How to Train Your Neural ODE: the World of Jacobian and Kinetic Regularization

A. Details of Section 3.1: Benamou-Brenier formulation in Lagrangian coordinates

The Benamou-Brenier formulation of the optimal transportation (OT) problem in Eulerian coordinates is

\[
\min_{\rho, f} \int_0^T \int \| f(x, t) \| \rho_t(x) \, dxdt \\
\text{subject to } \frac{\partial \rho_t}{\partial t} = - \text{div} (\rho_t f), \\
\rho_0(x) = p, \\
\rho_T(z) = q.
\]

(18a) (18b) (18c) (18d)

The connection between continuous normalizing flows (CNF) and OT becomes transparent once we rewrite (18) in Lagrangian coordinates. Indeed, for regular enough velocity fields \(f \) one has that the solution of the continuity equation (18b), (18c) is given by \(\rho_t = z(\cdot, t)\sharp p \) where \(z \) is the flow \(z(x, t) = f(z(x, t), t), \quad z(x, 0) = x \).

The relation \(\rho_t = z(\cdot, t)\sharp p \) means that for arbitrary test function \(\phi \) we have that

\[
\int \phi(x) \rho_t(x, t) \, dx = \int \phi(z(x, t)) \, dx
\]

Therefore (18) can be rewritten as

\[
\min_f \int_0^T \int \| f(z(x, t), t) \|^2 p(x) \, dxdt \\
\text{subject to } \dot{z}(x, t) = f(z(x, t), t), \\
z(x, 0) = x, \\
z(\cdot, T)\sharp p = q.
\]

(19a) (19b) (19c) (19d)

Note that \(\rho_t \) is eliminated in this formulation. The terminal condition (18d) is trivial to implement in Eulerian coordinates (grid-based methods) but not so simple in Lagrangian ones (19d) (grid-free methods). To enforce (19d) we introduce a penalty term in the objective function that measures the deviation of \(z(\cdot, T)\sharp p \) from \(q \). Thus, the penalized objective function is

\[
\int_0^T \int \| f(z(x, t), t) \|^2 p(x) \, dxdt + \frac{1}{\lambda} KL(z(\cdot, T)\sharp p \| q),
\]

(20)

where \(\lambda > 0 \) is the penalization strength. Next, we observe that this objective function can be written as an expectation with respect to \(x \sim p \). Indeed, the Kullback-Leibler divergence is invariant under coordinate transformations, and therefore

\[
KL(z(\cdot, T)\sharp p \| q) = KL(p \| z^{-1}(\cdot, T)\sharp q) = KL(p \| p_0) = \mathbb{E}_{x \sim p} \log \frac{p(x)}{p_0(x)} = \mathbb{E}_{x \sim p} \log p(x) - \mathbb{E}_{x \sim p} \log p_0(x)
\]

Hence, multiplying the objective function in (20) by \(\lambda \) and ignoring the \(f \)-independent term \(\mathbb{E}_{x \sim p} \log p(x) \) we obtain an equivalent objective function

\[
\mathbb{E}_{x \sim p} \left\{ \lambda \int_0^T \| f(z(x, t), t) \|^2 dt - \log p_0(x) \right\}
\]

Finally, if we assume that \(\{ x_i \}_{i=1}^N \) are iid sampled from \(p \), we obtain the empirical objective function

\[
\frac{\lambda}{N} \sum_{i=1}^N \int_0^T \| f(z(x_i, t), t) \|^2 dt - \frac{1}{N} \sum_{i=1}^N \log p_0(x_i)
\]

(22)

B. Additional results

Here we present additional generated samples on the two larger datasets considered, CelebA-HQ and ImageNet64. In addition bits/dim on clean images are reported in Table 2.

...
Figure 7. Quality of FFJORD RNODE generated images on ImageNet-64.

Figure 8. Quality of FFJORD RNODE generated images on CelebA-HQ. We use temperature annealing, as described in (Kingma & Dhariwal, 2018), to generate visually appealing images, with $T = 0.5, \ldots, 1$.
Table 2. Additional results and model statistics of FFJORD RNODÉ. Here we report validation bits/dim on both validation images, and on validation images with uniform variational dequantization (ie perturbed by uniform noise). We also report number of trainable model parameters.

<table>
<thead>
<tr>
<th>DATASET</th>
<th>BITS/DIM (CLEAN)</th>
<th>BITS/DIM (DIRTY)</th>
<th># PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>0.92</td>
<td>0.97</td>
<td>8.00e5</td>
</tr>
<tr>
<td>CIFAR10</td>
<td>3.25</td>
<td>3.38</td>
<td>1.36e6</td>
</tr>
<tr>
<td>IMAGE.Net64</td>
<td>3.72</td>
<td>3.83</td>
<td>2.00e6</td>
</tr>
<tr>
<td>CELEBA-HQ256</td>
<td>0.72</td>
<td>1.04</td>
<td>4.61e6</td>
</tr>
</tbody>
</table>