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Abstract
Planning in Partially Observable Markov Deci-
sion Processes (POMDPs) inherently gathers the
information necessary to act optimally under un-
certainties. The framework can be extended to
model pure information gathering tasks by con-
sidering belief-based rewards. This allows us to
use reward shaping to guide POMDP planning
to informative beliefs by using a weighted com-
bination of the original reward and the expected
information gain as the objective. In this work
we propose a novel online algorithm, Information
Particle Filter Tree (IPFT), to solve problems with
belief-dependent rewards on continuous domains.
It simulates particle-based belief trajectories in a
Monte Carlo Tree Search (MCTS) approach to
construct a search tree in the belief space. The
evaluation shows that the consideration of infor-
mation gain greatly improves the performance
in problems where information gathering is an
essential part of the optimal policy.

Index Terms — Continuous POMDP, Planning, Monte Carlo
Tree Search, Particle Filter Tree, IPFT, Reward Shaping,
Information Gathering.

1. Introduction
Uncertainty is decisive in many decision making problems.
While information retrieval is the sole objective of some
problems, in others it is only a means to disambiguate the
current situation and select optimal actions. These types of
problem can be modeled with POMDPs. The optimal policy
for many POMDPs can be found only approximately since
finding the exact solution is computationally intractable (Pa-
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padimitriou & Tsitsiklis, 1987). In real-world applications,
planning algorithms frequently have to deal with (1) prob-
lems on continuous domains and (2) a limited time available
for online planning.

Online algorithms for large or continuous state spaces are de-
rived from MCTS, the most prominent ones being POMCP
(Silver & Veness, 2010), DESPOT (Somani et al., 2013),
and ABT (Kurniawati & Yadav, 2016). Besides having
continuous state spaces, many problems in robotics are
modeled with continuous observation spaces. The further
development of the mentioned algorithms resulted in the
state-of-the-art solvers POMCPOW and PFT-DPW (Sun-
berg & Kochenderfer, 2018) and DESPOT-α (Garg et al.,
2019), which can deal with continuous state and observation
spaces and therefore solve the first issue.

While MCTS-based algorithms are capable of solving prob-
lems online, they can suffer from suboptimal behavior when
limited planning time is available. This problem arises when
rewards are sparse, e.g. only indicate success or failure at
the end of each episode. Hence, the planning algorithm
is required to explore many suboptimal paths until finding
promising actions, especially in problems with high un-
certainty. To resolve this issue, Potential-Based Reward
Shaping (PBRS) can be used to implicitly guide the agent
to large future rewards (Eck et al., 2016). The potentials
are functions over beliefs and reflect how much reward
can potentially be gained in a certain situation. This addi-
tional guidance considerably speeds up planning and thus
addresses the second issue.

In this paper, we propose to combine PBRS with MCTS for
solving POMDPs on continuous spaces. This tackles the
two issues mentioned for planning in real-world problems.
Previous research has only considered reward shaping for
problems on discrete spaces. We use potentials based on
information measures to guide the agent to informative be-
liefs. Since information gathering is typically part of the
optimal policy, this significantly helps to solve the problem.
The resulting belief-based reward functions can be modeled
within the ρPOMDP framework, for which solution methods
only exist for discrete problems (Araya-López et al., 2010).
For this reason, we develop a novel online algorithm, Infor-
mation Particle Filter Tree (IPFT), for solving ρPOMDPs
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on continuous spaces, which enables us to use PBRS. We
approximate beliefs with small particle sets and solve an
MDP on the belief space with MCTS.

2. Background and Notation
A sequential decision making problem with uncertain sys-
tem dynamics can be framed as a Markov Decision Process
(MDP), represented by the tuple (S,A, T ,R, γ), where S
is the state space, A is the action space, T is the transition
model that defines the distribution of the successor state
s′, given the current state s and the chosen action a. In a
continuous state space this amounts to a probability density.
The reward modelR represents the reward obtained when
executing an action a in state s, and γ ∈ [0, 1) is a factor dis-
counting future rewards, which ensures a finite cumulative
reward.

