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Abstract
We introduce a new algorithm for online linear-
quadratic control in a known system subject to
adversarial disturbances. Existing regret bounds
for this setting scale as

√
T unless strong stochas-

tic assumptions are imposed on the disturbance
process. We give the first algorithm with logarith-
mic regret for arbitrary adversarial disturbance
sequences, provided the state and control costs
are given by known quadratic functions. Our algo-
rithm and analysis use a characterization for the
optimal offline control law to reduce the online
control problem to (delayed) online learning with
approximate advantage functions. Compared to
previous techniques, our approach does not need
to control movement costs for the iterates, leading
to logarithmic regret.

1. Introduction
Reinforcement learning and control consider the behavior
of an agent making decisions in a dynamic environment
in order to suffer minimal loss. In light of recent practical
breakthroughs in data-driven approaches to continuous RL
and control (Lillicrap et al., 2016; Mnih et al., 2015; Silver
et al., 2017), there is great interest in applying these tech-
niques in real-world decision making applications. However,
to reliably deploy data-driven RL and control in physical
systems such as self-driving cars, it is critical to develop
principled algorithms with provable safety and robustness
guarantees. At the same time, algorithms should not be
overly pessimistic, and should be able to take advantage of
benign environments whenever possible.

In this paper we develop algorithms for online linear-
quadratic control which ensure robust worst-case perfor-
mance while optimally adapting to the environment at hand.
Linear control has traditionally been studied in settings
where the dynamics of the environment are either governed
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by a well-behaved stochastic process or driven by a worst-
case process to which the learner must remain robust in
the H∞ sense. We consider an intermediate approach in-
troduced by Agarwal et al. (2019a) in which disturbances
are non-stochastic but performance is evaluated in terms
of regret. This benchmark forces the learner’s control pol-
icy to achieve near optimal performance on any specific
disturbance process encountered.

Concretely, we consider a setting in which the state evolves
according to linear dynamics:

xt+1 = Axt +But +wt, (1)

where xt ∈ Rdx are states, ut ∈ Rdu are inputs, and
A ∈ Rdx×dx and B ∈ Rdx×du are system matrices known
to the learner. We refer to wt ∈ Rdx as the disturbance
(or, “noise”), which we assume is selected by an adaptive
adversary and satisfies ∥wt∥ ≤ 1; we let w refer to the en-
tire sequence w1∶T . We consider fixed quadratic costs of
the form `(x,u) ∶= x⊺Rxx + u

⊺Ruu, where Rx,Ru ⪰ 0
are given. This model encompasses noise which is uncor-
related (H2), worst-case (H∞), or governed by some non-
stationary stochastic process. The model also approximates
control techniques such as feedback linearization and tra-
jectory tracking (Slotine & Li, 1991), where A and B are
the result of linearizing a known nonlinear system and the
disturbances arise due to systematic errors in linearization
rather than from a benign noise process.

For any policy π that selects controls based on the current
state and disturbances observed so far, we measure its per-
formance over a time horizon T by

JT (π;w) =
T

∑
t=1

`(xπt , u
π
t ),

the total cost incurred by following ut = πt(xt,w1∶t−1).
Letting πK denote a state-feedback control law of the form
πKt (x) = −Kx for all t, the learning algorithm’s goal is to
minimize

RegT = JT (π
alg;w) − inf

K∈K
JT (π

K ;w),

where πalg denotes the learner’s policy and K is an appro-
priately defined set of stabilizing controllers. Thus, πalg has
low regret when its performance nearly matches the optimal
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controller K ∈ K on the specific, realized noise sequence.
While the class K contains the optimalH∞ andH2 control
policies, we also develop algorithms to compete with a more
general class of stabilizing linear controllers, which may
fare better for certain noise sequences (Appendix B).

Logarithmic regret in online control. Agarwal et al.
(2019a) introduced the adversarial LQR setting we study
and provided an efficient algorithm with

√
T -regret. Sub-

sequent works (Agarwal et al., 2019b; Simchowitz et al.,
2020) have shown that logarithmic regret is possible when
the disturbances follow a semi-adversarial process with per-
sistent excitation. Our main result is to achieve logarithmic
regret for fully adversarial disturbances, provided that costs
are known and quadratic.

1.1. Contributions

We introduce Riccatitron (Algorithm 1), a new algorithm for
online linear control with adversarial disturbances which
attains polylogarithmic regret.

Theorem 1 (informal). Riccatitron attains regret
O(log3 T ), where O hides factors polynomial in relevant
problem parameters.

Riccatitron has comparable computational efficiency to pre-
vious methods. We show in Appendix B that the algorithm
also extends to a more general benchmark class of linear con-
trollers with internal state, and to “tracking” loss functions
of the form `t(x,u) ∶= `(x − at, u − bt). Some conceptual
contributions are as follows.

When is logarithmic regret possible in online control?
Simchowitz & Foster (2020) and Cassel et al. (2020) inde-
pendently show that logarithmic regret is impossible in a
minimax sense if the system matrices (A,B) are unknown,
even when disturbances are i.i.d. gaussian. Conversely, our
result shows that ifA andB are known, logarithmic regret is
possible even when disturbances are adversarial. Together,
these results paint a clear picture of when logarithmic regret
is achievable in online linear control. We note, however, that
our approach heavily leverages the structure of linear con-
trol with strongly convex, quadratic costs. We refer the to
the related work section for discussion of further structural
assumptions that facilitate logarithmic regret.

Addressing trajectory mismatch. Riccatitron represents
a new approach to a problem we call trajectory mismatch
that arises when considering policy regret in online learning
problems with state. In dynamic environments, different
policies inevitably visit different state trajectories. Low-
regret algorithms must address the mismatch between the
performance of the learner’s policy πalg on its own realized
trajectory and the performance of each benchmark policy π

on the alternative trajectories it induces. Most algorithms
with policy regret guarantees (Even-Dar et al., 2009; Zimin
& Neu, 2013; Abbasi-Yadkori et al., 2013; Arora et al., 2012;
Anava et al., 2015; Abbasi-Yadkori et al., 2014; Cohen et al.,
2018; Agarwal et al., 2019a;b; Simchowitz et al., 2020)
adopt an approach to addressing this trajectory mismatch
that we refer to as “online learning with stationary costs”,
or OLwS. At each round t, the learner’s adaptive policy
πalg commits to a policy π(t), typically from a benchmark
class Π. The goal is to ensure that the iterates π(t) attain
low regret on a proxy sequence of stationary cost functions
π ↦ λt(π) that describe the loss the learner would suffer
at stage t under the fictional trajectory that would arise if
she had played the policy π at all stages up to time t (or in
some cases, on the corresponding steady-state trajectory as
t → ∞). Since the stationary cost does not depend on the
learner’s state, low regret on the sequence {λt} can be ob-
tained by feeding these losses directly into a standard online
learning algorithm. To relate regret on the proxy sequence
back to regret on the true sequence, most approaches use that
the iterates produced by the online learner are sufficiently
slow-moving.

The main technical challenge Riccatitron overcomes is that
for the stationary costs that arise in our setting, no known
algorithm produces iterates which move sufficiently slowly
to yield logarithmic regret via OLwS (Appendix C.4). We
adopt a new approach for online control we call online learn-
ing with advantages, or OLwA, which abandons stationary
costs, and instead considers the control-theoretic advan-
tages of actions relative to the unconstrained offline optimal
policy π⋆. Somewhat miraculously, we find that these ad-
vantages remove the explicit dependence on the learner’s
state, thereby eliminating the issue of trajectory mismatch
described above. In particular, unlike OLwS, we do not need
to verify that the iterates produced by our algorithm change
slowly.

1.2. Our approach: Online learning with advantages

In this section we sketch the online learning with advan-
tages (OLwA) technique underlying Riccatitron. Let π⋆ de-
note the optimal unconstrained policy given knowledge of
the entire disturbance sequence w, and let Q⋆

t (x,u;w)

be the associated Q-function (this quantity is formally de-
fined in Definition 3). The advantage1 with respect to
π⋆, A⋆

t (u;x,w) ∶=Q⋆
t (x,u;w)−Q⋆

t (w,u, π
⋆(x);w), de-

scribes the difference between the total cost accumulated
by selecting action u in state x at time t and subsequently
playing according to the optimal policy π⋆, versus choosing
ut = π

⋆
t (x;w) as well. By the well-known performance dif-

1Since we use losses rather than rewards, “advantage” refers to
the advantage of π⋆ over u rather than the advantage of u over π⋆;
the latter terminology is more common in reinforcement learning.
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ference lemma (Kakade, 2003), the relative cost of a policy
is equal the sum of the advantages under the states visited
by said policy:2

JT (π;w) − JT (π
⋆;w) =

T

∑
t=1

A⋆
t (u

π
t ;xπt ,w). (2)

With this observation, the regret RegT (π
alg;w,Π) of any

algorithm πalg to a policy class Π can be expressed as:
T

∑
t=1

A⋆
t (u

alg
t ;xalg

t ,w) − inf
π∈Π

T

∑
t=1

A⋆
t (u

π
t ;xπt ,w). (3)

The expression (3) suggests that a reasonable approach
might be to run an online learner on the functions π ↦
A⋆
t (u

π
t ;xπt ,w). However, there are two issues. First, the

advantages in the first sum are evaluated on the states xalg
t

under πalg, and in the second sum under the comparator
trajectories xπ (trajectory mismatch). Second, like π⋆ itself,
the advantages require knowledge of all future disturbances,
which are not yet known to the learner at time t. We show
that if the control policies are parametrized using a particu-
lar optimal control law, the advantages do not depend on the
state, and can be approximated using only finite lookahead.

