1988, Thm. 2.5.7), there exists neighborhoods V ⊂ R of zero and W ⊂ Rm and a smooth
function σ ∈ Cr(V,W ) such that for all t ∈ V and (x1, x2) ∈W , ω̃S(x1, x2, s) = 0 ⇐⇒ (x1, x2) = σ(t). Since ω̃S is
continuously differentiable, there exists a neighborhood U ⊂W of zero such that Dω̃S(σ(t), t) is invertible for all t ∈ U .
Thus, for all t ∈ U , σ(t) must be the unique local Stackelberg equilibrium of (f + tζ|W ,−f − tζ|W ).

D. Proofs for Results on Connections and Implications for Zero-Sum Settings
This appendix contains proofs for results given in Section 3. To be clear, we restate each result before providing the proof.

Lemma D.1 (Equivalence Between Sets of Critical Points). Consider a zero-sum game (f,−f) defined by a function
f ∈ Cq(X,R), q ≥ 2. The critical points of ẋ = −ω(x) and ẋ = −ωS(x) coincide.

4Recall that the conditions that define or characterize a differential Stackelberg equilibrium are sufficient conditions for a local
Stackelberg equilibrium; indeed, if a point x∗ is a differential Stackelberg equilibrium, then it is a local Stackelberg equilibrium.
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Proof. The result holds since for any x ∈ X , D1f(x) = 0 and D2f(x) = 0 if and only if Df(x) = D1f(x) −
D21f(x)>(D2

2f(x))−1D2f(x) = 0 and D2f(x) = 0.

The above lemma implies that in zero-sum games the first-order necessary and sufficient conditions for differential Nash
equilibria and differential Stackelberg equilibria coincide.

The following is Proposition 2 from the main body.

Proposition 2. In zero-sum games (f,−f) with f ∈ Cq(X,R) for q ≥ 2, a joint strategy x ∈ X is a stable critical point
of ẋ = −ωS(x) if and only if x is a differential Stackelberg equilibrium. Moreover, if f is generic, a point x is a stable
critical point of ẋ = −ωS(x) if and only if it is a local Stackelberg equilibrium.

Proof. For a zero-sum game (f,−f), the Jacobian of the Stackelberg limiting dynamics ẋ = −ωS(x) at a stable critical
point is

JS(x) =

[
D1(Df)(x) 0
−D21f(x) −D2

2f(x)

]
> 0. (7)

The structure of the Jacobian JS(x) follows from the fact that

D2(Df(x)) = D12f(x)−D12f(x)(D2
2f(x))−1D2

2f(x) = 0.

The eigenvalues of a lower triangular block matrix are the union of the eigenvalues in each of the block diagonal components.
This implies that JS(x) > 0 if and only if D1(Df)(x) > 0 and −D2

2f(x) > 0. Consequently, invoking Lemma D.1, a
point x is a stable critical point of the Stackelberg limiting dynamics if and only if x is a differential Stackelberg equilibrium
by the definition.

Now, suppose that f ∈ Cq(X,R) is a generic function. Then, by Theorem 1 (genericity of differential Stackelberg equilibria
in zero sum games), all differential Stackelberg equilibria of (f,−f) are local Stackelberg equilibria so that the final
statement of the theorem holds.

The following is Proposition 3 from the main body.

Proposition 3. In zero-sum games (f,−f) with f ∈ Cq(X,R) for q ≥ 2, differential Nash equilibria are differential
Stackelberg equilibria. Moreover, if f is generic, local Nash equilibria are local Stackelberg equilibria.

Proof. Suppose x is a differential Nash equilibria so that by definition D2
1f(x) > 0, −D2

2f(x) > 0. This directly implies
that the Schur complement of J(x) is strictly positive definite:

D2
1f(x)−D21f(x)>(D2

2f(x))−1D21f(x) > 0.

Hence, x is a differential Stackelberg equilibrium since the Schur complement of J is exactly the derivative D2f at critical
points and −D2

2f(x) > 0 since x is a differential Nash equilibrium.

Now, suppose that f ∈ Cq(X,R) is a generic function. Then, by genericity of differential Nash equilibria in zero sum
games (Mazumdar & Ratliff, 2019, Thm. 2), all local Nash equilibria of (f,−f) are differential Nash equilibria. Similarly,
by Theorem 1 (genericity of differential Stackelberg equilibria in zero sum games), all local Stackelberg equilibria of (f,−f)
are differential Stackelberg equilibria so that the final statement of the result holds.

Moreover, the following lemma has been shown previously (Mazumdar et al., 2020, Prop. 3.7); we provide the proof here
for posterity.

Lemma D.2. Consider a two-player, zero-sum continuous game (f,−f) defined for f ∈ Cq(X,R) with q ≥ 2. If x is a
differential Nash equilibrium, then it is a stable critical point of ẋ = −ω(x).

Proof. Consider a zero-sum game (f,−f) and a differential Nash equilibrium x so that ω(x) = 0, D2
1f(x) > 0, and

−D2
2f(x) > 0. The Jacobian of ω is given by

J(x) =

[
D2

1f(x) D12f(x)
−D21f(x) −D2

2f(x)

]
=

[
D2

1f(x) D12f(x)
−D>12f(x) −D2

2f(x)

]
.
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Let (λ, v) be an eigenpair of J(x). The real part of λ, denoted Re(λ), is given by

Re(λ) = 1
2 (λ̄+ λ) = 1

2 (v∗J>(x)v + v∗J(x)v) = 1
2v
∗(J>(x) + J(x))v = 1

2v
∗
[
D2

1f(x) 0
0 −D2

2f(x)

]
v > 0

where the last equality follows from the positive definiteness of diag(D2
1f(x),−D2

2f(x)).

As a consequence of Lemma D.2 and Propositions 2 and 3, any differential Nash equilibrium of a zero-sum game is
both a stable critical point of the continuous time simultaneous play dynamics ẋ = −ω(x) and the Stackelberg dynamics
ẋ = −ωS(x), and hence a differential Stackelberg equilibrium. We summarize this result in the following proposition.
Proposition D.1. Consider a zero-sum game (f,−f) defined by f ∈ Cq(X,R) with q ≥ 2. Any differential Nash
equilibrium is a stable critical point of ẋ = −ω(x) and ẋ = −ωS(x), and hence, is a differential Stackelberg equilibrium.
For a generic zero-sum game (f,−f), any local Nash equilibrium is a stable critical point of ẋ = −ω(x) and ẋ = −ωS(x),
and hence, is a local Stackelberg equilibrium.

The following is Proposition 4 from the main body.
Proposition 4. Consider a zero-sum GAN satisfying the realizable assumption. Any stable critical point of ẋ = −ω(x) at
which −D2

2f(x) > 0 is a differential Stackelberg equilibrium and a stable critical point of ẋ = −ωS(x).

Proof. Consider a stable critical point x of ẋ = −ω(x) such that −D2
2f(x) > 0. Note that the realizable assumption

implies that the Jacobian of ω is

J(x) =

[
0 D12f(x)

−D21f(x) −D2
2f(x)

]
(see, e.g., Nagarajan & Kolter, 2017). Hence, since −D2

2f(x) > 0,

−D>21f(x)(D2
2f)−1(x)D21f(x) > 0.

Moreover, since both −D2
2f(x) > 0 and the Schur complement D2

1f(x) −D>21f(x)(D2
2f(x))−1D21f(x) > 0, we can

determine that x is a differential Stackelberg equilibrium. Given that x is a differential Stackelberg equilibrium, it follows
that the Jacobian of ωS has positive real eigenvalues from the block triangular structure so the point x is stable with respect
to ẋ = −ωS(x).

E. When are Non-Nash Attractors of Simultaneous Gradient Play Stackelberg Equilibria?
As alluded to in the main body, an interesting question is when stable critical points of simultaneous gradient descent are
differential Stackelberg equilibria but not differential Nash equilibria. Attracting critical points x∗ of the dynamics ẋ =
−ω(x) that are not differential Nash equilibria are such that either D2

1f(x∗) or −D2
2f(x∗) are not positive definite. Without

loss of generality, considering player 1 to be the leader, a stable critical point of the Stackelberg dynamics ẋ = −ωS(x)
requires both −D2

2f(x∗) and D2
1f(x∗)−D21f(x∗)>(D2

2f(x∗))−1D21f(x∗) to be positive definite. Furthermore, recall
from Proposition 2 that the set of stable critical points for the dynamics ẋ = −ωS(x) is equivalent to the set of differential
Stackelberg equilibria since the conditions for stability are the conditions for a differential Stackelberg equilibria. Hence, if
−D2

2f(x∗) is not positive definite at a stable critical point of ẋ = −ω(x) that is not a differential Nash equilibria, then x∗

will also not be a differential Stackelberg equilibria nor a stable critical point of ẋ = −ωS(x). Consequently, in this section,
we consider stable critical points x∗ of ẋ = −ω(x) at which −D2

2f(x∗) > 0 that are not differential Nash equilibria and
determine when D2

1f(x∗)−D21f(x∗)>(D2
2f(x∗))−1D21f(x∗) is positive definite so that x∗ is a differential Stackelberg

equilibria and also a stable critical point of ẋ = −ωS(x). 5

In the following two propositions, we need some addition notion that is common across the two results. Let x1 ∈ Rm
and x2 ∈ Rn. For a stable critical point x∗ of ẋ = −ω(x) that is not a differential Nash equilibria, let spec(D2

1f(x∗)) =
{µj , j ∈ {1, . . . ,m}} where

µ1 ≤ · · · ≤ µr < 0 ≤ µr+1 ≤ · · · ≤ µm,
and let spec(−D2

2f(x∗)) = {λi, i ∈ {1, . . . , n}} where λ1 ≥ · · · ≥ λn > 0, and define p = dim(ker(D2
1f(x∗))).

5We note that we could study an analogous setup in which we characterize when the stable critical points that are not differential
Nash equilibria with D2

1f(x∗) > 0 are such that −D2
2f(x∗) +D12f(x∗)>(D2

1f(x∗))−1D12f(x∗) > 0, thereby switching the roles of
leader and follower.
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Proposition E.1 (Necessary conditions). Consider a stable critical point x∗ of the simultaneous gradient dynamics
ẋ = −ω(x) that is not a differential Nash equilibrium and is such that −D2

2f(x∗) > 0. Given κ > 0 such that
‖D21f(x∗)‖ ≤ κ, if x∗ is a differential Stackelberg equilibria and a stable critical point of ẋ = −ωS(x), then r ≤ n and
κ2λi + µi > 0 for all i ∈ {1, . . . , r − p}.