In some problems, the system state cannot be observed
directly. A Partially Observable Markov Decision Pro-
cess (POMDP) addresses this issue by extending the MDP
model with an observation space O and an observation
model Z that models the conditional distribution of receiv-
ing an observation o, given state s. In a continuous observa-
tion space this distribution can be represented by a density.
The probability distribution over the current state st given
the history ht = (b0, a0, o1, . . . , at−1, ot) of the initial state
distribution b0 and all previous actions and observations is
called the belief bt = p(st|ht). It can be computed from
the transition and observations models using Bayes’ theo-
rem. The belief is the basis for decision making in each
step, since the true state is unknown. Therefore, policies in
POMDPs map beliefs to actions. Furthermore, a POMDP
can be equivalently reformulated as an MDP over the belief
space, the so-called belief MDP.

An online algorithm capable of solving large MDPs is ob-
tained by combining tree search with Monte Carlo methods.
Monte Carlo Tree Search (MCTS) incrementally builds
up an asymmetric tree by running simulations (Browne et al.,
2012). Each tree node represents a state, for which the ex-
pected return is estimated, and edges represent transitions
to successor states. One simulation consists of the phases:
tree traversal, node expansion, rollout, and backpropagation.
In each simulation a new node is added to the tree and the
values of all visited nodes are refined. During the first phase,
a popular action selection strategy to balance exploration
and exploitation is the Upper Confidence Bound (UCB)
(Auer et al., 2002; Kocsis & Szepesvári, 2006).

Silver & Veness developed the online algorithm Partially
Observable Monte Carlo Planning (POMCP) by adapt-
ing MCTS to partially observable environments (2010). In
contrast to MCTS, the tree now branches in both actions and
observations. Instead of states, the nodes represent histories

h, that is, action-observation sequences. Additionally, the
simulations building up the tree are also used to obtain a
Monte Carlo belief update in between planning steps. The
algorithm only requires a generative model and achieves
high performance on large problems with discrete actions
and observations.

MCTS as described above cannot be applied to problems
with large or continuous action spaces. Since the same ac-
tion is rarely selected twice, this results in a shallow tree
where the values cannot be estimated well. Progressive
widening is a strategy to tackle this issue (Couëtoux et al.,
2011). It limits the number of child nodes considered in a
node to dkNαe in theN th visit, where k > 0 and α ∈ (0, 1)
are parameters. If this limit is reached, one of the previous
child nodes is selected. Additionally, this strategy can be
applied to the branching induced by stochastic transitions
or partial observability and is then referred to as Double
Progressive Widening (DPW). Sunberg & Kochenderfer
applied DPW in their algorithms Particle Filter Tree (PFT-
DPW) and POMCP with Observation Widening (POM-
CPOW) for solving POMDPs on continuous spaces (2018).
POMCPOW simulates single particles and iteratively refines
a particle-based belief approximation in every tree node. In
contrast, PFT-DPW solves the belief MDP by simulating
whole beliefs instead of single particles. A belief is approx-
imated by a fixed number of m weighted particles which
is updated as in a particle filter. The immediate reward in
each step is computed as the weighted mean of the particle
rewards.

Using PBRS requires to plan with belief-based reward func-
tions ρ(b, a) instead of the state-based rewardR(s, a). An
example which uses a belief-based reward is the belief
MDP, where the reward is the expected state-based reward
ρ(b, a) =

∫
SR(s, a)b(s) ds. Araya-López et al. proposed

ρPOMDPs as an extension to POMDPs which use arbi-
trary belief-based rewards (2010). This allows to define
pure information gathering problems as well as the utiliza-
tion of reward functions combining information gain with
state-based rewards, as necessary in the domain of active
sensing. Analogously to the belief MDP, a ρPOMDP can
be described by an MDP over the belief space with reward
ρ. Offline solution methods based on value iteration were
proposed to solve ρPOMDPs, but they require discrete state,
action, and observation spaces and a reward function that is
piecewise linear and convex (PWLC) on the belief space.

3. Information-Theoretic Reward Shaping
Shaping the reward function can result in a different policy.
However, policy invariant reward shaping can be achieved
by PBRS (Ng et al., 1999; Eck et al., 2016). In this approach,
potentials are used as heuristics for the future reward that
can be expected in a belief. The reward is shaped by adding
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the potential difference of successive beliefs which acts
as an implicit guidance for the agent. In our work, we
use potentials based on information measures for multiple
reasons.