Theorem 2 (informal). For control policies π with a suit-
able parametrization, the mapping π ↦ A⋆

t (u
π
t ;xπt ,w)

can be arbitrarilily-well approximated by a function π ↦
Ât;h(π;w1∶t+h) which (1) does not depend on the state, (2)
can be determined by the learner at time t + h, and (3) has
a simple quadratic structure.

The “magic” behind this theorem is that the functional de-
pendence of the unconstrained optimal policy π⋆(x;w) on
the state x is linear, and does not depend w (Theorem 3).
As a consequence, the state-dependent portion of π⋆ can
be built into the controller parametrization, leaving only
the w-dependent portion up to the online learner. In light
of this result, we use online learning to ensure low regret
on the sequence of loss functions ft(π) ∶= Ât;h(π;w1∶t+h);
we address the fact that ft is only revealed to the learner
after a delay of h steps via a standard reduction (Joulani
et al., 2013). We then show that for an appropriate controller
parameterization ft(π) is exp-concave with respective to
the learner’s policy and hence second-order online learning
algorithms attain logarithmic regret (Hazan et al., 2007).

We refer the reader to Appendix C for an in-depth overview
of the OLwS framework, its relationship to OLwA, and chal-
lenges associated with using these techniques to achieve
logarithmic regret.

2See Lemma D.12 in Appendix E for a general statement of the
performance difference lemma. The invocation of the performance
difference lemma here is slightly different from other results on
online learning in MDPs such as Even-Dar et al. (2009), in that
the role of π and π⋆ is swapped.

1.3. Preliminaries

We consider the linear control setting in (1). For normaliza-
tion, we assume ∥wt∥ ≤ 1 ∀t. We also assume x1 = 0.

Policies and trajectories. We consider policies π param-
eterized as functions of xt and w via ut = πt(xt;w). We
assume that, when selecting action ut at time t, the learner
has access to all states x1∶t, u1∶t−1, as well as w1∶t−1 (the
latter assumption is without loss of generality by the iden-
tity ws = xs+1 −Axs −Bus). Thus, a policy is said to be
executable if πt(x;w) depends only on x and w1∶t−1, i.e.
π(x;w) = π(w;w1∶t−1). For analysis purposes, we also
consider non-executable whose value at time t may depend
on the entire sequence w. For a policy π and sequence
w, we let xπt (w), uπt (w) denote the resulting states and
input trajectories (which we note depend only on w1∶t−1).
For simplicity, we often write xπt and uπt , supressing the
w-dependence. We shall let πalg refer to the policy selected
by the learner’s algorithm, and use the shorthand xalg

t (w),
ualg
t (w) to denote the corresponding trajectories. Given a

class of policies Π, the regret of the policy πalg is given by

RegT (π
alg; Π,w) = JT (π

alg;w) − inf
π∈Π

JT (π;w).

We consider a benchmark class of policies induced by state
feedback control laws πKt (x) = −Kx, indexed by matrices
K ∈ Rdu×dx .

Linear control theory. We say that a linear controller
K ∈ Rdudx is stabilizing if A −BK is stable, that is ρ(A −

BK) < 1 where ρ(⋅) denotes the spectral radius.3 We
assume the system (A,B) is stabilizable in the sense that
there exists a stabilizing controller K. For any stabilizable
system, there is a unique positive semidefinite solution P∞ ⪰

0 to the discrete algebraic Riccati equation (henceforth,
DARE),

P = A⊺PA +Rx −A
⊺PB(Ru +B

⊺PB)
−1B⊺PA. (4)

The solution P∞ to (4) is an intrinsic property of the sys-
tem (1) with (A,B) and characterizes the optimal infinite-
horizon cost for control in the absence of noise (Bertsekas,
2005). Our algorithms and analysis make use of this param-
eter, as well as the corresponding optimal state feedback
controller K∞ ∶= (Ru +B

⊺P∞B)−1B⊺P∞A. We also use
the steady-state covariance matrix Σ∞ ∶= Ru+B

⊺P∞B and
closed-loop dynamics matrix Acl,∞ ∶= A −BK∞.

Competing with state feedback. While K∞ represents
the (asymptotically) optimal control law in the presense of
uncorrelated, unbiased stochastic noise, πK∞ may not be

3For a possibly asymmetric matrix A, ρ(A) =

max{∣λ∣ ∣ λ is an eigenvalue for A}.
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the optimal state feedback policy in hindsight for a given se-
quence of adversarial perturbations wt. Hence, we compete
with linear controllers that satisfy a quantitative version of
the stability property.

Definition 1 (Strong Stability (Cohen et al., 2018)). We
say that A −BK ∈ Rdx×dx is (κ, γ)-strongly stable if there
exists matricesH,L ∈ Rdx×dx such thatA−BK =HLH−1,
∥H∥op∥H∥−1

op ≤ κ and ∥L∥op ≤ γ.

Given parameters (κ0, γ0), we consider the benchmark class

K0 = {∥K∥op ≤ κ0 ∶ A −BK is (κ0, γ0)-strongly stable}.

Lemma D.1 (Appendix D.1) shows that the closed-loop
dynamics for K∞ are always (κ∞, γ∞)-strongly stable for
suitable γ∞, κ∞. We assume that K0 is chosen such that
κ∞ ≤ κ0 and γ∞ ≤ γ0.4 Our algorithms minimize policy
regret to the class of induced policies for K0:

K0-RegT (π
alg;w) ∶= JT (π

alg;w) − inf
K∈K0

JT (π
K ;w).

Problem parameters. Our regret bounds depend on the
following basic parameters for the LQR problem:
Ψ⋆ ∶= max{1, ∥A∥op, ∥B∥op, ∥Rx∥op, ∥Ru∥op}, β⋆ ∶=
max{1, λ−1

min(Ru), λ
−1
min(Rx)}, Γ⋆ ∶= max{1, ∥P∞∥op}.

Additional notation. We adopt non-asymptotic big-oh
notation: For functions f, g ∶ X → R+, we write f = O(g)
if there exists some constant C > 0 such that f(x) ≤ Cg(x)
for all x ∈ X . We use Õ(⋅) so suppress logarithmic
dependence on system parameters, and we use O⋆(⋅) to
suppress all dependence on system parameters. For a
vector x ∈ Rd, we let ∥x∥ denote the euclidean norm
and ∥x∥∞ denote the element-wise `∞ norm. For a ma-
trix A, we let ∥A∥op denote the operator norm. If A is
symmetric, we let λmin(A) denote the minimum eigen-
value. When P ≻ 0 is a positive definite matrix, we let
∥x∥P =

√
⟨x,Px⟩ denote the induced weighted euclidean

norm. We et wt−1 = (wt−1,wt−2, . . . ,w1,0,0, . . . ) denote
a sequence of past ws, terminating in an infinite sequence
of zeros. To simplify indexing, we let ws ≡ 0 for s ≤ 0, so
that wt−1 = (wt−1,wt−2, . . . ) We also let ws ≡ 0 for s > T .

1.4. Organization

Section 2 introduces the Riccatitron algorithm, states its
formal regret guarantee, and gives an overview of the al-
gorithm’s building blocks and proof techniques. Section 3
gives a high-level proof of the key “approximate advantage”
theorem used by the algorithm. Omitted proofs are deferred
to Appendix E and Appendix F, and additional technical
tools stated and proven in Appendix D.

4This assumption only serves to keep notation compact.

Appendix A gives a detailed survey of related work. Ap-
pendix B sketches extensions of Riccatitron to more gen-
eral settings, and Appendix C gives a detailed survey of
challenges associated with applying previous approaches to
online reinforcement learning to obtain logarithmic regret
in our setting.

2. Logarithmic regret for online linear control
Our main algorithm, Riccatitron, is described in Algorithm 1.
The algorithm combines several ideas.

1. Following Agarwal et al. (2019a), we move from linear
policies of the form πK(x;w) = −Kx, to a relaxed
set of disturbance-action (DAP) policies of the form
π
(M)

t (x;w) = −K∞x − q
M(wt−1), where

qM(wt−1) =
m

∑
i=1

M [i]wt−i,

and where K∞ is linear controller from the DARE (4).

2. We show that the optimal unconstrained policy with
full knowledge of the sequence w takes the form
π⋆t (x;w) = −Ktx − q

⋆
t (wt∶T ), where (Kt) is a par-

ticular sequence of linear controllers that arises from
the so-called Riccati recursion. We then show that for
any policy of the form πt(x;w) = −K∞ − qt(w)—in
particular, for the DAP parameterization above—the
advantage functions A⋆

t (u
π
t ;xπt ,w) can be well ap-

proximated by simple quadratic functions of the form

∥qt(w) − q⋆t (wt∶T )∥
2
Σ∞ .

This essentially removes the learner’s state from the
equation, and reduces the problem of control to
that of predicting the optimal controller’s bias vector
q⋆t (wt∶T ). The remaining challenge is that the optimal
bias vectors depend on the future disturbances, which
are not available to the learner at time t.

3. We show that the advantages can be truncated to re-
quire only finite lookahead, thereby reducing the prob-
lem to online learning with delayed feedback. We then
apply a reduction from delayed online learning to clas-
sical online learning (Joulani et al., 2013), which pro-
ceeds by running multiple copies of a base online learn-
ing algorithm over separate subsequences of rounds.