For a matrix W , let W † denote the conjugate transpose.
Proposition E.2 (Sufficient conditions). Let x∗ be a stable critical point of the simultaneous gradient dynamics ẋ = −ω(x)
that is not a differential Nash equilibria and is such that D2

1f(x∗) and −D2
2f(x∗) are Hermitian and −D2

2f(x∗) >
0. Suppose that there exists a diagonal matrix (not necessarily positive) Σ ∈ Cm×n with non-zero entries such that
D12f(x∗) = W1ΣW †2 where W1 are the orthonormal eigenvectors of D2

1f(x∗) and W2 are orthonormal eigenvectors of
−D2

2f(x∗). Given κ > 0 such that ‖D21f(x∗)‖ ≤ κ, if r ≤ n and κ2λi + µi > 0 for each i ∈ {1, . . . , r− p}, then x∗ is a
differential Stackelberg equilibrium and a stable critical point of ẋ = −ωS(x).

The proofs of the propositions follow from linear algebra results. Before diving into the proofs, we provide some commentary.
Essentially, this says that if D2

1f(x∗) = W1MW †1 with W1W
†
1 = Im×m and M diagonal, and −D2

2f(x∗) = W2ΛW †2
with W2W

†
2 = In×n and Λ diagonal, then D12f(x∗) can be written as W1ΣW †2 for some diagonal matrix Σ ∈ Rm×n

(not necessarily positive). Note that since Σ does not necessarily have positive values, W1ΣW †2 is not the singular value
decomposition of D12f(x∗). In turn, this means that each eigenvector of D2

1f(x∗) gets mapped onto a single eigenvector of
−D2

2f(x∗) through the transformation D12f(x∗) which describes how player 1’s variation D1f(x) changes as a function of
player 2’s choice. With this structure for D12f(x∗), we can show that D2

1f(x∗)−D21f(x∗)>(D2
2f(x∗))−1D21f(x∗) > 0.

Note that if we remove the assumption that Σ has non-zero entries, then the remaining assumptions are still sufficient to
guarantee that

D2
1f(x∗)−D21f(x∗)>(D2

2f)−1(x∗)D21f(x∗) ≥ 0.

This means that x∗ does not satisfy the conditions for a differential Stackelberg equilibrium, however, the point does satisfy
necessary conditions for a local Stackelberg equilibrium and the point is a marginally stable attractor of the dynamics.

The following lemma is a very well-known result in linear algebra and can be found in nearly any advanced linear algebra
text such as (Horn & Johnson, 2011).
Lemma E.1. Let W ∈ Cn×n be Hermitian with k positive eigenvalues (counted with multiplicities) and let U ∈ Cm×n.
Then λj(UWU†) ≤ ‖U‖2λj(W ) for each j ∈ {1, . . . ,min{k,m, rank(UWU†)}}.

Let |M | = (MM>)1/2 for a matrix M . Recall also that for Propositions E.1 and E.2, we have defined spec(D2
1f(x∗)) =

{µj , j ∈ {1, . . . ,m}} where µ1 ≤ · · · ≤ µr < 0 ≤ µr+1 ≤ · · · ≤ µm, and spec(−D2
2f(x∗)) = {λi, i ∈ {1, . . . , n}}

where λ1 ≥ · · · ≥ λn > 0, given a stable critical point x∗ of ẋ = −ω(x).

We now use the Lemma E.1 to prove Proposition E.1. The proof follows the main arguments in Berger et al. (2018, Lemma
3.2) with some minor changes due to the nature of our problem.

Proof of Proposition E.1. Let x∗ be a differential Stackelberg equilibria but not a differential Nash equilibrium and a
stable critical point of both ẋ = −ω(x) and ẋ = −ωS(x) such that −D2

2f(x∗) > 0. For the sake of presentation,
define A = D2

1f(x∗), B = D12f(x∗), and C = D2
2f(x∗). Recall that x1 ∈ Rm and x2 ∈ Rn and suppose that

A−BC−1B> > 0.

Claim: r ≤ n is necessary. Assume for the sake of contradiction that r > n. Note that if m ≤ n, then this is not possible.
In this case, we automatically satisfy that r ≤ n. Otherwise, r ≥ m > n. Let S1 = ker(B(−C−1 + |C−1|)B>) and
consider the subspace S2 of Cm spanned by the all the eigenvectors of A corresponding to non-positive eigenvalues. Note
that

dimS1 = m− rank(B(−C−1 + |C−1|)B>) ≥ m− rank(−C−1 + |C−1|) = m− n
By assumption, we have that dimS2 = r > n so that

dimS1 + dimS2 ≥ (m− n) + r = m+ (r − n) > m.

Thus, S1 ∩ S2 6= {0}. Now, S1 = ker(B(−C−1 + |C−1|)B>). Hence, for any non-trivial vector v ∈ S1 ∩ S2,
(BC−1B> −B|C−1|B>)v = 0 so that we have

〈(A−BC−1B>)v, v〉 = 〈Av, v〉 − 〈B|C−1|B>v, v〉 ≤ 0. (8)



Implicit Learning Dynamics in Stackelberg Games

Note that the inequality in (8) holds since the vector v is in the non-positive eigenspace of A and the second term is clearly
non-positive. Thus, A−BC−1B> cannot be positive definite, which gives a contradiction so that r ≤ n.

Claim: κ2λi + µi > 0 is necessary. Let the maps λi(·) denote the eigenvalues of its argument arranged in non-increasing
order. Then, by the Weyl theorem for Hermitian matrices (Horn & Johnson, 2011), we have that

0 < λm(A−BC−1B>) ≤ λi(A) + λm−i+1(−BC−1B>), i ∈ {1, . . . ,m}.

We can now combine this inequality with Lemma E.1. Indeed, we have that

0 < λi(A) + ‖B‖2λm−i+1(−C−1) < µm−i+1 + κ2λm−i+1, ∀ i ∈ {m− r + p+ 1, . . . ,m}

which gives the desired result.

Since we have shown both the necessary conditions, this concludes the proof.

Now, let us prove Proposition E.2 which gives sufficient conditions for when a stable critical point x∗ of ẋ = −ω(x) at
which −D2

2f > 0 is such that it is not a differential Nash equilibrium but it is a differential Stackelberg equilibrium and a
stable critical point of ẋ = −ωS(x).

Proof of Proposition E.2. Let x∗ be a stable critical point of ẋ = −ω(x) that is not a differential Nash equilibrium
such that D2

1f(x∗) and −D2
2f(x∗) > 0 are Hermitian. Since D2

i f(x∗), i = 1, 2 are both Hermitian, let D2
1f(x∗) =

W1MW †1 with W1W
†
1 = Im×m and M = diag(µ1, . . . , µm), and −D2

2f(x∗) = W2ΛW †2 with W2W
†
2 = In×n and

Λ = diag(λ1, . . . , λn).

By assumption, there exists a diagonal matrix Σ ∈ Rm×n such that D12f(x∗) = W1ΣW †2 where W1 are the orthonormal
eigenvectors of D2

1f(x∗) and W2 are orthonormal eigenvectors of −D2
2f(x∗). Then,

D2
1f(x∗)−D21f(x∗)>(D2

2f(x∗))−1D21f(x∗) = W1MW †1 +W1ΣW †2 (W2ΛW †2 )−1W2Σ†W †1

= W1(M + ΣΛ−1Σ†)W †1

Hence, to understand the eigenstructure, we simply need to compare the all negative eigenvalues of D2
1f(x∗) in increasing

order with the most positive eigenvalues of−D2
2f(x∗) in decreasing order. Indeed, by assumption, r ≤ n and κ2λi+µi > 0

for each i ∈ {1, . . . , r − p}. Thus,

D2
1f(x∗)−D21f(x∗)>(D2

2f(x∗))−1D21f(x∗) > 0

since it is a symmetric matrix. Combining this with the fact that −D2
2f(x∗) > 0, x∗ is a differential Stackelberg equilibrium

and by Proposition 2 it is also a stable critical point of ẋ = −ωS(x).

It is also worth noting that the fact that the eigenvalues of −J(x∗) are in the open-left-half complex plane is not used in
proving this result. We believe that further investigation could lead to a less restrictive sufficient condition. Empirically, by
randomly generating the different block matrices, it is quite difficult to find examples such that the real parts of the eigenvalues
of J(x∗) are positive, −D2

2f(x∗) > 0, and the Schur complement D2
1f(x∗)−D21f(x∗)>(D2

2f)−1(x∗)D21f(x∗) is not
positive definite. In the scalar case stated in Corollary E.1, the proof is straightforward; we suspect that using the notion of
quadratic numerical range (Tretter, 2008)—a super set of the spectrum of a block operator matrix—along with the fact that
the Jacobian of the simultaneous gradient play dynamics, −J , has its spectrum in the open left-half complex plane, we may
be able to extend the scalar case to arbitrary dimensions.

We also note that the condition depends on conditions that are difficult to check a priori without knowledge of x∗. Certain
classes of games for which these conditions hold everywhere and not just at the equilibrium can be constructed. For instance,
alternative conditions can be given: if the function f which defines the zero-sum game is such that it is concave in x2 and
there exists a K such that

D12f(x) = KD2
2f(x)

where supx ‖D12f(x)‖ ≤ κ <∞6 and K = W1ΣW †2 with Σ again a (not necessarily positive) diagonal matrix, then the
results of Proposition E.2 hold. From a control point of view, one can think about the leader’s update as having a feedback

6Functions such that derivative of f is Lipschitz will satisfy this condition.
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term with the follower’s input. On the other hand, the results are useful for the synthesis of games, such as in reward shaping
or incentive design, where the goal is to drive agents to particular desirable behavior.

Corollary E.1. Consider a zero-sum game (f,−f) defined by f ∈ Cq(R× R,R) with q ≥ 2. All stable critical points of
ẋ = −ω(x) at which −D2

2f(x) > 0 that are not differential Nash equilibria are differential Stackelberg equilibria.

Proof. Consider a zero-sum game (f,−f) defined by f ∈ Cq(R× R,R) with q ≥ 2. Suppose x is a stable critical point of
ẋ = −ω(x) at which −D2

2f(x) > 0 and D2
1f(x) ≤ 0 so that it is not a Nash equilibria. The Jacobian J(x) of the vector

field ω(x) is given by

J(x) =

[
D2

1f(x) D12f(x)
−D21f(x) −D2

2f(x)

]
.