Firstly, in highly uncertain domains the agent has to reduce
the uncertainty in the belief before maximizing the reward,
even if information gathering as such is not rewarded. This
gives rise to the idea that planning can be guided by shaping
the reward function to consider the value of information.

Secondly, information retrieval can be rewarded on any
domain and does not require a manually designed potential
function.

The last motivation for using information-theoretic reward
shaping is that the optimal value function V ∗ serves as a
particularly effective potential (Ng et al., 1999). Although
V ∗ is unknown, it is known to be convex over the belief
space and typically attains higher values on the boundary of
the belief space, since more information allows to make bet-
ter decisions. Information measures, as defined in the next
paragraph, are also convex and should attain their maximal
values on the boundary of the belief space, which makes
them a reasonable heuristic for V ∗.

To quantify the information contained in a distribution we
define information measures as convex functions on the
belief space, denoted by I. The convexity captures the
intuitive observation that the information contained in a
mixture distribution I(λb1+(1−λ)b2) of beliefs b1, b2 with
λ ∈ (0, 1) cannot exceed the weighted mean information
λI(b1) + (1− λ)I(b2) of the distributions b1, b2.

Based on the previous considerations, we investigate and
compare two slightly different potential-based shaping func-
tions in this work. To begin with, we use the discounted
information gain ∆Iγ(b, b′) = γI(b′) − I(b) because it
guarantees the optimal policy to be invariant under PBRS
for infinite horizon problems (Eck et al., 2016). We ad-
ditionally consider the undiscounted information gain
∆I1(b, b′) = I(b′) − I(b) since it resembles the idea of
gathering information more intuitively and it is used in the
area of active sensing (Mihaylova et al., 2003). The shaped
reward function can be written as

ρ(b, a, b′) =

∫
S
R(s, a)b(s) ds+ λ∆I(b, b′) (1)

where the parameter λ weights reward maximization and
information gathering.

Various information measures are presented in the literature.
A widely used uncertainty measure for discrete probability
distributions is the entropy H = −

∑
x p(x) log p(x). It

can be generalized to continuous distributions by integrat-
ing over the continuous domainH = −

∫
p(x) log p(x) dx

and is then called differential entropy. While this loses

some properties (e.g. positivity), it still serves well as an
uncertainty measure.

Other information measures we considered are based on Lp-
norms or the distance to the maximum entropy distribution,
which represents maximal uncertainty. Similar ideas for dis-
crete spaces are presented in (Mihaylova et al., 2003; Araya-
López et al., 2010). Since the results of our evaluations
were similar for all information measures considered, we
only present the results for negative entropy. The variance
of a belief, however, is unsuitable for measuring informa-
tion. This is because a bimodal distribution with extremely
narrow peaks at an arbitrarily large distance contains a lot
of information but has unbounded variance.

4. Solving ρPOMDPs on Continuous Spaces
The information-based reward shaping described in the pre-
vious section can be implemented by modeling the problem
as a ρPOMDP with the belief-based reward function in
Equation (1). Araya-López et al. introduced an offline algo-
rithm for solving ρPOMDPs on discrete spaces with PWLC
reward function. Since we consider reward shaping for con-
tinuous problems and the negative entropy is not PWLC, we
develop a novel ρPOMDP solver for continuous domains.

Our approach adapts the PFT-DPW algorithm presented
in Section 2 to belief-based reward functions. Before we
present our algorithm, we show how belief-based reward
functions can be evaluated on particle-based belief approxi-
mations, which are used by PFT-DPW.

4.1. Particle-Based Calculation of Belief-Dependent
Rewards

While the expected reward
∫
SR(s, a)b(s) ds and the nega-

tive entropy on discrete spaces can be easily evaluated for
a sample of the belief, there is no straightforward way to
compute the differential entropy from a particle set without
making additional assumptions. In this section, we derive a
method to compute the negative entropy from weighted par-
ticle sets based on kernel density estimation (KDE) (Gisbert,
2003).