4. Finally—using the structure of the disturbance-action
parameterization—we show that the resulting online
learning problem is exp-concave. As a result, we can
use a second-order online learning algorithm—either
online Newton step (ONS, Hazan et al. (2007)) given
in Algorithm 2, or Vovk-Azoury-Warmuth (VAW, Vovk
(1998); Azoury & Warmuth (2001)) given in Algo-
rithm 3—as our base learner to obtain logarithmic re-
gret.
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Algorithm 1 Riccatitron
1: parameters:

Horizon h, DAP length m, radius R, decay factor γ.
Online Newton parameters ηons, εons,

or Vovk-Azoury-Warmuth parameter εvaw.
2: initialize:

LetM0 ←M(m,R,γ) (Eq. 5).
Instantiate base learners BL(1), . . . ,BL(h+1) as either

ONS(εons, ηons,M0) or VAW(εvaw,M0,Σ∞).
3: Let τt = (t − 1) mod (h + 1) + 1 ∈ [h + 1].
4: for t = 1, . . . , T : do

// Predict using base learner τt.

5: Let Mt denote the kt-th iterate produced
by BL(τt) where kt ← ⌊t/(h + 1)⌋.

6: Play ut = −K∞xt − q
Mt(wt−1) (Definition 2).

7: Observe xt+1 and wt.
// Update base learner τt+1.

8: if t ≥ h + 1 then
// Approximate advantage from Eq. (10).

9: Update BL(τt+1) with Ât−h;h(M ;wt).

Together, these components give rise to the scheme in
Algorithm 1. At time t, the algorithm plays the action
ut = −K∞xt − q

Mt(wt−1), where Mt is provided by the
ONS (or VAW) instance responsible for the current round.
The algorithm then observes wt and uses this to form the
approximate advantage function for time t − h, where h is
the lookahead distance. The advantage is then used to up-
date the ONS/VAW instance responsible for the next round.
The main regret guarantee for this approach is as follows.

Theorem 1. For an appropriate choice of parameters, Ric-
catitron ensures

K0-RegT ≤ O⋆(dxdu log3 T ),

where O⋆ suppresses polynomial dependence on system
parameters. Suppressing only logarithmic dependence on
system parameters, the regret is at most

Õ(dxdu log3 T ⋅ β11
⋆ Ψ19

⋆ Γ11
⋆ κ

8
0(1 − γ0)

−4).

In the remainder of this section we overview the algorithmic
building blocks of Riccatitron and the key ideas of the proof.

2.1. Disturbance-action policies

Cost functionals parametrized by state feedback controllers
(e.g., K ↦ JT (π

K ;w)) are generally non-convex (Fazel
et al., 2018). To enable the use of tools from online convex
optimization, we use a convex disturbance-action controller
parameterization introduced by Agarwal et al. (2019a).

Algorithm 2 Online Newton Step (ONS(ε, η,C,Σ))
1: parameters: Learning rate η > 0, regularization param-

eter ε > 0, convex constraint set C.
// OCO with exp-concave costs fk(z), where z ∈ C ⊂ Rd.

2: initialize: d← dim(C), z1 ∈ C, E0 ← ε ⋅ Id.
3: for k = 1,2, . . . : do
4: Play zk and receive gradient ∇k ∶= ∇fk(zk).
5: Ek ← Ek−1 +∇k∇

⊺
k.

6: z̃k+1 ← zk − ηE
−1
k ∇k.

7: zk+1 ← arg minz∈C∥z − z̃k+1∥
2
Ek

.

Definition 2 (Disturbance-action policy (DAP)). Let M =

(M [i])mi=1 denote a sequence of matrices M [i] ∈ Rdu×dx .
We define the corresponding disturbance-action policy π(M)

as π(M)

t (x;w) = −K∞x− q
M(wt−1), where qM(wt−1) =

∑
m
i=1M

[i]wt−i.

We work with DAPs for which the sequence M belongs to
the set

M(m,R,γ) ∶= {M = (M [i]
)
m
i=1 ∶ ∥M

[i]
∥op ≤ Rγi−1

},
(5)

where m, R, and γ are algorithm parameters. We note that
DAPs can be defined with general stabilizing controllers
K ≠ K∞, but the choice K = K∞ is critical in the design
and analysis of our main algorithm.

The first lemma we require is a variant of a result of Agarwal
et al. (2019a), which shows that disturbance-action policies
are sufficiently rich enough to approximate all state feedback
laws.

Lemma 2.1 (Expressivity of DAP). Suppose we choose our
set of disturbance-action matrices asM0 ∶=M(m,R⋆, γ0),
where m = (1 − γ0)

−1 log((1 − γ0)
−1T ) and R⋆ =

2β⋆Ψ2
⋆Γ⋆κ

2
0. Then for all w, we have

inf
M∈M0

JT (π
(M);w) ≤ inf

K∈K0

JT (π
K ;w) +Capx,

where Capx ≤ O(β2
⋆Ψ8

⋆Γ2
⋆κ

7
0(1 − γ0)

−2).

We refer the reader to Appendix E.2 for a proof. Going
forward, we define

Dq = Õ(β
5/2
⋆ Ψ3

⋆Γ
5/2
⋆ κ2

0(1 − γ0)
−1

), (6)

which serves as an upper bound on ∥qMt ∥ for M ∈ M0,
as well as other certain other bias vector sequences that
arise in the subsequent analysis. In light of Lemma 2.1, the
remainder of our discussion will directly bound regret with
respect to DAPs:

M0-RegT (π;w) ∶= JT (π;w) − inf
M∈M0

JT (π
(M);w).

(7)
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We note in passing that DAPs are actually rich enough to
compete with a broader class of linear control policies with
internal state; this extension is addressed in Appendix B.2.

2.2. Advantages in linear control

To proceed, we adopt the OLwA paradigm, which minimizes
approximations to the advantages (or, differences between
the Q-functions) relative to the optimal unconstrained pol-
icy π⋆ given access to the entire sequence w. Recalling
`(x,u) = ∥x∥

2
Rx

+ ∥u∥
2
Ru

, we define the optimal controller
π⋆ and associated Q-functions and advantages by induction.

Definition 3. The optimal Q-function and policy at time
T are given by Q⋆

T (x,u;w) = `(x,u), π⋆T (x;w) =

minuQ
⋆
T (x,u;w) = 0, and V⋆

T (x;w) = `(x,0) = ∥x∥
2
Rx

.
For each timestep t < T , the optimal Q-function and policy
are given by

Q⋆
t (x,u;w) = ∥x∥

2
Q + ∥u∥

2
R +V⋆

t+1(Ax +Bu +wt;w),

π⋆t (x;w) = arg min
u∈Rdu

Q⋆
t (x,u;w),

V⋆
t (x;w) = min

u∈Rdu
Q⋆
t (x,u;w) =Q⋆

t (x,π
⋆
t (x;w);w).

The advantage function for the optimal policy is
A⋆
t (u;x,w) ∶=Q⋆

t (x,u;w) −Q⋆
t (x,π

⋆
t (x;w);w).

The advantage function A⋆
t (u;x,w) represents the total

excess cost incurred by selecting a control u ≠ π⋆t (x;w) at
state x and time t, assuming we follow π⋆ for the remaining
rounds. We have A⋆

t (u;x,w) ≥ 0 since, by Bellman’s opti-
mality condition, π⋆t (x;w) is a minimizer of Q⋆(x,u;w).

The advantages arise in our setting through application of
the performance difference lemma (Lemma D.12), which
we recall states that for any policy π, the regret to π⋆ is
equal to the sum of advantages under the trajectory induced
by π, i.e. JT (π;w) − JT (π

⋆;w) = ∑
T
t=1 A

⋆
t (u

π
t ;xπt ,w).

To analyze Riccatitron, we apply this identity to obtain the
regret decomposition

M0-RegT (π;w) =
T

∑
t=1

A⋆
t (u

π
t ;xπt ,w)

− inf
M∈M0

T

∑
t=1

A⋆
t (u

π(M)
t ;xπ

(M)
t ,w) (8)

This decomposition is exact, and avoids the pitfalls of the
usual stationary cost-based regret decomposition associ-
ated with the classical OLwS approach (cf. Appendix C).
Our goal going forward will be to treat these advantages
as “losses” that can be fed into an appropriate online learn-
ing algorithm to select controls. However, this approach
presents three challenges: (a) the advantages for the policy
π are evaluated on the trajectory xπt , while the advantages

for comparator are evaluated under the trajectory induced
by π(M); (b) the advantage is a difference in Q-functions
that considers all future expected reward. In particular,
A⋆
t (⋅; ⋅,w) depends on all future wts, including those not

yet revealed to the learner; (c) the functional form of the
advantages is opaque, and it is not clear that any online
learning algorithm can achieve logarithmic regret even if
they were able to evaluate A⋆

t at time t.

2.3. Approximate advantages

Our main structural result—and the starting point for Ric-
catitron—is the following observation. Let π be any pol-
icy of the form πt(x;wt−1) = −K∞x − q

Mt(wt−1), where
Mt = Mt(wt−1) are arbitrary functions of past w, and
where K∞ is the infinite horizon Riccati optimal controller.
Then A⋆

t (u
π
t ;xπt ,w) is well-approximated by an approx-

imate advantage function Ât;h(M ;wt+h) which (a) does
not depend on the state, and (b) depends on only a small
horizon h of future disturbances, and (c) is a pure quadratic
function of M , and thereby amenable to fast (logarithmic)
rates for online learning. Let h be a horizon/lookahead
parameter. Defining

q⋆∞;h(w1∶h+1) ∶=
h+1

∑
i=1

Σ−1
∞B

⊺
(A⊺

cl,∞)
i−1P∞wi, (9)

the approximate advantage function is

Ât;h(M ;wt+h) ∶= ∥qM(wt−1) − q
⋆
∞;h(wt∶t+h)∥

2
Σ∞ . (10)

The following theorem facilitates the use of the approximate
advantages.
Theorem 2. Let π be any policy of the form πt(x;w) =

−K∞x − q
Mt(wt−1), where Mt = Mt(w) ∈ M0. Then,

by choosing h = 2(1 − γ∞)−1 log(κ2
∞β

2
⋆Ψ⋆Γ2

⋆T
2) as the

horizon parameter, we have
T

∑
t=1

∣A⋆
t (u

π
t ;xπt ,w) − Ât;h(Mt;wt+h)∣ ≤ Cadv,

where Cadv = Õ(β11
⋆ Ψ19

⋆ Γ11
⋆ κ

8
0(1 − γ0)

−4 log2 T ).