Since x is a stable critical point, the eigenvalues of J(x) have positive real parts. This fact guarantees that the determi-
nant and trace of J(x) must be positive since the eigenvalues are either complex conjugates or both real. As a result,
D12f(x)D21f(x) > D2

1f(x)D2
2f(x) and D2

1f(x∗) > D2
2f(x∗). It directly follows that the Schur complement of J(x) is

positive definite, meaning
D2

1f(x∗)−D12f(x)(D2
2f(x))−1D21f(x) > 0.

We conclude that x is a differential Stackelberg equilibrium since ω(x) = 0 if and only if ωS(x) = 0 by Lemma D.1, the
Schur complement of J(x) is the derivative D2f(x), and −D2

2f(x) > 0 was given.

F. Deterministic Convergence Results
Consider the deterministic Stackelberg update

xk+1,1 = xk,1 − γ1(D1f1(xk)−D>21f2(xk)(D2
2f2(xk))−1D2f1(xk)) (9)

xk+1,2 = xk,2 − γ2D2f2(xk) (10)

which is equivalent to the dynamics

xk+1,1 = xk,1 − γ1(D1f1(xk)−D>21f2(xk)(D2
2f2(xk))−1D2f1(xk)) (11)

xk+1,2 = xk,2 − γ1τD2f2(xk) (12)

where τ = γ2/γ1 is the “timescale” separation. Then, we write the τ–Stackelberg update in “vector”7 form as

xk+1 = xk − γ1ωSτ (xk). (13)

where
ωSτ (xk) =

(
D1f1(xk)−D>21f2(xk)(D2

2f2(xk))−1D2f1(xk), τD2f2(xk)
)
.

In the following subsections, we provide the proofs of the convergence guarantees in zero-sum games, almost sure avoidance
of saddles, and then the convergence guarantees in general-sum games, respectively.

F.1. Zero-Sum Convergence

Under appropriate choices on the step-size so that the local linearization of the update is a contraction, standard arguments
from numerical analysis for dynamical systems give rise to a guarantee on local asymptotic convergence (including a rate
of convergence), and a finite-time convergence guarantee to an ε–differential Stackelberg equilibrium. Indeed, recall the
following well-known result on on fixed points gives us exactly such convergence guarantees.

Proposition F.1 (Ostrowski’s Theorem Argyros, 1999). Let x∗ be a fixed point for the discrete dynamical system xk+1 =
F (xk). If the spectral radius of the Jacobian satisfies ρ(DF (x∗)) < 1, then F is a contraction at x∗ and hence, x∗ is
asymptotically stable.

7We are in some places treating derivatives as co-vectors and in other places as vectors. The reader should pay attention to context.
Here, e.g., ωSτ (x) ∈ Rm1+m2 .
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We note that ρ(DF (x∗)) < 1 implies there exists c > 0 such that ρ(DF (x∗)) ≤ c < 1. Hence, given any ε > 0, there is a
norm and a c > 0 such that ‖DF‖ ≤ c+ ε < 1 on a neighborhood of x∗ (Ortega & Rheinboldt, 1970, 2.2.8). Thus, the
proposition implies that if ρ(DF (x∗)) = 1− κ < 1 for some κ, then there exists a ball Bp(x∗) of radius p > 0 such that
for any x0 ∈ Bp(x∗), and some constant K > 0, ‖xk − x∗‖2 ≤ K(1− κ

2 )k‖x0 − x∗‖2 using ε = κ
4 .

For a zero-sum setting defined by cost function f ∈ Cq(X1 ×X2,R) with q ≥ 2, let

S1(J(x)) = D2
1f(x)−D21f(x)>(D2

2f(x))−1D21f(x)

be the first Schur complement of the Jacobian J(x) of ω(x) = (D1f(x), D2f(x)). The game Jacobian for the τ -Stackelberg
update at critical points is given by

JSτ (x) =

[
S1(J(x)) 0
−τD21f(x) −τD2

2f(x)

]
(14)

Recall that for function f and g defined on on some subset of real numbers, f(k) = O(g(k)) if and only if there exists
constants K and C such that |f(k)| ≤ C|g(k)| for all k > K.

Using Proposition F.1, we prove the following two results from the main body.

Theorem 3 (Zero-Sum Rate of Convergence.). Consider a zero-sum game defined by f ∈ Cq(X,R) with q ≥
2. For a differential Stackelberg equilibrium x∗ with α = min{λmin(S1(J(x∗))), λmin(−τD2

2f(x∗))} and β =
max{λmax(S1(J(x∗))), λmax(−τD2

2f(x∗))} and learning rate γ1 = 1/(2β), the τ–Stackelberg update converges lo-
cally with a rate of O((1− α

4β )k).

Before proving the result, we comment that we can prove this result with γ1 = 1/β and obtain a rate of O((1− α/(2β))k);
we choose γ1 = 1/(2β) in order to ensure that the choice of learning rate satisfies the avoidance of saddles result in
Theorem 4.

Proof of Theorem 3. To show convergence, we simply need to show that ρ(I − γ1JSτ (x∗)) < 1 and apply Proposition F.1.

Fix γ1 = 1/(2β). The structure of the Jacobian JSτ (x∗) is lower-block triangular, with symmetric components along
the diagonal given by S1(J(x)) and −τD2

2f(x). From this structure, we know that spec(JSτ (x)) = spec(S1(J(x))) ∪
spec(−τD2

2f(x)). Then, by the spectral mapping theorem and the fact that the eigenvalues of JSτ (x∗) are real,

max
λ∈spec(I−γ1JSτ (x∗))

|λ| = |1− γ1 min{λmin(S1(J(x∗))), λmin(−τD2
2f(x∗))}| = |1− γ1α|.

so that ρ(I − γ1JSτ (x∗)) < 1 since α ≤ β. We also note that λmin(I − γ1JSτ (x∗)) = 1 −
γ1 max{λmax(S1(J(x∗))), λmax(−τD2

2f(x∗))} ≥ 0 for the choice of γ1 so that, in fact, spec(I−γ1JSτ (x∗)) ⊂ [0, 1− α
2β ].

Applying Proposition F.1 gives the convergence guarantee for τ–Stackelberg. Indeed, since ρ(I − γ1JSτ ) ≤ 1− α
2β , given

ε > 0, there exists a matrix norm ‖ · ‖ such that ‖I − γ1JSτ ‖ ≤ 1 − α
2β + ε (Horn & Johnson, 2011, Lemma 5.6.10).8

Consider ε = α
8β so that there exists ‖ · ‖ such that ‖I − γ1JSτ ‖ ≤ 1− 3α

8β . Taking the Taylor expansion of I − γ1ωSτ (x)
in a neighborhood of x∗, we have

I − γ1ωSτ (x) = (I − γ1ωSτ (x∗)) + (I − γ1JSτ (x∗))(x− x∗) +R1(x− x∗)

where R1(x− x∗) is the remainder term satisfying R1(x− x∗) = o(‖x− x∗‖).9 This, in turn, implies that there is a δ > 0
such that ‖R1(x− x∗)‖ ≤ α

8β ‖x− x
∗‖ whenever ‖x− x∗‖ < δ. Hence,

‖I − γ1ωSτ (x)− (I − γ1ωSτ (x∗))‖ ≤
(
‖I − γ1JSτ (x∗)‖+

α

8β

)
‖x− x∗‖ ≤

(
1− α

4β

)
‖x− x∗‖

Thus, for any x0 ∈ {x| ‖x− x∗‖ < δ},

‖xk − x∗‖ ≤
(

1− α

4β

)k
‖x0 − x∗‖. (15)

8In fact, one can show that there is both a weighted induced 1-norm and weighted induced∞-norm works for any ε so that the
construction is not unreasonable.

9The notation R1(x− x∗) = o(‖x− x∗‖) as x→ x∗ means limx→x∗ ‖R1(x− x∗)‖/‖x− x∗‖ = 0.
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Hence, the iteration complexity (or rate of convergence) is O((1 − α/(4β))k), since all finite dimensional norms are
equivalent.

Corollary 2 (Zero-Sum Finite Time Guarantee). Given ε > 0, under the assumptions of Theorem 3, τ -Stackelberg
learning obtains an ε-differential Stackelberg equilibrium in d 4βα log(‖x0 − x∗‖/ε)e iterations for any x0 ∈ Bδ(x∗) with
δ = α/(4Lβ) where L is the local Lipschitz constant of I − γ1JSτ (x∗).

The proof of Corollary 2 follows directly from the conclusion of Theorem 3.

Proof of Corollary 2. Following standard arguments, (15) in the proceeding proof implies a finite time convergence guaran-
tee. Indeed, let ε > 0 be given. Since 0 < α

4β < 1 we have that (1− α
4β )k < exp(−kα4β ). Hence,

‖xk − x∗‖ ≤ exp(−kα/(4β))‖x0 − x∗‖

This, in turn implies that xk ∈ Bε(x∗), meaning xk is a ε-differential Stackelberg equilibrium for all k ≥ d 4βα log(‖x0 −
x∗‖/ε)e whenever ‖x0 − x∗‖ < δ.

Now, given that fi ∈ Cq(X,R) for q ≥ 2, I − γ1JSτ (x) is locally Lipschitz with constant L so that we can find
an explicit expression for δ in terms of L. Indeed, recall that R1(x − x∗) = o(‖x − x∗‖) as x → x∗ which means
limx→x∗ ‖R1(x− x∗)‖/‖x− x∗‖ = 0 so that

‖R1(x− x∗)‖ ≤
∫ 1

0

‖I − γ1JSτ (x∗ + η(x− x∗))− (I − γ1JSτ (x∗))‖‖x− x∗‖ dη ≤ L

2
‖x− x∗‖2

Observing that

‖R1(x− x∗)‖ ≤ L

2
‖x− x∗‖2 =

L

2
‖x− x∗‖‖x− x∗‖,

we have that the δ > 0 such that ‖R1(x− x∗)‖ ≤ α/(8β)‖x− x∗‖ is δ = α/(4Lβ).

F.2. Almost Sure Avoidance of Saddles

In this subsection, we prove almost sure avoidance of saddles for the τ -Stackelberg update. To do so, we rely upon the stable
manifold theorem.