In the following, we assume a belief b is approximated by a
weighted particle set {(si, wi)}mi=1 with normalized weights.
As common for particle filters, the integral is approximated
as

−H(b) =

∫
S

b(s) log b(s) ds ≈
m∑
i=1

wi log b(si). (2)

Following the insights of Hall & Morton for unweighted
particles (1993), the belief b can be approximated by a KDE
b̂ computed from the weighted particle set, which yields the
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entropy estimate

−Ĥ(b̂) =

m∑
i=1

wi log b̂(si). (3)

In our work we use a Gaussian kernel and select the band-
width according to Silverman’s rule of thumb (Silverman,
1986). The computational complexity of evaluating Equa-
tion (3) isO(m2D) where D is the dimension of the contin-
uous state space. Details on KDE, bandwidth selection and
computational complexity can be found in the supplemental
material.

An alternative method to calculate the entropy of a run-
ning particle filter can be derived based on Bayes’ theorem
(Skoglar et al., 2009; Boers et al., 2010). However, this
procedure requires explicit knowledge of transition and ob-
servation models, which is often not available.

4.2. The Information Particle Filter Tree Algorithm

Similar to PFT-DPW, our algorithm simulates particle sets
in a MCTS fashion to construct a search tree. One iteration
of IPFT is shown in Figure 1. For simplicity only belief
nodes are shown, not action nodes. Particle sets of fixed
size m are simulated through the tree, until reaching a node
with unexplored child nodes. Then a new node is added to
the tree and its value is estimated using a rollout policy. All
visited nodes are updated with the returned reward.

The principal change necessary in PFT-DPW to solve
ρPOMDPs is the reward computation. Instead of the
mean particle reward, the belief-dependent reward model
ρ(b, a, b′) is used. Information rewards are calculated using
the particle-based approximations derived in the previous
section.

Another aspect concerns the particle-based belief approxi-
mations. In PFT-DPW particle sets are only generated when
a new node is added to the tree. The particles are then
saved in the node and reused when it is visited again. This
is problematic because a small particle set serves only as
a coarse approximation of the continuous belief. Hence,
belief-based rewards like the entropy cannot be estimated
well from only a small sample. For this reason, in IPFT
we simulate new particle beliefs instead of reusing previous
samples. The algorithm averages the rewards of different
particle approximations of the same belief to obtain a better
estimate.

4.2.1. CONVERGENCE OF BELIEF-BASED REWARDS

The belief-based reward in Equation (1) consists of the mean
state-based reward and the entropy difference. Regarding
the mean particle reward, averaging over multiple particle
sets yields the same result as computing the mean reward

of the union of all particle sets. However, this might not be
true for the entropy-based reward.

In the following, we analyze how averaging entropy esti-
mates fromK different particle sets Sk = {(s(k)

i , w
(k)
i )}mi=1

differs from computing the entropy from the combined sam-
ple S =

⋃
Sk. By concatenating the K particle sets, the

union can be formulated as S = {(s̃j , w̃j)}Kmj=1 where the
weights w̃j are normalized with the factor 1

K . Let b̂k and b̂
denote kernel density estimates for the sample Sk and the
combined sample S, respectively. Averaging the negative
entropy estimates from the different particle sets results in

− 1

K

K∑
k=1

Ĥ(b̂k) =

K∑
k=1

m∑
i=1

w
(k)
i

K
log b̂k(s

(k)
i ). (4)

Since b̂ and b̂k are density estimates of the same belief b,
they converge to the same density for m → ∞. For this
reason, we assume them to be sufficiently close so that
Equation (4) can be approximated by

≈
K∑
k=1

m∑
i=1

w
(k)
i

K
log b̂(s

(k)
i )

=

K·m∑
j=1

w̃j log b̂(s̃j) = −Ĥ(b̂). (5)

Hence, averaging the entropy estimates of different particle
sets is approximately equal to estimating the entropy from
the combined particle set. Since the KDE-based entropy
estimate (5) converges for K →∞, we expect our estimate
to converge as well (Hall & Morton, 1993).

Estimating the entropy from the combined sample would
require to maintain all particles sampled in any tree node.
In contrast, our approach only needs the currently simulated
particle set, which drastically reduces the required mem-
ory. Moreover, it is computationally more efficient, because
the entropy computation as described in Section 4.1 scales
quadratically with the number of particles m.