The proof of this theorem constitutes a primary technical
contribution of our paper, and is proven in Section 3. Briefly,
the idea behind the result is to use that the optimal policy π⋆

itself satisfies π⋆t (x;w) ≈ −K∞x−q
⋆
∞;h(wt∶t+h) whenever

h is sufficiently large and t ≤ T −O⋆(logT ), and that A⋆
t

has a simple quadratic structure. This characterization for
is why it is essential to consider advantages with respect to
the optimal policy π⋆, and why our DAPs use the controller
K∞ as opposed to an arbitrary stabilizing controller as in
Agarwal et al. (2019a).

2.4. Online learning with delays

An immediate consequence of Theorem 2 is that for any al-
gorithm (in particular, Riccatitron) which selects πt(x;w) =
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−K∞x−q
Mt(wt−1), the regretM0-RegT (π;w) is at most

T

∑
t=1

Ât;h(Mt;wt+h) − inf
M∈M0

T

∑
t=1

Ât;h(M ;wt+h) + 2Cadv.

(11)

This is simply an online convex optimization problem with
M1, . . . ,MT as iterates—the only catch is that the “loss” at
time t, Ât;h(Mt;wt+h), can only be evaluated after observ-
ing wt∶h, which will not be revealed to the learner until after
round t + h. This is therefore an instance of online learning
with delays, namely, the loss function suffered at time t is
only available at time t + h + 1 (since wt is revealed at time
t + 1). To reduce the problem of minimizing regret on the
approximate advantages in (11) to classical online learning
without delays, we use a simple black-box reduction.

Consider a generic online convex optimization setting
where, at each time t, the learner proposes an iterate zt,
then suffers cost ft(zt) and observes ft (or some func-
tion of it). Suppose we have an algorithm for this non-
delayed setting that guarantees that for every sequence,
∑
T
t=1 ft(zt) − infz∈C∑

T
t=1 ft(zt) ≤ R(T ), where R is in-

creasing in T . Now consider the same setting with delay h,
and let τ(t) = (t − 1) mod (h + 1) + 1 ∈ [h + 1]. We use
the following strategy: Make h + 1 copies of the base algo-
rithm. At round t, observe zt, predict zt using the output of
instance τ(t), then update instance τ(t + 1) using the loss
ft−h(zt−h) (which is now available).

Lemma 2.2 (cf. Joulani et al. (2013)). The generic delayed
online learning reduction has regret at most

T

∑
t=1

ft(zt) − inf
z∈C

T

∑
t=1

ft(z) ≤ (h + 1)R(T /(h + 1)),

where R(T ) is the regret of the base instance.

Lemma 2.2 shows that minimizing the regret in (11) is as
easy as minimizing regret in the non-delayed setting, up to
a factor of h = O⋆(logT ). For completeness, we provide a
proof Appendix E.4. All that remains is to specify the base
algorithm for the reduction.

2.5. Exp-concave online learning

We have reduced the problem of obtaining logarithmic regret
for online control to obtaining logarithmic regret for online
learning with approximate advantages of the form in (11).
A sufficient condition to obtain fast rates in online learning
is strong convexity of the loss Hazan (2016), but while
the advantages Ât;h(M ;wt+h) are strongly convex with
respect to qM(w), they are not strongly convex with respect
to the parameter M . Itself. Fortunately, logarithmic regret
can also be achieved for loss functions that satisfy a weaker
condition called exp-concavity (Hazan et al., 2007; Cesa-
Bianchi & Lugosi, 2006).

Definition 4. A function f ∶ C → R is α-exp-concave if
∇2f(z) ⪰ α(∇f(z))(∇f(z))⊺ for all z ∈ C.

Intuitively, an exp-concave function f exhibits strong curva-
ture along the directions of its gradient, which are precisely
the directions along which f is sensitive to change. This
property holds for linear regression-type losses, as the fol-
lowing standard lemma (Appendix E.4) shows.
Lemma 2.3. Let A ∈ Rd1×d2 , and consider the function
f(z) = ∥Az − b∥

2
Σ, where Σ ⪰ 0. If we restrict to z ∈ Rd2

for which f(z) ≤ R, then f is (2R)−1-exp-concave.

Observe that the approximate advantage functions
Ât;h(M ;wt+h) indeed have the form f(z) = ∥Az − b∥2

Σ

(viewing the map M ↦ qM(wt−1) as a linear operator),
and thus satisfy exp-concavity for appropriate α > 0. To
take advantage of this property we use online Newton step
(ONS, Algorithm 2), a second-order online convex opti-
mization algorithm which guarantees logarithmic regret for
exp-concave losses.
Lemma 2.4 (Hazan (2016)). Suppose that
supz,z′∈C∥z − z

′∥ ≤ D, supz∈C∥∇ft(z)∥ ≤ G, and
that each loss fk is α-exp-concave. Then by setting
η = 2 max{4GD,α−1} and ε = η2/D, the online Newton
step algorithm guarantees

T

∑
k=1

fk(zk) − inf
z∈C

T

∑
k=1

fk(z) ≤ 5(α−1
+GD) ⋅ d logT.

Putting everything together. With the regret decompo-
sition in terms of approximate advantages (Theorem 2)
and the blackbox-reduction for online learning with de-
lays (Lemma 2.2), the design and analysis of Riccatitron
(Algorithm 1) is rather simple. In view of Lemma 2.1,
we initialize the setM0 sufficiently large to compete with
the appropriate state-feedback controllers (Line 2). Using
Theorem 2, our goal is to obtain a regret bound for the ap-
proximate advantages in (11). In view of the delayed online
learning reduction Lemma 2.2, we initialize h + 1 base on-
line learners (Line 2). Since the approximate advantages Ât

are pure quadratics, we use online Newton step for the base
learner, which ensures logarithmic regret via Lemma 2.4.

2.6. Sharpening the regret bound

With online Newton step as the base algorithm, Riccatitron
has regret O⋆(dxdu

√
dx ∧ du log3 T ). The dxdu factor

comes from the hard dependence on dim(C) in the ONS
regret bound (Lemma 2.4), while the

√
dx ∧ du factor is an

upper bound on the Frobenius norm for each M ∈ M0.
We can obtain improved dimension dependence by re-
placing ONS with a vector-valued variant of the classical
Vovk-Azoury-Warmuth algorithm (VAW), described in Al-
gorithm 3 (Appendix E.3). The VAW algorithm goes be-
yond the generic exp-concave online learning setting and



Logarithmic Regret for Adversarial Online Control

exploits the quadratic structure of the approximate advan-
tages. Theorem 5 in Appendix E.3 shows that its regret
depends only logarithmically on the Frobenius norm of the
parameter vectors, so it avoids the

√
dx ∧ du factor paid by

ONS (up to a log term). This leads to a final regret bound
of O⋆(dxdu log3 T ) for Riccatitron. The runtime for both
algorithms is identical.

The calculation for the final regret bound is carried out in
Appendix E.1.

3. Advantages without states
We now prove the key “approximate advantage” theorem
(Theorem 2) used in the analysis of Riccatitron. The roadmap
for the proof is as follows:

1. In Section 3.1, we show that the unconstrained optimal
policy takes the form π⋆t (x;w) = −Ktxt − q

⋆
t (w),

where q⋆t (w) depends on all future disturbances, and
where Kt is the finite-horizon solution to the Riccati
recursion (Definition 5).

2. Next, Section 3.2 presents an intermediate version of
the approximate advantage theorem for policies of the
form π̂t(x;w) = −Ktxt − q

Mt(wt−1). Because any
such policy has the same state dependence as the opti-
mal policy π⋆, we are able to show that A⋆

t (u
π̂
t ;xπ̂t ,w)

has no state dependence. Moreover, the linear struc-
ture of the dynamics and quadratic structure of the
losses ensures that A⋆

t (u
π̂
t ;xπ̂t ,w) is a quadratic of the

form ∥qMt(wt−1) − q
⋆
t (wt∶T )∥

2
Σt

, where Σt is a finite-
horizon approximation to Σ∞, and q⋆t (wt∶T ) is the bias
vector of the optimal controller.

3. Finally (Section 3.3), we use stability of the Riccati
recursion to show that q⋆t (w) can be replaced with a
term that depends only on wt+h, up to a small error.
Similarly, we show that Σt can be replaced by Σ∞ and
Kt by K∞.

This argument implies that a slightly modified analogue of
Riccatitron which replaces infinite-horizon quantities (K∞,
Σ∞,...) with finite-horizon analogues from the Riccati re-
cursion attains a similar regret. We state Riccatitron with the
infinite horizon analogues to simplify presentation, as well
as implementation.

3.1. A closed form for the true optimal policy

Our first result characterizes the optimal unconstrained opti-
mal controller π⋆ given full knowledge of the disturbance
sequence w, as well as the corresponding value function.
To begin, we introduce a variant of the classical Riccati
recursion.

Definition 5 (Riccati recursion). Define PT+1 = 0 and
cT+1 = 0 and consider the recursion:

Pt = Rx +A
⊺Pt+1A −A⊺Pt+1BΣ−1

t B
⊺Pt+1A,

Σt = Ru +B
⊺Pt+1B,

Kt = Σ−1
t B

⊺Pt+1A,

ct(wt∶T ) = (A −BKt)
⊺
(Pt+1wt + ct+1(wt+1∶T )).