Theorem F.1. (Stable Manifold Theorem Shub, 1978, Theorem III.7). Let x0 ∈ X be a fixed point for the Cq local
diffeomorphism φ : U → Rm where U is an open neighborhood of x0 ∈ Rm and q ≥ 1. Let Es⊗Ec⊗Eu be the invariant
splitting of Rm into generalized eigenspaces of Dφ(x0) corresponding to the eigenvalues of absolute value less than one,
equal to one, and greater than one. To the Dφ(x0) invariant subspace Es ⊗ Ec there is an associated local φ-invariant
Cq embedded disc W cs

loc called the local stable center manifold of dimension dim(Es ⊗ Ec) and ball B (in an adapted
norm) around x0 such that φ(W cs

loc) ∩B ⊂W cs
loc, and if φt(x) ∈ B for all t ≥ 0 then x ∈W sc

loc where φt = φ ◦ · · · ◦ φ is
the t-times composition of the map φ.

We now restate and prove the result of interest for the τ -Stackelberg update.

Theorem 4 (Almost Sure Avoidance of Saddles). Consider a general sum game defined by fi ∈ Cq(X,R), q ≥ 2 for
i = 1, 2 and where, without loss of generality, player 1 is the leader. Suppose that ωSτ is L-Lipschitz and that γ1 < 1/L.
The τ–Stackelberg learning dynamics converge to saddle points of ẋ = −ωSτ (x) on a set of measure zero.

Proof. To show this, we follow the arguments in Mazumdar et al. (2020) with slight modifications, an argument which also
builds on similar results for single player optimization problems (Lee et al., 2016; Panageas & Piliouras, 2017). In particular,
we show that gSτ is a diffeomorphism, and then apply the center manifold theorem. Let

gSτ (x) = x− γ1
(
D1f1(x)−D21f

>
2 (x)(D2

2f2(x))−1D2f1(x), τD2f2(x)
)

We claim that gSτ : Rm → Rm is a diffeomorphism. If we can show that gSτ is invertible and a local diffeomorphism, then
the claim follows.
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The game Jacobian for the τ -Stackelberg update is given by

JSτ (x) =

[
D1(Df1(x1, x2)) D2(Df1(x1, x2))
τD21f2(x1, x2) τD2

2f2(x1, x2)

]
(16)

We first argue by contradiction that gSτ is invertible. Consider x 6= y and suppose gSτ (y) = gSτ (x) so that y − x =
γ1(ωSτ (y)− ωSτ (x)). The assumption supx∈Rm ‖JSτ (x)‖2 ≤ L <∞ implies that ωSτ satisfies the Lipschitz condition
on Rm. Hence, ‖ωSτ (y)− ωSτ (x)‖2 ≤ L‖y − x‖2. Then, ‖y − x‖2 ≤ Lγ1‖y − x‖2 < ‖y − x‖2 since γ1 < 1/L which
gives rise to a contradiction.

Now, observe that DgSτ = I − γ1JSτ (x). If DgSτ is invertible, then the implicit function theorem (Abraham et al., 1988,
Thm. 2.5.7) implies that gSτ is a local diffeomorphism. Hence, it suffices to show that γ1JSτ (x) does not have an eigenvalue
of 1. Indeed, letting ρ(A) be the spectral radius of a matrix A, we know in general that ρ(A) ≤ ‖A‖ for any square matrix
A and induced operator norm ‖ · ‖ so that

ρ(γ1JSτ (x)) ≤ ‖γ1JSτ (x)‖2 ≤ γ1 sup
x∈Rm

‖JSτ (x)‖2 < γ1L < 1.

Of course, the spectral radius is the maximum absolute value of the eigenvalues, so that the above implies that all eigenvalues
of γ1JSτ (x) have absolute value less than 1. Since gSτ is injective by the preceding argument, its inverse is well-defined
and since gSτ is a local diffeomorphism on Rm, it follows that g−1Sτ is smooth on Rm. Thus, gSτ is a diffeomorphism.

Consider all critical points to the game, given by Xc = {x ∈ X| ωSτ (x) = 0}. For each u ∈ Xc, let Bu, where u indexes
the point, be the open ball derived from the center manifold theorem stated in Theorem F.1 and let B = ∪uBu. Since
X ⊆ Rm, Lindelõf’s lemma (Kelley, 1955)—every open cover has a countable subcover—gives a countable subcover of B.
That is, for a countable set of critical points {ui}∞i=1 with ui ∈ Xc, we have that B = ∪∞i=1Bui .

Starting from some point x0 ∈ X , if τ -Stackelberg converges to a strict saddle point, then there exists a t0 and index i
such that gtSτ (x0) ∈ Bui for all t ≥ t0. Again, applying the center manifold theorem from Theorem F.1 and using that
gSτ (X) ⊂ X , which indeed holds if X = Rm, we get that gtSτ (x0) ∈ W cs

loc ∩ X where W cs
loc is the local stable center

manifold.

Using the fact that gSτ is invertible, we can iteratively construct the sequence of sets defined byW1(ui) = g−1Sτ (W cs
loc∩X) and

Wk+1(ui) = g−1Sτ (Wk(ui) ∩X). Then we have that x0 ∈Wt(ui) for all t ≥ t0. The set X0 = ∪∞i=1 ∪∞t=0 Wt(ui) contains
all the initial points in X such that τ -Stackelberg converges to a strict saddle. Since ui is a strict saddle, I − γ1JSτ (ui)
has an eigenvalue greater than 1. This implies that the co-dimension of the unstable manifold is strictly less than m—i.e.,
dim(W cs

loc) < m. Hence, W cs
loc ∩X has Lebesgue measure zero in Rm.

Using again that gSτ is a diffeomorphism, g−1Sτ ∈ C
1 so that it is locally Lipschitz and locally Lipschitz maps are null set

preserving. Hence, Wk(ui) has measure zero for all k by induction so that X0 is a measure zero set since it is a countable
union of measure zero sets.

Proposition 5. Consider a zero-sum game defined by f ∈ Cq(X,R), q ≥ 2. Suppose that γ1 ≤ 1/L where
max{spec(S1(J(x))) ∪ spec(−τD2

2f(x))} ≤ L. Then, x is a stable critical point of τ–Stackelberg update if and only if x
is a differential Stackelberg equilibrium.

The proof of this proposition follows almost immediately from Theorem 3 and Proposition 2. It implies that the only
stable attractors10 which are critical points are differential Stackelberg equilibria. Of course, as noted earlier escaping
saddles can be onerous. However, results on escaping saddle points efficiently apply to the τ -Stackelberg learning rule since
spec(JSτ (x∗)) ⊂ R.

F.3. General-Sum Convergence

Consider a general sum setting defined by fi ∈ Cq(X,R) with q ≥ 2 for i = 1, 2 and where, without loss of generality,
player 1 is the leader and player 2 is the follower. Unlike the zero-sum case, the structure of the Jacobian JSτ is not lower
block triangular and hence, the convergence rate depends more abstractly on the spectral structure of JSτ as opposed to the
second-order sufficient conditions for a local Stackelberg equilibria. It is still an open question as to how the spectrum of
JSτ relates to schur(JSτ ).

10Note that the set of attractors include non-trivial periodic orbits.
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Let S(x∗) = 1
2 (JSτ (x∗)> + JSτ (x∗)). Define constants α = λ2min

(
S(x∗)

)
and β = λmax(JSτ (x∗)>JSτ (x∗)).

Theorem 5 (General Sum Rate of Convergence). Consider a general sum game (f1, f2) with fi ∈ Cq(X,R), q ≥ 2 for
i = 1, 2 and where, without loss of generality, player 1 is the leader. For a differential Stackelberg equilibrium x∗ such
that J>Sτ (x∗) + JSτ (x∗) > 0, the τ–Stackelberg update with learning rate γ1 =

√
α/β converges locally with a rate of

O((1− α
2β )k/2).

Proof of Theorem 5. Let γ1 =
√
α/β. Then to bound ‖I − γ1JSτ (x∗)‖22 consider the following:

(I − γ1JSτ (x∗))>(I − γ1JSτ (x∗)) ≤ (1− 2γ1λmin(S(x∗)) + γ21λmax(J>Sτ (x∗)JSτ (x∗)))I ≤ (1− α/β)I. (17)

Moreover, ρ(I−γ1JSτ (x∗)) ≤ ‖I−γ1JSτ (x∗)‖ for any matrix norm (Horn & Johnson, 2011) so that ρ(I−γ1JSτ (x∗)) ≤
(1− α/β)1/2. Taking the Taylor expansion of I − γ1ωSτ (x) around x∗, we have

I − γ2ωSτ (x) = (I − γ1ωSτ (x∗)) + (I − γ1JSτ (x∗))(x− x∗) +R1(x− x∗)

where R1(x− x∗) is the remainder term satisfying R1(x− x∗) = o(‖x− x∗‖2) as x→ x∗. This implies that there is a
δ > 0 such that ‖R1(x− x∗)‖2 ≤ α

4β ‖x− x
∗‖2 whenever ‖x− x∗‖2 < δ. Hence,

‖I − γ1ωSτ (x)− (I − γ1ωSτ (x∗))‖2 ≤
(
‖I − γ1JSτ (x∗)‖2 +

α

4β

)
‖x− x∗‖2 ≤

((
1− α

β

)1/2
+

α

4β

)
‖x− x∗‖2

We claim that c(z) = (1− z)1/2 + z
4 −

(
1− z

2

)1/2 ≤ 0 for any z ∈ [0, 1]. Since c(0) = 0 and c(1) = 1
4 −

1√
2
≤ 0, we

simply need to show that c′(z) ≤ 0 on (0, 1) to get that c(z) is a decreasing function on [0, 1], and hence negative on [0, 1].
Indeed, c′(z) = 1

4 + 1
2
√
4−2z −

1
2
√
1−z ≤ 0 since (1− z)−1/2 − (4− 2z)−1/2 ≥ 1/2 for all z ∈ (0, 1).

Note that α/β ∈ [0, 1] since α ≤ β; indeed,

α = λ2min(S(x∗)) ≤ λ2max(S(x∗)) ≤ λmax(J>Sτ (x∗)JSτ (x∗)) = β.

Further, α > 0 and β > 0 by assumption. Hence,

‖I − γ1ωSτ (x)− (I − γ1ωSτ (x∗))‖2 ≤
(

1− α

2β

)1/2
‖x− x∗‖2

Thus, for any x0 ∈ {x| ‖x− x∗‖ < δ},

‖xk − x∗‖2 ≤
(

1− α

2β

)k/2
‖x0 − x∗‖2 (18)

so that the (local) rate of convergence is O((1− α/(2β))k/2), since finite dimensional norms are equivalent.