4.2.2. DESCRIPTION OF THE ALGORITHM

Algorithm 1 presents the resulting method. The outer struc-
ture of the algorithm is left out due to space constraints. It
closely follows the outer structure of the algorithms pro-
vided by Sunberg & Kochenderfer (2017): The SIMULATE
procedure is called from the initial belief b, an empty action-
observation history h, and the maximal tree depth d as long
as computational resources permit, which over time builds
up the search tree. Since beliefs are represented by particle
sets, the initial belief is sampled at each call of SIMULATE
in the root node. In the following, a history h appended by a
new action a or an action-observation pair (a, o) is denoted
ha or hao, respectively.
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Figure 1. One iteration of the IPFT algorithm. Particle sets are sim-
ulated through the tree using UCB. At the end a node is expanded
and its value estimated with a rollout policy. Then the value is
propagated back through all visited nodes.

The first step in SIMULATE is to choose an action. Pro-
gressive widening of the action space and action se-
lection according to UCB is covered by the function
ACTIONPROGWIDEN. Then either a new observation is
generated or an existing observation child node is sampled,
depending on the observation widening parameters, similar
as in POMCPOW. Here, C(ha) denotes the set of child
nodes of the tree node corresponding to history ha, which
are identified by the observation o that leads to the corre-
sponding child node. To generate a new observation, a state
is sampled from the belief b at first, for which a succes-
sor state and the observation are generated. Note, that the
counter M is only needed in the case of discrete observa-
tions, when the same observation can be sampled multiple
times. In continuous observations spaces, M will almost
surely be one for all nodes. Then the posterior belief b′

is computed with a particle filter update GPF(m) and the
belief-dependent reward is calculated. If a new observation
was sampled, it is added as a child node and a rollout is
performed to estimate the total reward R of the belief node.
Otherwise, SIMULATE is called recursively on the belief b′

and the successor node hao. At last, the node statistics are
updated.

The computational complexity of the particle filter update
is O(m). For each particle set sampled from the initial
belief in the root node, SIMULATE is called in every node
while traversing the tree. Hence, the complexity of IPFT
is O(ndm) for n particle sets simulated in a tree of depth
d. Further, IPFT is well suited for parallelization since the
particle filter updates can be distributed on different workers
which allows to use larger particle sets. In our experiments
small particles sets of size m = 20 were sufficient.

Algorithm 1 SIMULATE function of Information Particle
Filter Tree

1: Input: belief b, history h, depth d
2: if d = 0 then
3: R = 0
4: else
5: a← ACTIONPROGWIDEN(h)
6: if |C(ha)| ≤ koN(ha)αo then
7: o← sample s from b, generate o from (s, a)
8: M(hao)←M(hao) + 1
9: else

10: o← select o ∈ C(ha) w.p. M(hao)∑
ōM(haō)

11: end if
12: b′ ← GPF(m)(b, a, o)
13: r ← ρ(b, a, b′)
14: if o 6∈ C(ha) then
15: C(ha)← C(ha) ∪ {o}
16: R← r + γ · ROLLOUT(b′, hao, d− 1)
17: else
18: R← r + γ · SIMULATE(b′, hao, d− 1)
19: end if
20: N(h)← N(h) + 1
21: N(ha)← N(ha) + 1

22: Q(ha)← Q(ha) + R−Q(ha)
N(ha)

23: end if
24: Output: accumulated discounted reward R

4.2.3. CONVERGENCE OF IPFT

In the following, we want to provide an intuition for the
convergence of IPFT. The convergence results for Partially
Observable Weighted Sparse Sampling (POWSS) suggest
that the particle weighting scheme used in POMCPOW is
sound (Lim et al., 2020). Since IPFT samples new weighted
particles in every simulation rather than reusing a previous
sample, it is closely related to POMCPOW in this aspect.
For this reason, IPFT can also be expected to converge to
the optimal policy, provided the belief-based rewards are
estimated well. For the case of entropy-based rewards this
was shown previously in Section 4.2.1.

Furthermore, the optimal policy for the infinite horizon prob-
lem is invariant under information-theoretic reward shaping
with the discounted information gain (Eck et al., 2016).
Hence, the policy IPFT converges to is also optimal for the
unshaped infinite horizon problem.

5. Evaluation
We evaluate the effects of information-based reward shaping
by comparing the proposed IPFT algorithm with state-of-
the-art solvers on benchmark problems of varying difficulty
using the POMDPs.jl framework (Egorov et al., 2017). Fur-
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thermore, we inspect the sensitivity with respect to its hy-
perparameters. The code for IPFT and the scenarios and
evaluations is provided to the reader at GitHub1 for further
benchmarks.