We also define corresponding closed loop matrices via
Acl,t = A −BKt.

For i.i.d. disturbances with E[wt] = 0 for all times t, the
optimal controller is the state feedback law πt(x) = −Ktxt,
and Kt →K∞ as t→ −∞. The following theorem shows
that for arbitrary disturbances the optimal controller applies
the same state feedback law, but with an extra bias term that
depends on the disturbance sequence.
Theorem 3. The optimal controller is given by π⋆t (x,w) =

−Ktx − q
⋆
t (wt∶T ), where

q⋆t (wt∶T ) =
T−1

∑
i=t

Σ−1
t B

⊺
⎛

⎝

i

∏
j=t+1

A⊺
cl,j

⎞

⎠
Pi+1wi. (12)

Moreover, for each time t we have

V⋆
t (x;w) = ∥x∥

2
Pt
+ 2⟨x, ct(wt∶T )⟩ + ft(wt∶T ), (13)

where ft is a function that does not depend on the state x.

Theorem 3 is a special case of a more general result, Theo-
rem 4, proven in Appendix D.

3.2. Removing the state

We now use the characterization of π⋆ to show that the
advantages A⋆

t (u
π̂
t ;xπ̂t ,w) have a particularly simple struc-

ture when we consider policies of the form π̂t(x;w) =

−Ktxt − qt(wt−1), where qt(w) is an arbitrary function of
w. For such policies, A⋆

t is a quadratic function which does
not depend explicitly on the state.
Lemma 3.1. Consider a policy π̂t(x) of the form
π̂t(x;w) = −Ktxt − qt(w). Then, for all x,

A⋆
t (π̂t(x;w);x,w) = ∥qt(w) − q⋆t (wt∶T )∥

2
Σt .

Proof. Since Q⋆
t (x, ⋅;w) is a strongly convex quadratic,

and since π⋆t (x;w) = arg minu∈Rdu Q⋆
t (x,u;w), first-

order optimality conditions imply that for any u,

A⋆
t (u;x,w) =Q⋆

t (x,u;w) −Q⋆
t (x,π

⋆
t (x;w);w)

= ∥u − π⋆t (x;w)∥
2
∇2
uQ

⋆
t (x,u;w).

A direct computation based on (13) reveals that
∇2
uQ

⋆
t (x,u;w) = R + B⊺Pt+1B = Σt, so that

A⋆
t (u;x,w) = ∥u−π⋆t (x;w)∥2

Σt
. Finally, since π⋆t (x;w) =

−Ktx − q
⋆
t (wt∶T ), we have that if u = π̂t(x;w) = −Ktxt −

qt(w), then the states in the expression u−π⋆t (x;w) cancel,
leaving u − π⋆t (x;w) = −(qt(w) − q⋆t (wt∶T )).
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3.3. Truncating the future and passing to infinite
horizon

The next lemma—proven in Appendix F—shows that we
can truncate q⋆t (wt∶T ) to only depend on disturbances at
most h steps in the future.

Lemma 3.2. For any h ∈ [T ] define a truncated version of
q⋆t as follows:

q⋆t;t+h(wt∶t+h) =
(t+h)∧T−1

∑
i=t

Σ−1
t B

⊺
⎛

⎝

i

∏
j=t+1

A⊺
cl,j

⎞

⎠
Pi+1wi.

(14)
Then for any t such that t + h < T − Õ(β⋆Ψ2

⋆Γ⋆),
setting γ̄∞ = 1

2
(1 + γ∞) < 1, we have the bound

∥q⋆t∶t+h(wt∶t+h) − q
⋆
t (wt∶T )∥ ≤ κ2

∞β
2
⋆Ψ⋆Γ2

⋆(T − h)γ̄h∞,
which is geometrically decreasing in h.

Going forward we use that both q⋆t and q⋆t∶t+h have norm
at most β⋆Ψ⋆Γ⋆κ∞(1 − γ∞)−1 =∶ Dq⋆ (Lemma D.6). As
an immediate corollary of Lemma 3.2, we approximate the
advantages using finite lookahead.

Lemma 3.3. Consider a policy π̂t(x;w) = −Ktxt−qt(w),
and suppose that ∥qt∥ ≤Dq , where Dq ≥Dq⋆ . If we choose
h = 2(1 − γ∞)−1 log(κ2

∞β
2
⋆Ψ⋆Γ2

⋆T
2), we are guaranteed

that
T

∑
t=1

∣A⋆
t (u

π̂
t ;xπ̂t ,w) − ∥qt(w) − q⋆t;t+h(wt∶t+h)∥

2
Σt

∣ ≤ Ctrunc,

where Ctrunc ≤ Õ(D2
qβ⋆Ψ4

⋆Γ2
⋆(1 − γ∞)−1 logT ).

At this point, we have established an analogue of Theo-
rem 2, except that we are still using state-action controllers
Kt rather than K∞, and the approximate advantages in
Lemma 3.3 are using the finite-horizon counterparts of Σ∞

and q∞;h. The following lemmas show that we can pass to
these infinite-horizon quantities by paying a small approxi-
mation cost.

Lemma 3.4. Let policies πt(x;w) = −K∞x − qt(w) and
π̂t(x;w) = −Ktx − qt(w) be given, where qt is arbitrary
but satisfies ∥qt∥ ≤Dq for some Dq ≥ 1. Then

∣JT (π̂,w) − JT (π,w)∣ ≤ CK∞ ,

whereCK∞ ≤ Õ(κ4
∞β

6
⋆Ψ13

⋆ Γ6
⋆(1 − γ∞)−2D2

q ⋅ log (DqT )).

Lemma 3.5. Let (qt)
T
t=1 be an arbitrary sequence with

∥qt∥ ≤Dq for some Dq ≥Dq⋆ . Then it holds that

∣
T

∑
t=1

∥qt − q
⋆
t;t+h(wt∶t+h)∥

2
Σt − ∥qt − q

⋆
∞;h(wt∶t+h)∥

2
Σ∞ ∣ ≤ C∞,

where C∞ ≤ Õ(D2
q ⋅ β

4
⋆Ψ7

⋆Γ4
⋆κ

2
∞(1 − γ∞)−1h log(DqT )).

Combining these results immediately yields the proof of
Theorem 2; details are given in Appendix F.

4. Conclusion
We have presented the first efficient algorithm with logarith-
mic regret for online linear control with arbitrary adversarial
disturbance sequences. Our result highlights the power of
online learning with advantages, and we are hopeful that
this framework will find broader use. Numerous questions
naturally arise for future work: Does our framework extend
to more general loss functions, or to more general classes
of dynamical systems in control and reinforcement learn-
ing? Can our results be extended to handle partial observed
dynamical systems? Can we obtain

√
T -regret for adversar-

ial disturbances in unknown systems, as is possible in the
stochastic regime?
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Organization and notation

Notation Definition
A,B system matrices (dynamics, Eq. (1))
wt, w1∶t, w disturbance at time t; from 1, . . . , t; from 1,2, . . .
π control policy
K, πK static feedback controller, induced policy
M,π(M) DAP controller (Definition 2), induced policy
πalg policy selected by the learner
dx, du state/input dimension
xπt (w),uπt (w) state/input at time t under policy π and disturbances w
xKt (w),uKt (w) state/input at time t under policy πK

`,Rx,Ru cost function `(x,u) = x⊺Rxx + u⊺Ru
JT (π;w) cost of policy π, ∑Tt=1 `(x

π
t (w),uπt (w))

RegT (π
alg; Π,w) regret with benchmark Π: JT (πalg;w) − infπ∈Π JT (π;w)

K0 benchmark class of strongly stable feedback controllers
K0-RegT (π

alg;w) regret benchmark with compartor K0: JT (πalg;w) − infK∈K0 JT (π
K ;w).

M0 benchmark class of DAP controllers (parameterized asM(m,R,γ) in Definition 2)
M0-RegT (π

alg;w) regret relative toM0 (Eq. (7))
P∞ solution to the DARE (Eq. (4))
K∞ optimal infinite horizon LQR controller
Σ∞ optimal infinite horizon LQR covariance
Acl,∞ closed loop system A −BK∞ under optimal infinite-horizon controller
κ∞, γ∞ strong stability parameters for Acl,∞ (see Definition 1)
κ0, γ0 strong stability parameters for K0 (see Definition 1)
Ψ⋆ max{1, ∥A∥op, ∥B∥op, ∥Rx∥op, ∥Ru∥op}

β⋆ max{1, λ−1
min(Ru), λ

−1
min(Rx)}

Γ⋆ max{1, ∥P∞∥op}

π⋆ unconstrained optimal policy (Definition 3)
Q⋆, V⋆ Q-function and value function under π⋆ (Definition 3)
A⋆ advantage, defined as Q⋆

t (x,u;w) −Q⋆
t (x,π

⋆
t (x;w);w)

qt generic bias-predicting term (e.g., π(x,w) = −K∞ − qt(w))
qMt bias-predicting term in DAP (Definition 2)
q⋆∞;h(w1∶h+1) truncated approximation for q⋆t -function in π⋆ (defined above Eq. (10)).
Ât;h(M ;wt+h) approximate advantage (Eq. (10))
C generic constraint set for online optimization
ONS, ONS(ε, η,C) Online Newton Step (Algorithm 2) with learning rate η, regularization parameter ε
VAW, VAW(ε,C,Σ) Vovk-Azoury-Warmuth (Algorithm 3) with regularization parameter ε, cost Σ
Pt,Σt,Kt,Acl,t finite-horizon optimal analogues of P∞,Σ∞,K∞,Acl,∞ (Definition 6)
q⋆t (wt∶T ) bias function for π⋆ (π⋆t (x;wt∶T ) = −Ktx − q

⋆
t (wt∶T ); Eq.(12))

Hcl,∞,Lcl,∞ matrices that witness strong stability of Acl,∞ (Definition 1)
Lcl,t H−1

cl,∞Acl,tHcl,∞ (used to show strong stability of Acl,t)
Acl,i→t Acl,tAcl,t−1⋯Acl,i+1, with convention Acl,t→t = I
γ̄∞

1
2
(1 + γ∞) < 1

∆stab 4 ⋅ β⋆Ψ2
⋆Γ⋆ log(2Ψ⋆Γ⋆κ∞(1 − γ∞)−1) (“decay time”)

Tstab T −∆stab

Table 1: Summary of notation

This appendix is organized as follows. Appendix A discusses additional related work. Appendix B describes extensions
of Riccatitron. Appendix B.1 extends the algorithm to compete with general benchmark policy classes. Appendix B.2
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demonstrates that Riccatitron competes with richer benchmark class that includes arbitrary linear controllers with internal
state; Appendix B.3 extends the algorithm to consider “tracking costs” studied by Abbasi-Yadkori et al. (2014); Appendix B.4
explains how the algorithm can accomodate time-varying quadratic costs, provided that they are known to the learner in
advance.