Analogous to the zero-sum setting, the proof of the finite time convergence guarantee follows directly from the arguments in
the proof of Theorem 5.

Corollary 3 (General Sum Finite Time Guarantee). Given ε > 0, under the assumptions of Theorem 5, τ–Stackelberg
learning obtains an ε–differential Stackelberg equilibrium in d 4βα log (‖x0 − x∗‖/ε)e iterations for any x0 ∈ Bδ(x∗) with
δ = α/(2Lβ) where L is the local Lipschitz constant of I − γ1JSτ (x).

Proof of Corollary 3. Following standard arguments, (18) in the proceeding proof implies a finite time convergence guaran-
tee. Indeed, let ε > 0 be given. Since (1− α/(2β))1/2 ≤ exp(−α/(4β)), we have that

‖xk − x∗‖2 ≤ exp(−kα/(4β))‖x0 − x∗‖2.

This, in turn, implies that xk ∈ Bε(x∗) (i.e., xk is an ε-differential Stackelberg equilibrium) for all k ≥ d 4βα log(‖x0 −
x∗‖2/ε)e whenever ‖x0 − x∗‖ < δ.

Given that fi ∈ C2(X,R) so that I − γ1JSτ (x) is locally Lipschitz with constant L, we can find an explicit expression for
δ in terms of L. Indeed, using similar arguments as in the proof of Corollary 2, δ = α/(2Lβ).
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G. Stochastic Convergence Results and Extended Analysis:
In this supplementary section, we provide the formal proofs for the asymptotic stochastic convergence results. Let us now
review some mathematical preliminaries from dynamical systems theory.

G.1. Dynamical Systems Theory Primer

Let us first recall some results on stability. Given a sufficiently smooth function f ∈ Cq(X,R), a critical point x∗ of f is
said to be stable if for all t0 ≥ 0 and ε > 0, there exists δ(t0, ε) such that x0 ∈ Bδ(x∗) implies x(t) ∈ Bε(x∗), ∀t ≥ t0.
Further, x∗ is said to be asymptotically stable if x∗ is additionally attractive—that is, for all t0 ≥ 0, there exists δ(t0) such
that x0 ∈ Bδ(x∗) implies limt→∞ ‖x(t) − x∗‖ = 0. A critical point is said to be non-degenerate if the determinant of
the Jacobian of the dynamics at the critical point is non-zero. For a non-degenerate critical point, the Hartman-Grobman
theorem (Sastry, 1999) enables us to check the eigenvalues of the Jacobian to determine asymptotic stability. In particular, at
a non-degenerate critical point, if the eigenvalues of the Jacobian are in the open left-half complex plane, then the critical
point is asymptotically stable.

In the stochastic setting, we use chain invariant sets.

Definition G.1. Given T > 0, δ > 0, if there exists an increasing sequence of times tj with t0 = 0 and tj+1 − tj ≥ T for
each j and solutions ξj(t), t ∈ [tj , tj+1] of ξ̇ = F (ξ) with initialization ξ(0) = ξ0 such that supt∈[tj ,tj+1] ‖ξ

j(t)−z(t)‖ < δ
for some bounded, measurable z(·), the we call z a (T, δ)–perturbation.

Lemma G.1 (Hirsch Lemma). Given ε > 0, T > 0, there exists δ̄ > 0 such that for all δ ∈ (0, δ̄), every (T, δ)–perturbation
of ξ̇ = F (ξ) converges to an ε–neighborhood of the global attractor set for ξ̇ = F (ξ).

G.2. Learning Stackelberg Solutions for the Leader: A Best Response Analysis

In this supplementary section, we provide convergence results for the leader given that the follower is playing a local best
response strategy at each iteration. We consider the stochastic setting in which the leader does not have oracle access to their
gradients, but do have an unbiased estimator. As an example, players could be performing policy gradient reinforcement
learning or alternative gradient-based learning schemes. Let dim(Xi) = mi for each i ∈ {1, 2} and m = m1 +m2.

Assumption G.1. The following hold:

A1a. The maps Df1 : Rm → Rm1 , D2f2 : Rm → Rm2 are L1, L2 Lipschitz, and ‖Df1‖ ≤M1 <∞.

A1b. For each i ∈ I, the learning rates satisfy
∑
k γi,k =∞,

∑
k γ

2
i,k <∞.

A1c. The noise processes {wi,k} are zero mean, martingale difference sequences. That is, given the filtration Fk =
σ(xs, w1,s, w2,s, s ≤ k), {wi,k}i∈I are conditionally independent, E[wi,k+1| Fk] = 0 a.s., and E[‖wi,k+1‖| Fk] ≤
ci(1 + ‖xk‖) a.s. for some constants ci ≥ 0, i ∈ I.

Suppose that the leader (player 1) operates under the assumption that the follower (player 2) is playing a local optimum
in each round. That is, given x1,k, x2,k+1 ∈ arg minx2

f2(x1,k, x2) for which D2f2(x1,k, x2) = 0 is a first-order local
optimality condition. If, for a given (x1, x2) ∈ X1 × X2, D2

2f2(x1, x2) is invertible and D2f2(x1, x2) = 0, then the
implicit function theorem implies that there exists neighborhoods U ⊂ X1 and V ⊂ X2 and a smooth map r : U → V such
that r(x1) = x2.

Assumption G.2. For every x1, ẋ2 = −D2f2(x1, x2) has a globally asymptotically stable equilibrium r(x1) uniformly in
x1 and r : Rm1 → Rm2 is Lr–Lipschitz.

Consider the leader’s learning rule

x1,k+1 = x1,k − γ1,k(Df1(x1,k, x2,k) + w1,k+1) (19)

where x2,k is defined via the map r2 defined implicitly in a neighborhood of (x1,k, x2,k).

Theorem G.1. Suppose that for each x ∈ X , D2
2f2 is non-degenerate and Assumption G.1 holds for i = 1. Then, x1,k

converges almost surely to an (possibly sample path dependent) equilibrium point x∗1 which is a local Stackelberg solution
for the leader. Moreover, if Assumption G.1 holds for i = 2 and Assumption G.2 holds, then x2,k → x∗2 = r(x∗1) so that
(x∗1, x

∗
2) is a differential Stackelberg equilibrium.
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Proof. This proof follows primarily from using known stochastic approximation results. The update rule in (19) is a
stochastic approximation of ẋ1 = −Df1(x1, x2) and consequently is expected to track this ODE asymptotically. The
main idea behind the analysis is to construct a continuous interpolated trajectory x̄(t) for t ≥ 0 and show it asymptotically
almost surely approaches the solution set to the ODE. Under the given assumptions, results from (Borkar, 2008, §2.1)
imply that the sequence generated from (19) converges almost surely to a compact internally chain transitive set of ẋ1 =
−Df1(x1, x2). Furthermore, it can be observed that the only internally chain transitive invariant sets of the dynamics are
differential Stackelberg equilibria since at any stable attractor of the dynamics D2f1(x1, r(x1)) > 0 and from assumption
D2

2f2(x1, r(x1)) > 0. Finally, from (Borkar, 2008, §2.2), we can conclude that the update from (19) almost surely
converges to a possibly sample path dependent equilibrium point since the only internally chain transitive invariant
sets for ẋ1 = −Df1(x1, x2) are equilibria. The final claim that x2,k → r(x∗1) is guaranteed since r is Lipschitz and
x1,k → x∗1.

The above result can be stated with a relaxed version of Assumption G.2. In particular, if x∗ is a differential Stackelberg
equilibrium, then there is a neighborhood U1 × U2 of x∗ on which x2 is implicitly defined in terms of x1 and ẋ2 =
−D2f2(x1, x2) has x∗2 as a locally asymptotically stable equilibrium for any x1 ∈ U1.

Corollary G.1. Consider a differential Stackelberg equilibrium x∗ = (x∗1, x
∗
2). Suppose that Assumption G.1 holds for

i = 1, 2. There exists a neighborhood U = U1 ×U2 of x∗ = (x∗1, x
∗
2) such that for any x0 ∈ U , xk converges almost surely

to x∗.

Proof. Consider a differential Stackelberg equilibrium x∗ so that Df1(x∗) = 0, D2f2(x∗) = 0, spec(D2f1(x∗)) ⊂ R◦+
and spec(D2

2f2(x∗)) ⊂ R◦+. Since det(D2
2f2(x∗)) 6= 0 and D2f2(x∗1, x

∗
2) = 0, the implicit function theorem (Abraham

et al., 1988, Theorem 2.5.7) states that there exists a neighborhood W1 of x∗1 and a unique function r : W1 → Rm2 such
that D2f2(x1, r(x1)) = 0 for all x1 ∈W1 and r(x∗1) = x∗2. Due to the fact that eigenvalues vary continuously, there exists
a neighborhood W2 of x∗1 on which D2f1(x1, r(x1)) > 0 and D2

2f2(x1, r(x1)) > 0. Let U1 be the non-empty, open set
whose closure is contained in W1 ∩W2. Furthermore, since D2

2f2(x∗1, x
∗
2) > 0 there exists an open neighborhood U2 of x∗2

such that D2
2f2(x1, x2) > 0 for all (x1, x2) ∈ U1 × U2.

From here, the proof follows the same arguments as the proof of Theorem G.1.

G.3. Learning Stackelberg Equilibria: Two-Timescale Analysis

Now, let us consider the case where the leader again operates under the assumption that the follower is playing (locally)
optimally at each round so that the belief is D2f2(x1,k, x2,k) = 0, but the follower is actually performing the update
x2,k+1 = x2,k + g2(x1,k, x2,k) where g2 ≡ −γ2,kE[D2f2]. The learning dynamics in this setting are then

x1,k+1 = x1,k − γ1,k(Df1(xk) + w1,k+1) (20)
x2,k+1 = x2,k − γ2,k(D2f2(xk) + w2,k+1) (21)

where Df1(x) = D1f1(x) + D2f1(x)Dr(x1). Suppose that γ1,k → 0 faster than γ2,k so that in the limit τ → ∞, the
above approximates the singularly perturbed system defined by

ẋ1(t) = −Df1(x1(t), x2(t))
ẋ2(t) = −τD2f2(x1(t), x2(t))

(22)

The learning rates can be seen as stepsizes in a discretization scheme for solving the above dynamics. The condition that
γ1,k = o(γ2,k) induces a timescale separation in which x2 evolves on a faster timescale than x1. That is, the fast transient
player is the follower and the slow component is the leader since limk→∞ γ1,k/γ2,k = 0 implies that from the perspective
of the follower, x1 appears quasi-static and from the perspective of the leader, x2 appears to have equilibriated, meaning
D2f2(x1, x2) = 0 given x1. From this point of view, the learning dynamics (20)–(21) approximate the dynamics in the
preceding section. Moreover, stable attractors of the dynamics are such that the leader is at a local optima for f1, not just
along its coordinate axis but in both coordinates (x1, x2) constrained to the manifold r(x1); this is to make a distinction
between differential Nash equilibria in which agents are at local optima aligned with their individual coordinate axes.