PFT-DPW and POMCPOW are selected as benchmark
solvers because they are designed to deal with continuous
spaces and are promising recent developments (Sunberg &
Kochenderfer, 2018). Besides, IPFT was developed based
on PFT-DPW, therefore comparing them directly reveals the
effects of the additional information gathering term. Other
online POMDP algorithms such as DESPOT or POMCP
with DPW are not well suited for problems with continuous
observation spaces and are therefore not included (Sunberg
& Kochenderfer, 2018). The DESPOT-α algorithm which
was published only recently would be another interesting
comparison, but no off-the-shelf implementation is available
yet (Garg et al., 2019).

To encourage information gathering, we use reward shaping
with the discounted information gain ∆Iγ as well as the
undiscounted information gain ∆I1 as described in Sec-
tion 3. We measure the performance with respect to the
original reward of the POMDP, without the shaping reward.

5.1. Benchmark Problems

For every problem we perform 1000 simulations with each
solver and average their reward. In the beginning of each
simulation the problem is initialized randomly and actions
are selected according to the solver, with a maximum compu-
tation time of 1 second per step. After an action is executed
the agent’s belief is updated with the received observation
and the next action is selected until the simulation termi-
nates. The hyperparameters used by the solvers are provided
in the supplemental material. In all problems the discount
was set to γ = 0.95. We performed the simulations on an
Intel Core i7-6700 CPU with a clock rate of 3.4GHz and
8GB RAM.

5.1.1. LIGHT DARK

Different variations of the Light Dark problem are used in
the literature on planning under uncertainty (Perez et al.,
2012; Platt, 2013; Sunberg & Kochenderfer, 2018). In our
work, we consider the variant used by Sunberg & Kochen-
derfer, where the agent moves deterministically along a
one-dimensional discrete state space.

In this problem, the goal is to reach the origin and execute ac-
tion 0 to obtain a reward of 100. If action 0 is used anywhere
else, the agent receives a reward of −100. For moving, the
agent has step costs of −1. The problem terminates when
action 0 is executed. The observations received by the agent

1https://github.com/johannes-fischer/
icml2020_ipft
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Figure 2. The Light Dark observation density for different succes-
sor states s′.

are its current state disturbed by an additive Gaussian noise
where the standard deviation σZ(s) = |s − 10| grows lin-
early with the distance from a light source at s = 10. Figure
2 shows the probability density of the observation model Z
for some states s. In addition to the original action space
A10 = {−10,−1, 0, 1, 10}, we consider the action space
A3 = {−3,−1, 0, 1, 3} as well.

Table 1 reveals the reward and an estimate of its standard
deviation for the Light Dark problem. It can be seen that
the variant with action space A3 is generally harder to solve.
This is because it requires multiple steps to get from the
light source to the goal.

For the action space A10 the addition of information re-
wards does not lead to an increased performance over the
state-of-the-art solvers. However, POMCPOW fails to solve
the version with action space A3. Besides, the difference
between the discounted information gain ∆Iγ and the undis-
counted information gain ∆I1 is small.

5.1.2. CONTINUOUS LIGHT DARK

The Light Dark problem is already challenging on a discrete
state space. To further increase the difficulty, we remodel
the problem on a continuous state space with a stochastic
transition and an increased observation noise.

In the Continuous Light Dark problem the agent moves
along the real line with steps that are normally distributed
around the chosen action with noise σT = 0.1. As in the
previous problem, the two action spaces A10 and A3 are
considered. Since the origin is a null set in the continuous
state space, a unit ball around the origin is chosen as the goal
area where the agent receives the positive reward. While
the observations remain normally distributed, their standard
deviation is increased to σZ(s) =

√
2|s−10|+0.5, leading

to less informative observations.

The results for the Continuous Light Dark problem for each
of the two action spaces are also listed in Table 1. While

https://github.com/johannes-fischer/icml2020_ipft
https://github.com/johannes-fischer/icml2020_ipft
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Table 1. Results for the discrete Light Dark and Continuous Light Dark problems for the two actions spaces A10 and A3. The table shows
the mean reward of 1000 simulations and its estimated standard deviation.

