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A. Details of Section 3.1: Benamou-Brenier
formulation in Lagrangian coordinates

The Benamou-Brenier formulation of the optimal transporta-
tion (OT) problem in Eulerian coordinates is

min
f ,ρ

∫ T

0

∫
‖f(x, t)‖2ρt(x) dxdt (18a)

subject to
∂ρt
∂t

= −div (ρtf) , (18b)

ρ0(x) = p, (18c)
ρT (z) = q. (18d)

The connection between continuous normalizing flows
(CNF) and OT becomes transparent once we rewrite (18) in
Lagrangian coordinates. Indeed, for regular enough velocity
fields f one has that the solution of the continuity equation
(18b), (18c) is given by ρt = z(·, t)]p where z is the flow

ż(x, t) = f(z(x, t), t), z(x, 0) = x.

The relation ρt = z(·, t)]p means that for arbitrary test
function φ we have that∫

φ(x)ρt(x, t)dx =

∫
φ(z(x, t))p(x)dx

Therefore (18) can be rewritten as

min
f

∫ T

0

∫
‖f(z(x, t), t)‖2p(x) dxdt (19a)

subject to ż(x, t) = f(z(x, t), t), (19b)
z(x, 0) = x, (19c)
z(·, T )]p = q. (19d)

Note that ρt is eliminated in this formulation. The terminal
condition (18d) is trivial to implement in Eulerian coordi-
nates (grid-based methods) but not so simple in Lagrangian
ones (19d) (grid-free methods). To enforce (19d) we intro-
duce a penalty term in the objective function that measures
the deviation of z(·, T )]p from q. Thus, the penalized ob-
jective function is∫ T

0

∫
‖f(z(x, t), t)‖2p(x) dxdt+ 1

λ
KL(z(·, T )]p || q),

(20)
where λ > 0 is the penalization strength. Next, we observe
that this objective function can be written as an expectation
with respect to x ∼ p. Indeed, the Kullback-Leibler di-
vergence is invariant under coordinate transformations, and
therefore

KL(z(·, T )]p || q) =KL(p || z−1(·, T )]q) = KL(p || pθ)

= E
x∼p

log
p(x)

pθ(x)

= E
x∼p

log p(x)− E
x∼p

log pθ(x)

Hence, multiplying the objective function in (20) by λ and
ignoring the f -independent term Ex∼p log p(x) we obtain
an equivalent objective function

E
x∼p

{
λ

∫ T

0

‖f(z(x, t), t)‖2 dt− log pθ(x)

}
(21)

Finally, if we assume that {xi}Ni=1 are iid sampled from p,
we obtain the empirical objective function

λ

N

N∑
i=1

∫ T

0

‖f(z(xi, t), t)‖2 dt−
1

N

N∑
i=1

log pθ(xi) (22)

B. Additional results
Here we present additional generated samples on the two
larger datasets considered, CelebA-HQ and ImageNet64. In
addition bits/dim on clean images are reported in Table 2.
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(a) real (b) generated

Figure 7. Quality of FFJORD RNODE generated images on ImageNet-64.

(a) real (b) T = 0.5 (c) T = 0.6 (d) T = 0.7 (e) T = 0.8 (f) T = 0.9 (g) T = 1

Figure 8. Quality of FFJORD RNODE generated images on CelebA-HQ. We use temperature annealing, as described in (Kingma &
Dhariwal, 2018), to generate visually appealing images, with T = 0.5, . . . , 1.
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Table 2. Additional results and model statistics of FFJORD RNODE. Here we report validation bits/dim on both validation images, and on
validation images with uniform variational dequantization (ie perturbed by uniform noise). We also report number of trainable model
parameters.

DATASET BITS/DIM (CLEAN) BITS/DIM (DIRTY) # PARAMETERS

MNIST 0.92 0.97 8.00e5
CIFAR10 3.25 3.38 1.36e6
IMAGENET64 3.72 3.83 2.00e6
CELEBA-HQ256 0.72 1.04 4.61e6