A note on the use of timescale separation. The reason for this timescale separation is that the leader’s update is formulated
using the reaction curve of the follower. In the gradient-based learning setting considered, the reaction curve can be
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characterized by the set of critical points of f2(x1,k, ·) that have a local positive definite structure in the direction of x2,
which is

{x2| D2f2(x1,k, x2) = 0, D2
2f2(x1,k, x2) > 0}.

This set can be characterized in terms of an implicit map r, defined by the leader’s belief that the follower is playing
a best response to its choice at each iteration, which would imply D2f2(x1,k, x2,k) = 0. Moreover, under sufficient
regularity conditions, the implicit function theorem (Abraham et al., 1988, Theorem 2.5.7) gives rise to the implicit map
r : U → X2 : x1 7→ x2 on a neighborhood U ⊂ X1 of x1,k. We note that when r is defined uniformly in x1 on the
domain for which convergence is being assessed, the update in (2) is well-defined in the sense that the component of the
derivative Df1 corresponding to the implicit dependence of the follower’s action on x1 via r is well-defined and locally
consistent. In particular, for a given point x = (x1, x2) such that D2f2(x1, x2) = 0 with D2

2f2(x) an isomorphism, the
implicit function theorem implies there exists an open set U ⊂ X1 such that there exists a unique continuously differentiable
function r : U → X2 such that r(x1) = x2 and D2f2(x1, r(x1)) = 0 for all x1 ∈ U . Moreover,

Dr(x1) = −(D2
2f2)−1(x1, r(x1))D21f2(x1, r(x1))

on U . Thus, in the limit of the two-timescale setting, the leader sees the follower as having equilibriated (meaningD2f2 ≡ 0)
so that

Df1(x1, x2) = D1f1(x1, x2) +D2f1(x1, x2)Dr(x1) (23)

The map r is an implicit representation of the follower’s reaction curve.

We note that without the timescale separation, it is possible to still prove almost sure asymptotic convergence if the overall
continuous time deterministic differential equation ẋ = −ωS(x) is stable. This is a stronger requirement than assuming that
x∗ is a differential Stackelberg equilibrium such that the system ẋ1 = −Df1(x1, r(x1)) is locally asymptotically stable
and the system ẋ2 = −D2f2(x1, x2) is locally asymptotically stable uniformly in x1 on the neighborhood obtained via the
implicit mapping theorem.

G.3.1. STOCHASTIC AVOIDANCE OF SADDLES

It is known that stochastic gradient descent in the single player setting with isotropic noise avoids saddles almost
surely (Daneshmand et al., 2018). It is also known that gradient play in non-convex games with stochastic gradients
and isotropic noise avoids saddle points of the game dynamics (Mazumdar et al., 2020). These results specialize to the case
of Stackelberg learning dynamics with stochastic gradients (i.e., unbiased estimators of the true gradient) and sufficiently
rich noise.

The follow results from (Pemantle, 1990) implies saddle avoidance in Stackelberg learning. Consider a general stochastic
approximation framework xt+1 = xt + γt(h(xt)) + εt for h : X → TX with h ∈ C2 and where X ⊂ Rm and where TX
denotes the tangent space of X .

Theorem G.2 (Theorem 1 (Pemantle, 1990)). Suppose γt is Ft–measurable and E[wt|Ft] = 0. Let the stochastic process
{xt}t≥0 be defined as above for some sequence of random variables {εt} and {γt}. Let p ∈ X with h(p) = 0 and let
W be a neighborhood of p. Assume that there are constants η ∈ (1/2, 1] and c1, c2, c3, c4 > 0 for which the following
conditions are satisfied whenever xt ∈ W and t sufficiently large: (i) p is a linear unstable critical point (i.e., a saddle
point), (ii) c1/tη ≤ γt ≤ c2/tη , (iii) E[(wt · v)+|Ft] ≥ c3/tη for every unit vector v ∈ TX , and (iv) ‖wt‖2 ≤ c4/tη . Then
P (xt → p) = 0.

The above classical result directly implies avoidance of saddles in Stackelberg learning.

Theorem 6 (Almost Sure Avoidance of Saddles.). Consider a game (f1, f2) with fi ∈ Cq(Rm1 × Rm2 ,R), q ≥ 2 for
i = 1, 2 and where without loss of generality, player 1 is the leader. Suppose that for each i = 1, 2, there exists a constant
bi > 0 such that E[(wi,t · v)+|Fi,t] ≥ bi for every unit vector v ∈ Rmi . Then, Stackelberg learning converges to strict
saddle points of the game on a set of measure zero.

The proof follows directly from showing that the Stackelberg learning update satisfies Theorem G.2, provided the assumptions
of the theorem hold. The assumption that E[(wi,t · v)+|Fi,t] ≥ bi essentially requires the covariance of the noise to be
full-rank, and is made to rule out degenerate cases where the noise forces the dynamics to stay on the stable manifold of
strict saddle points. Indeed, this is exactly the goal of isotropic noise in stochastic gradient descent.
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G.3.2. ASYMPTOTIC ALMOST SURE CONVERGENCE

The following two results are fairly classical results in stochastic approximation. They are leveraged here to making
conclusions about convergence to Stackelberg equilibria in hierarchical learning settings.

While we do not need the following assumption for all the results in this section, it is required for asymptotic convergence of
the two-timescale process in (20)–(21).

Assumption G.3. The dynamics ẋ1 = −Df1(x1, r(x1)) have a globally asymptotically stable equilibrium.

Under Assumption G.1–G.3, and the assumption that γ1,k = o(γ2,k), classical results imply that the dynamics (20)–(21)
converge almost surely to a compact internally chain transitive set T of (22); see, e.g., (Borkar, 2008, §6.1-2), (Bhatnagar
et al., 2012, §3.3). Furthermore, it is straightforward to see that stable differential Stackelberg equilibria are internally chain
transitive sets since they are stable attractors of the dynamics from (22).

Let tk =
∑k−1
l=0 γ1,l be the (continuous) time accumulated after k samples of the slow component x1. Define ξ1,s(t) to be

the flow of ẋ1 = −Df1(x1(t), r(x1(t))) starting at time s from intialization xs.

Lemma G.2. Suppose that Assumptions G.1 and G.2 hold. Then, conditioning on the event {supk
∑
i ‖xi,k‖2 <∞}, for

any integer K > 0, limk→∞ sup0≤h≤K ‖x1,k+h − ξ1,tk(tk+h)‖2 = 0 almost surely.

Proof. The proof follows standard arguments in stochastic approximation. We simply provide a sketch here to give some
intuition. First, we show that conditioned on the event {supk

∑
i ‖x1,k‖2 <∞}, (x1,k, x2,k)→ {(x1, r(x1))| x1 ∈ Rd1}

almost surely. Let ζk =
γ1,k
γ2,k

(Df1(xk) + w1,k+1). Hence the leader’s sample path is generated by x1,k+1 = x1,k − γ2,kζk
which tracks ẋ1 = 0 since ζk = o(1) so that it is asymptotically negligible. In particular, (x1,k, x2,k) tracks (ẋ1 = 0, ẋ2 =

−D2f2(x1, x2)). That is, on intervals [t̂j , t̂j+1] where t̂j =
∑j−1
l=0 γ2,l, the norm difference between interpolated trajectories

of the sample paths and the trajectories of (ẋ1 = 0, ẋ2 = −D2f2(x1, x2)) vanishes a.s. as k → ∞. Since the leader is
tracking ẋ1 = 0, the follower can be viewed as tracking ẋ2(t) = −D2f2(x1, x2(t)). Then applying Lemma G.1 provided
in Appendix G, limk→0 ‖x2,k − r(x1,k)‖ → 0 almost surely.

Now, by Assumption G.1, Df1 is Lipschitz and bounded (in fact, independent of A1a., since Df1 ∈ Cq , q ≥ 1, it is locally
Lipschtiz and, on the event {supk

∑
i ‖xi,k‖2 < ∞}, it is bounded). In turn, it induces a continuous globally integrable

vector field, and therefore satisfies the assumptions of Benaı̈m (1999, Prop. 4.1). Moreover, under Assumptions A1b. and
A1c., the assumptions of Benaı̈m (1999, Prop. 4.2) are satisfied, which gives the desired result.

Theorem G.3. Under Assumptions G.2–G.3 and the assumptions of Theorem G.2, (x1,k, x2,k)→ (x∗1, r(x
∗
1)) almost surely

conditioned on the event {supk
∑
i ‖xi,k‖2 < ∞}. That is, the learning dynamics (20)–(21) converge to stable critical

points of (22), the set of which includes the stable differential Stackelberg equilibria.

Proof. Continuing with the conclusion of the proof of Lemma G.2, on intervals [tk, tk+1] the norm difference between
interpolates of the sample path and the trajectories of ẋ1 = −Df1(x1, r(x1)) vanish asymptotically; applying Lemma G.1
gives the result.

As with Corollary G.1, we can relax Assumption G.2 and G.3 to local asymptotic stability assumptions.

Theorem 7. Consider a general sum game (f1, f2) with fi ∈ Cq(X,R), q ≥ 2 for i = 1, 2 and where, without loss of
generality, player 1 is the leader and γ1,k = o(γ2,k). Consider a differential Stackelberg equilibrium x∗ = (x∗1, x

∗
2). There

exists a neighborhood U = U1 × U2 of x∗ = (x∗1, x
∗
2) such that for any x0 ∈ U , xk converges almost surely to x∗.