Light Dark problem Continuous Light Dark problem
Algorithm action space A10 action space A3 action space A10 action space A3

IPFT(∆I1) 58.2± 0.4 34.8± 0.7 35.7± 1.8 35.9± 1.0
IPFT(∆Iγ) 55.4± 0.5 27.8± 0.8 38.4± 1.7 32.3± 1.4
POMCPOW 58.6± 0.5 −2.6± 0.9 −8.5± 2.3 −2.9± 2.1
PFT-DPW 57.4± 0.5 33.9± 0.8 −33.1± 2.4 −19.6± 2.3
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Figure 3. Exemplary trajectories for the continuous Light Dark
problem with action space A3. Both trajectories start in s0 = −5.

IPFT still performs well, the benchmark solvers cannot
solve the problem and achieve bad results, even PFT-DPW.
Both variants of the problem exhibit similar results and as
for the discrete Light Dark problem the difference between
using ∆I1 and ∆Iγ is small. Our findings indicate that
information-based reward shaping helps to solve problems
where the optimal policy involves information gathering,
even in simple problems like this. Hence, the benefit might
be even larger for more complex problems.

Exemplary trajectories for the problem with action space A3

are shown in Figure 3. Both trajectories initially start in state
s0 = −5. Figure 3a clearly illustrates how the trajectory di-
rectly moves towards the light source, because IPFT chooses
actions that take information gain into account. After lo-
calization, it is able to immediately approach the goal. In
contrast, the trajectory generated by POMCPOW in Figure
3b moves back and forth unsystematically and thus collects
only noisy observations. Over time many observations still
improve the belief estimate such that the trajectory ends
close to the goal region eventually.

Table 2. Results for the Laser Tag problem. The table shows the
mean reward of 1000 simulations and its estimated standard devia-
tion.

Laser Tag

IPFT(∆I1) −9.0± 0.2
IPFT(∆Iγ) −8.9± 0.2
POMCPOW −9.9± 0.2
PFT-DPW −12.0± 0.2

5.1.3. LASER TAG

Somani et al. introduced the Laser Tag problem in which
the agent moves in a grid world containing obstacles and a
target is moving away from the agent (2013). Its goal is to
find and tag the target for which it receives a reward of 10,
while each step is penalized with −1. To localize the target,
the agent receives normally distributed measurements of
the distance to the closest obstacles in the eight cardinal
directions.

As Table 2 shows, IPFT achieves higher rewards than the
benchmark solvers. While it outperforms PFT-DPW, the
result of POMCPOW is only slightly worse. In general, the
performance gap is not as significant as for the Continuous
Light Dark problem. The reason for this is that both terms in
the shaped reward function in Equation (1) are maximized
by the same actions: Searching for the target increases the
chance for high rewards as well as gathers information.
Hence, adding the information reward does not provide as
much additional guidance as in other problems.

5.2. Empirical Parameter Sensitivity Analysis

We investigate the sensitivity of the IPFT solver with respect
to the number of particles m and the weight λ balancing
information gathering and reward maximization. To this
end, we carry out more experiments on the Continuous Light
Dark problem with action space A3 where those parameters
are varied. The undiscounted information gain ∆I1 is used
for reward shaping.

Figure 4 shows the results on two separate axes. It can be
seen that the performance degrades gracefully with varying
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Figure 4. Parameter sensitivity of the mean reward of 1000 simulations. Shown are the results for different values of the information
weight λ (blue) and for different numbers of particles m (red). Error bars indicate the estimated standard deviation of the mean reward.

λ, while keeping a fixed number of m = 20 particles (blue).
For λ → 0, IPFT and hence its performance converge to
PFT-DPW. With increasing λ the information gain is over-
weighted and less rewards are collected. Nonetheless, there
is a large region (λ ∈ [60, 120]) in between those two ex-
tremes where the performance is not very sensitive to the
choice of λ, which makes it easy to find a suitable parameter
in practice.

The number of particles m is varied using a constant infor-
mation weight λ = 60 (red). For larger particle sets with
m > 100, the performance degrades because the increased
computation time O(m2) necessary for each entropy calcu-
lation outweighs the increased accuracy of the particle set
approximation. In this scenario the algorithm also works
well with as few as m = 4 particles. Since the region where
the maximal reward is attained is relatively flat, the reward
is not very sensitive with respect to m.

6. Related Work
Information gathering has been integrated in sequential de-
cision making problems before, in particular in the areas of
exploration and active sensing.