Appendix C explains challenges associated with using online learning with stationary costs (OLwS) to attain logarithmic
regret in our setting. This appendix also provides a unifying (albeit informal) treatment of existing OLwS approaches. In
addition, Appendix C.5 highlights the differences between Riccatitron and MDP-E (Even-Dar et al., 2009), a variant of OLwS
which is superficially similar to our approach.

The remaining three appendices are dedicated to proving our main results. Appendix D collects some basic structural results
for linear quadratic control which we use throughout the appendix, and Appendix D.2 describes a variant of the performance
difference lemma (Kakade, 2003) which is used in our analysis. Appendix E provides the missing proofs from Section 2.
Importantly, Appendix E.1 proves Theorem 1, and Appendix E.3 establishes a regret guarantee for the vector-valued VAW
algorithm (Algorithm 3). Finally, Appendix F supplies the missing proofs from Section 3, culminating in the proof of
Theorem 2.

Notation used throughout the main paper and appendix is collected in Table 1.

A. Additional related work
Linear control for known systems. Cohen et al. (2018) establish

√
T regret for online control of known linear systems

under stochastic noise and time varying quadratic cost. Agarwal et al. (2019a) achieve
√
T -regret with both adversarial

disturbances and time varying, adversarially chosen loss functions `t via a reduction to online convex optimization with
memory (Anava et al., 2015). Their approach adopts a “disturbance-action” policy parameterization (or, DAP), which
we utilize as well (Definition 2). Certain previous results achieve logarithmic regret by making assumptions that ensure
stationary costs are strongly convex, allowing for logarithmic regret and movement cost via Anava et al. (2015) or similar
arguments. Abbasi-Yadkori et al. (2014) consider an online tracking problem with known system parameters zero exogenous
noise. The absence of noise enables an approach based on MDP-E (see Appendix C.5), for which the relevant Q-functions
in this setting are strongly convex, leading to logarithmic regret. More recently Agarwal et al. (2019b) showed that in the
noisy setting the stationary costs λt themselves are strongly convex in a disturbance-action parametrization, provided that
the loss functions `t are strongly convex and the noise covariance is well-conditioned, which also leads to logarithmic
regret. Simchowitz et al. (2020) show that this approach extends to “semi-adversarial” disturbances with a well-conditioned
stochastic component and a possibly adversarial component. Our results (with the restriction that costs are quadratic) give
the first logarithmic regret bounds for the fully adversarial setting and, to the best of our knowledge, give the first instance in
online control where an exp-concave but not strongly convex parametrization attains logarithmic regret.

Linear control for unknown systems. For unknown systems, various works (Abbasi-Yadkori & Szepesvári, 2011;
Faradonbeh et al., 2018; Cohen et al., 2019; Mania et al., 2019) establish

√
T -regret for fixed quadratic losses and stationary

stochastic noise, which is optimal for this setting (Simchowitz & Foster, 2020; Cassel et al., 2020). Because of the stochastic
nature of these problems, purely statistical techniques suffice. By combining these techniques with OCO with memory
(Anava et al., 2015), other recent works have addressed both unknown dynamics and adversarial noise (Hazan et al., 2020;
Simchowitz et al., 2020). (Cassel et al., 2020) show that logarithmic regret is achievable under stochastic noise for systems
(A,B) where only A is unknown, or where only B is unknown and the optimal controller satisfies a non-degeneracy
assumption.

Online reinforcement learning. Online linear control belongs to a broader line of work on online reinforcement learning
in (known or unknown) Markov decision processes with adversarial costs or transitions. Given the staggering breadth of
work in this direction from the online learning, control, and RL communities, we focus on past contributions which are most
closely related to our setting. As discussed earlier, essentially all prior approaches to online RL abide by the OLwS paradigm.
Perhaps the first result in this direction is the MDP-E algorithm of Even-Dar et al. (2009), which attains

√
T policy regret in

a tabular MDP with known stationary dynamics and adversarially chosen rewards. Subsequent works (Abbasi-Yadkori et al.,
2013) achieves

√
T -regret in a tabular setting where the both the rewards and transition kernels are selected by an adversary.

A parallel line of work on adversarial tabular MDPs considers the episodic setting (Zimin & Neu, 2013; Rosenberg &
Mansour, 2019), which alleviates the need to bound the movement costs between iterates.
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Policy regret. All of the approaches described so far can be viewed as special cases of the general problem of minimizing
policy regret in online learning. A finite-memory formulation of the policy regret benchmark was popularized by Arora et al.
(2012). Anava et al. (2015) generalize this result to the online convex optimization with memory setting and demonstrate
that many popular online learning algorithms naturally produce slow-moving iterates, yielding near-optimal policy regret
bounds (see Appendix C.3.1 for detailed discussion). These results have found immediate application in online linear control
(Agarwal et al., 2019a; Hazan et al., 2020; Simchowitz et al., 2020). However, the analysis of Anava et al. (2015) does not
extend to give fast rates for the exp-concave loss functions which arise in our setting.

B. Extensions
B.1. General policy classes

In view of Section 2 and Section 3, it should be clear the disturbance-action parameterization used in Riccatitron serves only
to facilitate the use of tools from online convex optimization. By appealing to tools from the more general online learning
framework, we can derive rates for generic, potentially nonlinear benchmark policy classes.

Suppose we wish to compete with a benchmark class Π where each π ∈ Π takes the form π(x;w) = −K∞x − q
π
t (wt−1),

and suppose that the learner’s policy takes the form πalg(x;w) = −K∞x − q
alg
t (wt−1). The development so far implies that

as long as ∥qπt ∥ is uniformly bounded for all π ∈ Π, we have

RegT (π
alg; Π,w) =

T

∑
t=1

∥qalg
t (wt−1) − q

⋆
∞;h(wt+h)∥

2

Σ∞
− inf
π∈Π

T

∑
t=1

∥qπt (wt−1) − q
⋆
∞;h(wt+h)∥

2

Σ∞
+Cerr, (15)

where Cerr is a logarithmic approximation error term. We can appeal to the generic delayed online learning reduction once
more to reduce this problem to online supervised learning. Consider the following protocol for online learning: At time t:
Receive wt−1, predict q̂t ∈ Rdu , then receive q⋆t ∈ Rdu . If we have an algorithm for this protocol that ensures

T

∑
t=1

∥q̂t − q
⋆
t ∥

2
Σ∞ − inf

π∈Π

T

∑
t=1

∥qπt (wt−1) − q
⋆
t ∥

2
Σ∞ ≤ ROSL(T ), (16)

for every sequence, then the delayed online learning reduction enjoys regret (h + 1)ROSL(T /(h + 1)) for the delayed
problem (15). For example, since the loss q̂ ↦ ∥q̂ − q⋆∥

2
Σ∞ is exp-concave, we can apply Vovk’s aggregating algorithm

(Vovk, 1990; 1995) to guarantee
RegT (π

alg; Π,w) ≤ O⋆(log∣Π∣ ⋅ logT )

for any finite class of policies. More generally, one can derive fast rates for arbitrary nonparametric classes of benchmark
policies via the offset Rademacher complexity-based minimax bounds given in Rakhlin & Sridharan (2014).

B.2. Alternative regret benchmarks

Throughout the main paper we only considered benchmarks based on linear feedback controllers of the form ut = −Kxt,
where K is strongly stabilizing. We now show that DAP controllers (and consequently Riccatitron) can be used to compete
with a more general class of linear controllers with internal state. We use an argument from Simchowitz et al. (2020).
Consider mQ ∈ N, and controller of the form

π
[Q]

t (x;w) = −K∞x +
mQ−1

∑
i=0

Q[i]xK∞
t−i (w), (17)

where xK∞
t (w) denotes the state that would arise at time t if the linear selected the optimal linear control law uK∞

s (w) =

−K∞x
K∞
s (w) for all s < t. We note that this counterfactual can be computed from w1∶t−1. By Simchowitz et al. (2020), to

show that the DAP parameterization competes with controllers with internal state, it suffices to show that the parameterization
competes with controllers of the form (17). To see this is indeed the case, observe that since K∞ stabilizes the system
(A,B), we have

xK∞
s (w) =

h

∑
i=0

(A −BK∞)
iws−i−1 ± e

−Ω(h(1−γ∞)),
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where we use ± in an informal, vector-valued sense. Hence, we can render

π
[Q]

t (x;w) = −K∞x +
mQ−1

∑
i=0

h

∑
j=0

Q[i]
(A −BK∞)

jwt−(i+j+1) ± e
−Ω(h(1−γ∞)). (18)

It follows that setting m = mQ + h, we can approximate the above behavior with an m-length controller of the form
M [k] = ∑

m−1
i=0 ∑

h
j=0Q

[i](A −BK∞)jIi+j+1=k captures the policy (17).