Proof. Consider a differential Stackelberg equilibrium x∗ so that Df1(x∗) = 0, D2f2(x∗) = 0, spec(D2f1(x∗)) ⊂ R◦+
and spec(D2

2f2(x∗)) ⊂ R◦+. Since det(D2
2f2(x∗)) 6= 0 and D2f2(x∗1, x

∗
2) = 0, the implicit function theorem (Abraham

et al., 1988, Theorem 2.5.7) states that there exists a neighborhood W1 of x∗1 and a unique function r : W1 → Rm2 such
that D2f2(x1, r(x1)) = 0 for all x1 ∈W1 and r(x∗1) = x∗2. Due to the fact that eigenvalues vary continuously, there exists
a neighborhood W2 of x∗1 on which D2f1(x1, r(x1)) > 0 and D2

2f2(x1, r(x1)) > 0. Let U1 be the non-empty, open set
whose closure is contained in W1 ∩W2. Furthermore, since D2

2f2(x∗1, x
∗
2) > 0 there exists an open neighborhood U2 of

x∗2 such that D2
2f2(x1, x2) > 0 for all (x1, x2) ∈ U1 × U2. The remainder of the proof follows the same arguments as the

proof of Lemma G.2.
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G.3.3. ZERO SUM CONVERGENCE

Leveraging the results in Section 3, the convergence guarantees are stronger since in zero-sum settings all critical points of
the limiting continuous time dynamical system are Stackelberg; this contrasts with the Nash equilibrium concept.
Corollary G.2. Consider a zero-sum setting (f,−f) on X = X1 ×X2 = Rm. Under the assumptions of Theorem G.3,
conditioning on the event {supk

∑
i ‖xi,k‖2 <∞}, the learning dynamics (20)–(21) asymptotically converge to the stable

differential Stackelberg equilibrium almost surely.

The proof of this theorem follows the above analysis and invokes Proposition 2.

As a final note, which was remarked on previously, it is possible to convert the asymptotic results above, both global and
local convergence guarantees, to high-probability concentration bounds using the recent results in (Borkar & Pattathil, 2018;
Thoppe & Borkar, 2019). Generally, the results (and their proofs) in this subsection leverage classical results from stochastic
approximation (Bhatnagar et al., 2012; Borkar, 2008; Kushner & Yin, 2003; Benaı̈m, 1999).

H. Additional Numerical Simulations and Details
We now present additional numerical simulations and details. All of our code is available at the following github link
github.com/fiezt/ICML-2020-Implicit-Stackelberg-Learning.

H.1. Regularizing the Follower’s Implicit Map

The derivative of the implicit function used in the leader’s update requires the follower’s Hessian to be an isomorphism. In
practice, this may not always be true along the learning path. Consider the modified update

xk+1,1 = xk,1 − γ1(D1f1(xk)−D21f2(xk)>(D2
2f2(xk) + ηI)−1D2f1(xk))

xk+1,2 = xk,2 − γ2D2f2(xk),

in which we regularize the inverse of D2
2f2 term. This update can be derived from the following perspective. This result can

be seen by examining first and second order sufficient conditions for the leader’s optimization problem given the regularized
conjecture about the follower’s update, i.e.

arg min
x1

{
f1(x1, x2)| x2 ∈ arg min

y
f2(x1, y) +

η

2
‖y‖2

}
,

and for the problem follower is actually solving with its update arg minx2 f2(x1, x2).

The leader then views the follower as updating via

xk+1,2 = xk,2 − γ2(D2f2(xk) + ηxk,2)

so that the derivative of the implicit map is given by (D2
2f2(xk) + ηI)−1D21f2(xk).

Then, the approximate Stackelberg update is given by

xk+1,1 = xk,1 − γ1(D1f1(xk)−D21f2(xk)>
(
D2

2f2(xk) + ηI
)−1

D2f1(xk))

xk+1,2 = xk,2 − γ2D2f2(xk).

In our GAN experiments, we use the regularized update since it is quite common for the discriminator’s Hessian to be
ill-conditioned if not degenerate. We define sufficient conditions for an equilibrium with respect to the regularized dynamics.

Proposition H.1 (Regularized Stackelberg: Sufficient Conditions). A point x∗ such that the first order conditionsD1f1(x)−
D21f2(x)>(D2

2f2(x) + ηI)−1D2f1(x) = 0 and D2f2(x) = 0 hold, and such that D(D1f1(x)−D21f2(x)>(D2
2f2(x) +

ηI)−1D2f1(x)) > 0 and D2
2f2(x) > 0 is a differential Stackelberg equilibrium with respect to the regularized dynamics.

H.2. Computing the Stackelberg Update and Schur Complement

The learning rule for the leader involves computing an inverse-Hessian-vector product for the D2
2f2(x) inverse term

and Jacobian-vector product for the D21f2(x) term. These operations can be done efficiently in Python by utilizing

https://github.com/fiezt/ICML-2020-Implicit-Stackelberg-Learning
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Jacobian-vector products in auto-differentiation libraries combined with the sparse.LinearOperator class in scipy.
These objects can also be used to compute their eigenvalues, inverses, or the Schur complement of the game dynamics
using the scipy.sparse.linalg package. We found that the conjugate gradient method cg can compute the regularized
inverse-Hessian-vector products for the leader update accurately with 5 iterations and a warm start.

The operators required for the leader update can be obtained by the following. Consider the Jacobian of the simultaneous
gradient descent learning dynamics ẋ = −ω(x) at a critical point for the general sum game (f1, f2):

J(x) =

[
D2

1f1(x) D12f1(x)
D21f2(x) D2

2f2(x)

]
.

Its block components consist of four operators Dijfi(x) : Xj → Xi, i, j ∈ {1, 2} that can be computed using forward-
mode or reverse-mode Jacobian-vector products. Instantiating these operators as a linear operator in scipy allows us to
compute the eigenvalues of the two player’s individual Hessians. Properties such as the real eigenvalues of a Hermitian
matrix or complex eigenvalues of a square matrix can be computed using eigsh or eigs respectively. Selecting to compute
the smallest or largest k eigenvalues—sorted by either magnitude, real or imaginary values—allows one to examine the
positive-definiteness of the operators.

Operators can be combined to compute other operators relatively efficiently for large scale problems without requiring to
compute their full matrix representation. For an example, take the Schur complement of the Jacobian above at fixed network
parameters x ∈ X1 ×X2, D2

1(x)−D12f1(x)(D2
2f2)−1(x)D21f2(x). We create an operator S1(x) : X1 → X1 that maps

a vector v to p− q by performing the following four operations: u = D21f2(x)v, w = (D2
2f2)−1(x)u, q = D12f1(x)w,

and p = D2
1(x)v. Each of the operations can be computed using a single backward pass through the network except for

computing w, since the inverse-Hessian requires an iterative method. It solves the linear equation D2
2f2(x)w = u and there

are various available methods: we tested (bi)conjugate gradient methods, residual-based methods, or least-squares methods,
and each of them provide varying amounts of error when compared with the exact solution. For our mixture of Gaussians
and MNIST GANs, we found that computing the leader update using the conjugate gradient method with maximum of five
iterations and warm-start works well. We compared using the real Hessian for smaller scale problems and found the estimate
to be within numerical precision.

A similar procedure is used to compute a variety higher-order derivatives. For instance, the regularized total derivative of the
leader’s update is the total derivative of Df1(x1, r(x1)). To compute the spectrum of such an operator, we create a function
v 7→ D(Df1(x1, r(x1)))v that takes a vector v ∈ Rm1 and returns

D(Df1(x1, r(x1)))v = D2
1f1(x1, r(x1))v +D12f1(x1, r(x1))Drη(x1)v

+ (D12f1(x1, r(x1)) +Drη(x1)>D2
2f1(x1, r(x1))Drη(x1)v

+D2f1(x1, r(x1))>D2rη(x1)v

(24)

where the last higher order term is assumed to be zero, the regularized variation Drη(x1) = (D2
2f2(x) + ηI)−1D21f2(x),

and regularization term η > 0. The above derivative can be written as a composition of Jacobian-vector product operators
and least squares problems, thus can be computed efficiently with auto-differentiation tools.

H.3. Parameterized Bilinear Game Experiments

In the continuous game framework, player’s actions are continuous. To represent strategies with discrete actions, continuous
probability distributions can be employed as mixed strategies over the discrete actions. The gradient-based methods
developed in this paper thus can be used to solve for equilibria in the parameterized strategy space. Consider the following
game G = (f1, f2) with costs given by f1(x1, x2) = π(x1)>Aπ(x2) + η1

2 ‖x1‖
2
2 and f2(x1, x2) = π(x1)>Bπ(x2) +

η2
2 ‖x2‖

2
2 where

A =

[
1 0
0 1

]
, B =

[
1/2 1
1 1/2

]
(25)

are the matrices representing the bimatrix game with player 1 as the row player and player 2 as the column player. We
represent the mixed policy of two discrete actions with a sigmoid-based probability distribution on the simplex, π : R→ ∆1,
given by

π(x) = (ea1x+b1 , ea2x+b2)/(ea1x+b1 + ea2x+b2)
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(a) simgrad (γ1 = γ2) (b) simgrad (γ1 = γ2/10) (c) Stackelberg (γ1 = γ2) (d) Stackelberg (γ1 = γ2/10)

Figure 6. Parameterized bilinear game. Parameters: (a1, a2) = (2.5,−2.5) and (b1, b2) = (1,−1). (a)–(b): for simgrad, we observe
convergence to an ε-neighborhood of a differential Nash equilibria at (x∗1, x

∗
2) = (−.4,−.4). (c)–(d): for the Stackelberg learning

dynamics, we observe convergence to an ε-neighborhood of a differential Stackelberg equilibria at (x∗1, x
∗
2) = (−.4,−.16) which

corresponds to player 1 choosing the action associated with the top row with probability 0.5 and player 2 choosing the action associated
with the first column with probability 0.77. The effects of time-scale separation is visualized as the light colored horizontal path, showing
a low gradient norm along player 2’s reaction curve.

(a) simgrad (γ1 = γ2) (b) simgrad (γ1 = γ2/10) (c) Stackelberg (γ1 = γ2) (d) Stackelberg (γ1 = γ2/10)

Figure 7. Parameterized bilinear game. Parameters: (a1, a2) = (2.5,−2.5) and (b1, b2) = (0, 0). (a)–(b): for simgrad, we observe
convergence to an ε-neighborhood of a differential Nash equilibria at (x∗1, x

∗
2) = (0, 0). (c)–(d): for the Stackelberg learning dynamics,

we observe convergence to an ε-neighborhood of a differential Stackelberg equilibria at (x∗1, x
∗
2) = (0, 0) which corresponds to player 1

choosing the action associated with the top row with probability 0.5 and player 2 choosing the action associated with the first column with
probability 0.5. The effects of time-scale separation is visualized as the light colored horizontal path, showing a low gradient norm along
player 2’s reaction curve. Note that due to the choice of parameters (b1, b2), the regularization is penalizing for any deviation from the
equilibrium at (1/2, 1/2) in the policy space.

where the parameters ai, bi, i = 1, 2 are constants that scale and shift the parameterization. This parameterization scheme
can be extended to d + 1 actions using d variables. For two actions, we require that a1 and a2 have opposite signs. We
employ a 2-norm regularization of each player’s individual action to regularize each agent towards the interior of the simplex.