Cassandra et al. used POMDPs to solve a localization prob-
lem (1996). They guide the search by choosing an infor-
mation gathering action whenever the entropy exceeds a
threshold. Another work used an optimization criterion
combining the value function with the one-step expected en-
tropy, resulting in a myopic algorithm (Burgard et al., 1997).
Kreucher et al. maximized the Rényi divergence to choose
the most informative sensor (2005). They approximated
distributions over a continuous state space with a particle
filter. Hoffmann et al. estimate information theoretic costs
from particle filters and maximize the mutual information

of multiple agents in the next time step to localize an object
with decentralized planning (2006). In contrast to our work,
these approaches result in myopic, information-greedy poli-
cies because they only consider the information gained in
the next step.

Some works were able to consider information gathering
in long-term planning. Roy & Thrun augmented the state
with the entropy and solved the resulting problem with dy-
namic programming (2000). Unlike our work, they used a
parametric approach which allows only unimodal beliefs.
Another strategy to obtain non-myopic policies is to sam-
ple subgoals where the observation distribution has a low
entropy and the immediate reward is high (He et al., 2010;
Ma & Pineau, 2015). However, the uncertainty in the ob-
servation distribution does not necessarily reflect how much
information is actually gained. Spaan et al. proposed to
implement state-based information rewards by enlarging the
action space with so-called commit actions, which result in
high rewards if the state can be guessed correctly (2015).
Because one such commit action is necessary for every state
that has to be distinguished, the action space quickly be-
comes intractable. Dressel & Kochenderfer implemented
belief-dependent rewards in the offline POMDP solver SAR-
SOP to solve localization problems (2017). Besides being
unsuitable for online planning, this also restricts the reward
function to be PWLC. They chose reward functions based
on the `∞-norm and on the commit actions from Spaan et al.
mentioned above.

Reward shaping based on information maximization was
used by Mafi et al. in the context of reinforcement learning
(2011). Similar to our work, their reward function combines
information gain and task execution. Eck et al. applied
PBRS to online planning in POMDPs (2016). They de-
scribe four types of belief-based potential functions that can
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be used to guide the agent and provide theoretical results. A
MCTS-based online planning approach using information-
theoretic rewards is provided in the context of robotic ex-
ploration problems (Lauri & Ritala, 2016). They resort to
open-loop planning to make problems with large observa-
tion spaces tractable. The POMDP-lite algorithm solves
the subclass of POMDPs where the unobservable states are
constant or change deterministically (Chen et al., 2016).
It measures the information gain as the L1 divergence be-
tween consecutive beliefs and adds it as a bonus to the
reward. Saborío & Hertzberg develop the idea of partial
goal satisfaction to construct a domain-independent heuris-
tic for PBRS (2018). They apply PBRS to states sampled
by POMCP instead of planning directly over beliefs. In
contrast to our work, all of these approaches consider only
discrete state spaces.

The referenced works indicate the benefits of utilizing infor-
mation measures in decision making. Nevertheless, none of
them could efficiently do closed-loop online planning with
arbitrary belief-based rewards on continuous domains.

7. Conclusion and Future Work
Decision making under uncertainty is particularly challeng-
ing in problems on large spaces where the reward is only
obtained after long action sequences of information gath-
ering. In this work, we propose to consider the value of
information in the objective function in order to facilitate
the search for promising actions. We develop a novel online
algorithm that enables information-theoretic reward shap-
ing on continuous spaces. Our algorithm, IPFT, performs
MCTS with particle-based belief simulations and utilizes
DPW to accommodate continuous action and observation
spaces. As a result, the algorithm is capable of solving
arbitrary ρPOMDPs on continuous domains.

Our evaluation reveals that problems which require informa-
tion gathering for task execution can be solved much more
efficiently using our approach than with state-of-the-art al-
gorithms. Furthermore, the algorithm can be easily used on
new problems since our analysis shows that the performance
is not very sensitive to its hyperparamters.

In our future research we will use IPFT to investigate more
complex scenarios. For instance, search and rescue is an im-
portant application which likely benefits from information-
based reward shaping. Since we developed a universal
ρPOMDP solver this allows us to also consider pure infor-
mation gathering tasks on continuous spaces, as are common
in active sensing.
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