To formalize the extension, one must also verify that for some reasonable R,m, the sequence M above lies in the set

M(m,R,γ) ∶= {M = (M [i]
)
m
i=1 ∶ ∥M

[i]
∥op ≤ Rγi−1

},

that is, the sequence enjoys geometric decay with parameter γ. This decay can be achieved in numerous ways, e.g. taking
γ = 1/m and inflating R by a factor of e. At the extreme, one can show that the constraint setM(m,R,γ) can be replaced
with a set which does not enforce geometric decay,

M̃(m,R) ∶= {M = (M [i]
)
m
i=1 ∶ ∥M

[i]
∥op ≤ R, ∀i},

at the expense of suffering a larger polynomial in logT in the final regret bound. We omit the details in the interest of
brevity.

B.3. Tracking moving targets

We next show that Riccatitron generalizes to a setting with moving targets (or, “adversarial targets”) previously studied
without adversarial noise by Abbasi-Yadkori et al. (2014). In this setting, for a sequence of targets a1∶T , b1∶T , the learner’s
loss at time t is given by

`t(x,u) = `(x − at, u − bt) = ∥x − at∥
2
Rx

+ ∥x − bt∥
2
Rx
.

Let us adopt the shorthand w̄t = (wt, at, bt), and w̄ = (w1∶T , a1∶T , b1∶T ). Theorem 4—proven in Appendix D—shows that if
we define

q⋆t (w̄t∶T ) = Σ−1
t

⎛

⎝
−Rubt +B

⊺
T−1

∑
i=t

⎛

⎝

i

∏
j=t+1

A⊺
cl,j

⎞

⎠
Pi+1wi +B

⊺
T−1

∑
i=t+1

⎛

⎝

i−1

∏
j=t+1

A⊺
cl,j

⎞

⎠
(K⊺

i Rubi −Rxai)
⎞

⎠
, (19)

where Kt, Σt, and so on are given by the Riccati Recursion (Definition 5), then the optimal unconstrained controller is given
by π⋆t (x; w̄) = −Ktx − q

⋆
t (w̄t∶T ). Retracing our steps from the special case without moving targets, we have the following

generalization of Lemma 3.1.

Lemma B.1 (Advantages for Moving Targets). Consider a policy π̂t(x) of the form π̂t(x) = −Ktxt − qt(w̄). For all x, we
have

A⋆
t (π̂t(x);x, w̄) = ∥qt(w̄) − q⋆t (w̄t∶T )∥

2
Σt ,

where q⋆t (w̄t∶T ) is given by (19).

To extend Riccatitron to this setting, we define truncated versions of q⋆ and A⋆ analoguous to to the without-moving-targets
case (Eq. (10)). With w̄t ∶= ((wt, at, bt), (wt−1, at−1, bt−1), . . . )), we define

q⋆∞;h,move(w̄1∶h+1) ∶= Σ−1
∞ (−Rubt +B

⊺
h+1

∑
i=1

(A⊺
cl,∞)

i−1P∞wi +B
⊺
h+1

∑
i=2

(A⊺
cl,∞)

i−2
(K⊺

∞Rubi −Rxai)),

Ât;h,move(M ; w̄t+h) ∶= ∥qMt (wt−1) − q
⋆
∞;h(w̄t∶t+h+t)∥

2
Σ∞ . (20)

We simply run Riccatitron with the new approximate advantage functions Ât;h,move(M ; w̄t+h) from (20) replacing their
without-moving-targets variants from (10). Logarithmic regret follows by the same arguments.
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B.4. Varying quadratic costs

As a final generalization, we show that our analysis generalizes to time varying quadratic losses `t(x,u) = x⊺Rt;xx+u⊺Rt;uu,
provided the cost matrices Rt;x and Rt;u are known to the learner ahead of time. Of course, this extension generalizes
further to “tracking” losses of the form `t(x,u) = ∥x − at∥

2
Rt;x

+ ∥u − ut∥
2
Rt;u

as in the previous section.

To perform this generalization, we consider the following variant of the Riccati Recursion.

Definition 6 (Time-varying Riccati Recursion). Define PT+1 = 0 and cT+1 = 0 and consider the recursion:

Pt = Rt;x +A
⊺Pt;TA −A⊺Pt+1BΣ−1

t B
⊺Pt;TA,

Σt;T = Rt;u +B
⊺Pt+1B,

Kt;T = Σ−1
t B

⊺Pt+1A,

ct(wt∶T ) = (A −BKt)
⊺
(Pt+1wt + ct+1(wt+1∶T )).

We similarly define closed-loop matrices Acl,t = (A −BKt). The form of the optimal policy generalizes in the obvious way

π⋆t (x;w) = −Ktx − q
⋆
t (wt∶T ), and q⋆t (wt∶T ) =

T−1

∑
i=t

Σ−1
t B

⊺
⎛

⎝

i

∏
j=t+1

A⊺
cl,j

⎞

⎠
Pi+1wi.

Advantages take the form

A⋆
t;T (π̂t(x);x,w) = ∥qt(w) − q⋆t (wt∶T )∥

2
Σt .

Note that compared to the fixed-cost setting, we cannot leverage the existence of the “steady-state” matrix P∞ here.
Nonetheless, we can still truncate the dependence on the future by using the vectors q⋆t;T (wt, . . . ,wt+h,0, . . . ,0) to create
approximate advantages with finite lookahead, which can then be used within the Riccatitron scheme.

C. Limitations of online learning with stationary costs
This section highlights the technical challenges encountered when attempting to apply OLwS to attain logarithmic regret
in online control with adversarial disturbances. In addition to highlighting the advantages (no pun intended) of our OLwA
approach, this appendix may serve as an informal tutorial of prior approaches for online control problems. The section is
organized as follows:

1. Appendix C.1 gives an intuitive overview of the OLwS paradigm, explaining that the regret encountered by the learner
incurs a ‘stationarization’ cost reflecting the mismatch between the costs induced by the learner’s actual visited
trajectory and the trajectories considered by the stationary costs.

2. Appendix C.2 explains that the standard approach for bounding stationarization cost is in terms of a “movement cost”,
which measures the cumulative differences between succesive policies πt: informally, ∑Tt=1 ∥πt − πt−1∥. Pointing
forward to Appendix C.4, we explain that this is the major barrier to obtaining logarithmic regret in our setting. In
contrast, stationarization/movement costs do not arise in our analysis of OLwA, leading to our main result.

3. Appendix C.3 reviews in greater detail how the OLwS paradigm has been applied to online control with adversarial
disturbances. Appendix C.3.1 covers the OCO-with-memory framework due to Anava et al. (2015). Appendix C.3.2
shows how Agarwal et al. (2019a) instantiate this framework for online control with the DAP parametrization, detailing
the (approximate) stationary cost functions ft;h(M) that arise and the corresponding movement cost in the regret
analysis. Examining these loss functions, Appendix C.3.3 shows that they are exp-concave but not strongly convex.

4. Appendix C.4 demonstrates that—in the OCO-with-memory framework—the movement cost for sequences of exp-
concave but non-strongly convex functions can scale as Ω(

√
T ) in the worst case. This implies that any analysis which

uses a black-box reduction to OCO-with-memory with bounded movement cost cannot guarantee rates faster that
O(

√
T ).5

5Note that this argument does not preclude the possibility that OLwS algorithms can attain logarithmic regret; rather, it demonstrates
the an analysis which passes through movement costs for arbitrary exp-concave stationary costs is insufficient.
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Finally, Appendix C.5 compares our OLwA approach to the MDP-E algorithm proposed by Even-Dar et al. (2009). These
two algorithms are superficially similiar, because they both consider control-theoretic advantages. Despite these similarities,
we note that MDP-E is still an instance of OLwS, and therefore succumbs to the limitations described above. In addition, we
highlight that the analysis of MDP-E is ill-suited to settings with adversarial dynamics, such as the one considered in this
work.

C.1. Overview of OLwS

In this section, we give an overview of the online learning with stationary costs (OLwS) framework for online control and
discuss some challenges associated with using it to attain logarithmic regret for online linear control. In OLwS, one defines
the stationary costs

λt(π;w) ∶= `(xπt (w), uπt (w)), (21)

which is the cost suffered that would be suffered at time t had the policy π had used at all previous rounds (Abbasi-Yadkori
et al., 2013; Anava et al., 2015; Agarwal et al., 2019a; Simchowitz et al., 2020).6 By construction, λt(π;w) does not
depend on the state of the system. Moreover, if π is an executable policy (i.e., πt(x;w) depends only on x and w1∶t−1),
then λt(π;w) can be determined exactly at time t. At each round t, OLwS selects a policy π(t) to minimize regret on the
sequence λt(π;w), and follows ut = π

(t)
t (x;w). The total regret is decomposed as

RegT (π
alg;w,Π) = (

T

∑
t=1

`(xalg
t , ualg

t ) − λt(π
(t);w)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(stationarization cost)

) + (
T

∑
t=1

λt(π
(t);w) − inf

π∈Π

T

∑
t=1

λt(π;w)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(λ-regret)

). (22)

C.2. Avoiding stationarization cost: Our advantage over OLwS

OLwS optimizes stationary costs λt(π), which correspond to the loss suffered by the learner at round t if policy π had
been played for every time up to t. To relate the stationary costs to the learner’s cost, the OLwS proposes the bounding the
following movement cost:

movement cost ∶=∑
t

∥π(t)
− π(t−1)

∥, (informal), (23)

To our knowledge, all known applications of OLwS bound the stationarization cost via the movement cost (23). When the
movement costs are small, the learner’s state at time t, xalg

t , is similar to the states that would be obtained by selecting π(t)

at all time s < t, namely xπt . Appendix C explains how the cost (23) arises in more detail. While standard online learning
algorithms ensure

√
T -movement cost, online gradient descent (OGD) has the property that if λt is strongly convex (in a

suitable parametrization), the movement cost is logT (Anava et al., 2015). Since OGD also ensures logarithmic regret on the
λt-sequence, the algorithm ensures logarithmic regret overall.