The bimatrix game admits a unique mixed Nash equilibrium of (1/2, 1/2) for player 1 and (1/2, 1/2) for player 2. If
the game is played sequentially with the leader being player 1, the mixed Stackelberg equilibrium of the game is (π1, π2)
with π1 = (1/2, 1/2) and any policy π2 in the simplex for the follower. At this strategy, the cost the leader incurs is
independent of the follower’s strategy. We refer to Basar & Olsder (1998, §3.6) for discussion on the mixed Stackelberg
equilibrium of this bimatrix game. For the softmax parameterized policy class we consider, using (a1, a2) = (2.5,−2.5),
(b1, b2) = (1,−1), π(−0.4) = (1/2, 1/2). That is, the parameter x = −0.4 corresponds to the policy (1/2, 1/2). On the
other hand, if (a1, a2) = (2.5,−2.5), (b1, b2) = (0, 0), then π(0) = (1/2, 1/2).

We plot the the vector field ω and ωS and its norm, along with simulations of their discrete time dynamics in Figures 6 and 7.
We use parameters (a1, a2) = (2.5,−2.5), and regularization η = 0.1. For the parameters (b1, b2), we explore two different
pairs: (b1, b2) = (1,−1) and (b1, b2) = (0, 0). The latter is such that the regularization term is penalizing for any deviation
from the equilibrium parameter values, while the former is such that the regularization is penalizing for any deviation from
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(0, 0) while the equilibrium is at (0.4, y) for any y ∈ [0, 1].

The shading of the action space indicates the norm of the dynamics: darker has a larger norm. Different parameterization
constants or regularization weights will affect the outcome of the gradient-based learning.

The timescale separation improves the convergence properties of the Stackelberg learning dynamics as it encourages the
dynamics to converge to the follower’s best-response curve. We observe the distinctly lighter path the shaded plots of
Figure 6 (b) and (d), where the follower’s response curve runs horizontal to the plot. Comparing plots Stackelberg learning
in Figures 6 (c) and (d), we observe that with timescale separation, the paths of the learning dynamics converges first to the
manifold on the ridge, then towards the stationary point along the manifold. Doing so prevents the trajectory from being
perturbed by the ‘cliffs’, visualized by the dark cusps with large gradient norm corresponding to area where the follower’s
Hessian is poorly conditioned. The role of timescale separation is emphasized in this numerical simulation.

H.4. Details on GAN Experiments

This section includes complete details on the training process and hyper-parameters selected in the mixture of Gaussian and
MNIST experiments. We also include further experiments for the mixture of Gaussian examples.

H.4.1. MIXTURE OF GAUSSIANS GAN

The underlying data distribution for the diamond experiment consists of Gaussian distributions with means given by
µ = [1.2 sin(ω), 1.2 cos(ω)] for ω ∈ {kπ/2}3k=0 and each with covariance σ2I where σ2 = 0.15. The underlying data
distribution for the circle experiment consists of Gaussian distributions with means given by µ = [sin(ω), cos(ω)] for
ω ∈ {kπ/4}7k=0 and each with covariance σ2I where σ2 = 0.05. Each sample of real data given to the discriminator is
selected uniformly at random from the set of Gaussian distributions.

We train the generator using latent vectors z ∈ R16 sampled from a standard normal distribution in each training batch. The
discriminator is trained using input vectors x ∈ R2 sampled from the underlying distribution in each training batch. The
batch size for each player in the game is 256. The network for the generator contains two hidden layers, each of which
contain 32 neurons. The discriminator network consists of a single hidden layer with 32 neurons and it has a sigmoid
activation following the output layer. We let the activation function following the hidden layers in the generator network
be the Tanh function and the ReLU function in the diamond and circle experiments, respectively. The initial learning
rates for each player and for each learning rule is 0.0001 and 0.0004 in the diamond and circle experiments, respectively.
The objective for the game in the diamond experiment is the saturating GAN objective and in the circle experiment it is
the non-saturating GAN objective. We update the parameters for each player and in each experiment using the Adam
optimizer with the default parameters of β1 = 0.9, β2 = 0.999, and ε = 10−8. The learning rate for each player is decayed
exponentially such that γi,k = γiν

k
i . We let ν1 = ν2 = 1 − 10−7 for simultaneous gradient descent and ν1 = 1 − 10−5

and ν1 = 1 − 10−7 for the Stackelberg update. Finally, we regularize the implicit map of the follower as detailed in
Appendix H.1 using the parameter η = 1 and similarly in computing the eigenvalues of D2f1 as detailed in (24).

Previously we showed the best runs of the 10 initial seeds we ran for each algorithm for each Gaussian configuration. We
now explore further the results over the runs. In general, we found that the conclusions that could be drawn from the
experiments were consistent across the runs. To demonstrate this, we provide additional simulation results for the diamond
configuration in Figure 8 and the circle configuration in Figure 9. The generator and discriminator outputs we show for
taken to be the 5th best of the 10 runs. In the eigenvalue plots in Figure 8 and Figure 9, we show for each of the 10 runs the
minimum and maximum real eigenvalue parts as this determines stability and if the dynamics reached an equilibrium. In
particular, the black bars show the minimum real parts of the eigenvalues and for several of the plots they are not visible since
they are near zero. In Figure 8, we again see reasonable performance for both simultaneous gradient descent and Stackelberg
learning in terms of the generator and the discriminator. Moreover, the eigenvalues of the follower Hessian are consistently
near zero and include negative values on the scale of the positive values. In Figure 9, we again see that simultaneous gradient
cycles along the learning path and Stackelberg learning consistently is stable and generates realistic output. Note that the
eigenvalues are more variable for simultaneous gradient descent since for some of the runs the generator was still cycling.

H.4.2. MNIST GAN DETAILS

The GAN trained with Stackelberg learning on MNIST had a version of the DCGAN architecture (Radford et al., 2015)
adapted to handle 28 × 28 images. In Tables 1 and 2 we provide the specific architectures for both the generator and
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(a) Real (b) Generator (c) Discriminator (d) Generator (e) Discriminator

(f) J (g) D2f1 (h) D2
1f1 (i) D2

2f2

(k) J (l) D2f1 (m) D2
1f1 (n) D2

2f2

Figure 8. Convergence to differential Stackelberg equilibria that are not differential Nash equilibria for simgrad (top) and Stackelberg
learning dynamics (bottom). The real distribution is (a) and a sample of a generator and discriminator for each is plotted in (b)–(e)
where from (b)–(c) is simultaneous gradient descent and (d)–(e) is Stackelberg learning. The minimum and maximum real parts of the
eigenvalues of the game objects (f)–(m) are shown for ten random initial seeds where from (f)–(i) is simultaneous gradient descent and
(k)–(n) is Stackelberg learning.

the discriminator in the experiment. Our implementation is in PyTorch and we describe the networks by the parameters
passed into nn.Sequential class. Any omitted parameters are the defaults. For our training process, the MNIST images
were normalized to the range [−1, 1]. Each sample of real data given to the discriminator is selected sequentially from a
shuffled version of the dataset. We train using a batch size of 256 and a latent dimension of 100 sampled from a standard
normal distribution in each training batch. We initialize the weights of the networks using a zero-centered centered Normal
distribution with standard deviation 0.02, optimize using Adam with parameters β1 = 0.5, β2 = 0.999, and ε = 10−8, and
set the initial learning rates to be 2× 10−4. The learning rate for each player is decayed exponentially such that γi,k = γiν

k
i

and ν1 = 1 − 10−5 and ν2 = 1 − 10−7. We regularize the implicit map of the follower as detailed in Appendix H.1
using the parameter η = 10000. If we view the regularization as a linear function of the number of parameters in the
discriminator, then this selection of regularization is nearly equal to that from the Gaussian experiments. The Inception score
was calculated using a LeNet classifier following (Berard et al., 2020). Each time we calculated a score we used N = 5000
samples and k = 1 split. This was simply done to speed up the computation since we observed that for the common choice
when using the Inception network of N = 50000 samples and k = 10 splits the scores were nearly identical to that from
using N = 5000 samples and k = 1 splits.
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(a) Real (b) 10k (c) 20k (d) 40k (e) 60k (f) 10k (g) 20k (h) 40k (i) 60k

(j) J (k) D2f1 (l) D2
1f1 (m) D2

2f2

(o) J (p) D2f1 (q) D2
1f1 (r) D2

2f2

Figure 9. The generator performance along the learning trajectory for simultaneous gradient descent in (b)–(e) and for Stackelberg
learning in (f)–(i). The eigenvalues of game objects in (j)–(m) are for simultaneous gradient descent and indicate simgrad converges
to differential Nash equilibria, while the eigenvalues of game objects (o)–(r) indicate Stackelberg learning converges to a differential
Stackelberg equilibria that is not a differential Nash equilibria.

Module In Channels Out Channels Kernel Size Stride Padding Bias
ConvTranspose2d, BatchNorm2d, ReLU 100 512 4 1 0 False
ConvTranspose2d, BatchNorm2d, ReLU 512 256 4 2 1 False
ConvTranspose2d, BatchNorm2d, ReLU 256 128 4 2 1 False
ConvTranspose2d, BatchNorm2d, ReLU 128 512 4 1 0 False
ConvTranspose2d, BatchNorm2d, Tanh 64 1 1 1 2 False

Table 1. Generator Network PyTorch Parameters for the nn.Sequential class in the MNIST experiment.

Module In Channels Out Channels Kernel Size Stride Padding Bias
Conv2d, LeakyReLU(0.2) 1 64 4 2 1 False

Conv2d, BatchNorm2d LeakyReLU(0.2) 64 128 4 2 1 False
Conv2d, BatchNorm2d LeakyReLU(0.2) 128 256 4 2 1 False

Conv2d, Sigmoid 256 1 4 2 1 False

Table 2. Discriminator Network PyTorch Parameters for the nn.Sequential class in the MNIST experiment.