The natural stationary costs that arise in our problem are exp-concave (Hazan & Kale, 2011), a property that is stronger
than convexity but weaker than strong convexity. Exp-concave functions λt are strongly convex in the local geometry
induced by (∇λt)(∇λt)

⊺, but not necessarily in other directions. This is sufficient for logarithmic regret, but as we explain
in Appendix C.4, known methods cannot leverage this property to ensure logarithmic bounds on the relevant movement
cost. Herein lies the advantage of OLwA: by considering the future costs of an action (by way of the advantage-proxy Â)
rather than the stationary costs, we avoid the technical challenge of bounding the movement cost in the elusive exp-concave
regime.

C.3. Applying OLwS to online control

C.3.1. POLICY REGRET AND ONLINE CONVEX OPTIMIZATION WITH MEMORY

A useful instantiation of the OLwS paradigm is the policy-regret setting introduced by Arora et al. (2012), which considers
stationary costs with finite memory. This work considers online learning with loss functions ft(zt, . . . , , zt−h), and defines

6Many works also consider “steady state” costs obtained by taking t→∞ for a given policy (Even-Dar et al., 2009; Abbasi-Yadkori
et al., 2014; Cohen et al., 2018; Agarwal et al., 2019b), but this formulation is ill-posed in our setting due to the adversarial dynamics.
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policy regret for the iterate sequence {zt}
T
t=1 as ∑t f(zt, . . . , zt−h) − infz∑t ft(z, . . . , z). Algorithms for this setting work

with a unary loss f̃t(z) = z ↦ ft(z, . . . , z),which can be viewed as a special case of the stationary cost λt defined above
where z ∈ C encodes a policy and ft(z, . . . , z) is the loss suffered if z had been selected throughout the game. Arora et al.
(2012) take this approach in an expert setting and Anava et al. (2015) consider a setting where f̃ is an arbitrary convex
loss, which they call Online Convex Optimization with Memory. In this setting, the stationarization cost arises via the
decomosition

(policy regret) = (
T

∑
t=1

ft(zt, . . . , zt−h) − f̃t(zt)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(stationarization cost)

) + (
T

∑
t=1

f̃t(zt) − inf
z∈C

T

∑
t=1

f̃t(z)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(λ-regret)

). (24)

When ft are Lipschitz in all arguments, Anava et al. (2015) bound the stationarization cost in terms of movement cost for
the iterates. They show

T

∑
t=1

ft(zt, . . . , zt−h) − f̃t(zt) ≤
T

∑
t=1

∣ft(zt, . . . , zt−h) − f̃t(zt)∣ ≤ O(h2L)
T

∑
t=1

∥zt − zt−1∥,

where L is an appropriate Lipschitz constant. Note that this inequality formalizes (23) for this setting.

Anava et al. (2015) demonstrated that many popular online convex optimization algorithms naturally produce slow-moving
iterates, leading to policy regret bounds in (24). In particular, they show that applying online gradient descent on the unary
losses leads to poly(h) ⋅

√
T -policy regret when f̃t are convex and Lipschitz, and poly(h)

α
⋅ logT -policy regret when f̃t are

α-strongly convex. Notably, Anava et al. (2015) do not show that logarithmic regret is attainable for the more general family
of exp-concave losses, which are more natural for the setting in this paper.

C.3.2. OCO WITH MEMORY FOR ONLINE CONTROL

Now, following Agarwal et al. (2019a), we apply OCO with memory to the linear control setting using the DAP parametriza-
tion (Definition 2), where π(t) is given by π(Mt), for a matrix M ∈M0 =M(m,R,γ) selected at time t. We will specialize
the OLwS decomposition (24) and explain how to bound each term.

Agarwal et al. (2019a) show stationary costs λt in (21) can be approximated up to arbitrarily accuracy by functions f̃t;h(M),
which depend only on the most recent m + h disturbances wt−(m+h)∶t, and where h = poly(logT, 1

1−γ
). They also show

that the suffered loss `(xalg
t , ualg

t ) can be approximate via ft;h(Mt−h∶t), which also depends on recent disturbances, and
which specializes to f̃t∶h(M) when Mt−h∶t = (M, . . . ,M). Precisely, for M ∈M, define the inputs.

us(M ;w) =
m

∑
i=1

M [i]ws−i

Then the functions ft∶h(Mt∶t−h) and f̃t∶h(M) take the form

ft;h(Mt−h∶t) ∶= `(αt(w) +
m

∑
i=1

Ψiut−i(Mt−i;w), ut(Mt;w) −K∞

m

∑
i=1

Ψiut−i(Mt−i;w)),

f̃t;h(M) ∶= `(αt(w) +
m

∑
i=1

Ψiut−i(M ;w), ut(M ;w) −K∞

m

∑
i=1

Ψiut−i(M ;w)), (25)

where αt(w) is a function of w1∶t and A,B but not of the learner’s inputs, and Ψi = (A − BK∞)i−1B. With this
parameterization, the regret decomposition for OCO with memory takes the form

M0-RegT (π
alg;w) = (

T

∑
t=1

ft;h(Mt−h∶t) − f̃t;h(Mt)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(stationarization cost)

) + (
T

∑
t=1

f̃t;h(Mt) − inf
π∈M0

T

∑
t=1

f̃t;h(M)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(λ-regret)

) + Õ(1). (26)

In this setting ft;h(⋅) is Lipschitz so—following arguments from Anava et al. (2015)—we have

(stationarization cost) ≤ h2
⋅ poly(m,R, (1 − γ)−1

) ⋅
T

∑
t=1

∥Mt −Mt−1∥F,
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where the right-hand side is a movement cost for the iterates (formalizing (23)), and where we recall h is the memory

horizon, m,R,γ are the parameters defining the set of DAP controllersM0, and ∥Mt −Mt−1∥F =

√

∑i≥0 ∥M
[i]
t −M

[i]
t−1∥

2
F

(which induces the standard Euclidean geometry for online gradient descent).

In general, the bound on the movement cost will depend on the choice of regret minimization algorithm. Many natural
algorithms ensure bounds on the movement cost which are on the same order as their bounds on regret. For example,
exponential weights and online gradient descent ensure

√
T -bounds (Even-Dar et al., 2009; Yu et al., 2009; Anava et al.,

2015), and for strongly convex losses, FTL and online gradient descent ensure logarithmic movement (Abbasi-Yadkori et al.,
2014; Anava et al., 2015).

C.3.3. THE STATIONARY COSTS FOR DAP ARE EXP-CONCAVE BUT NOT STRONGLY CONVEX

For the DAP parametrization, the functions that naturally arise are exp-concave, but not necessarily strongly convex.
To see this, consider the loss `(x,u) = ∥x∥2 + ∥u∥2. We obseve that the stationary costs considered by Agarwal et al.
(2019a), made explicit in (25), are the sum of two quadratic functions of the form considered in Lemma 2.3, and are thus
exp-concave.7 However, f̃t;h(M) is not strongly convex in general. For example, if the noise sequence is constant, say
wt = wt−1 = ⋅ ⋅ ⋅ = w1, then ∇ut(M ;w) is identical for all t and thus ∇2f̃t;h(M) is a rank-one matrix.

C.4. Movement costs in general exp-concave online learning

In this section, we explain the challenge of achieving low-movement cost in the OCO-with-memory with framework, which
elucidates the broader challenge of relating stationary costs to regret in OLwS. We give an informal sketch for an exp-concave
OCO-with-memory setting in which the online Newton step algorithm (Algorithm 2) fails to achieve logarithmic regret.
Consider a simple class of functions with scalar domain and length-1 memory:

ft(z1, z2) = (1 − (wtz1 +wt−1z2))
2, f̃t(z) = ft(z, z),

where (wt) are parameters chosen by the adversary. We use the constraint set z ∈ C ∶= [−1/5,1/5]. Policy regret (paralleling
(26)) is given by

(policy regret) =
T

∑
t=1

ft(zt, zt−1) − inf
z

T

∑
t=1

f̃t(z)

= (
T

∑
t=1

ft(zt, zt−1) − f̃t(zt))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(stationarization cost)

+(
T

∑
t=1

f̃t(zt) − inf
z

T

∑
t=1

f̃t(z))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(λ−regret)

.

We now construct a sequence of loss functions where the λ-regret for ONS is logarithmic, but where standard upper
bounds on stationary cost can grow as Ω(

√
T ). Consider the sequence wt = (−1)t + µ

2
, where µ = 1/

√
T . We see that

f̃t(z) = (1−µz)2. We remark that this function is only µ2 = 1/T -strongly convex, so that the guarantees for strongly convex
online gradient descent are vacuous Hazan (2016), necessitating the use of ONS.

Let us see what happens if we try to leverage exp-concavity. From Lemma 2.3, f̃t(z) are 1
4

-exp-concave on the set C. Hence,
if we run ONS (Algorithm 2) with an appropriate learning rate, λ-regret scales logarithmically (Hazan, 2016):

T

∑
t=1

f̃t(zt) −min
z∈C

T

∑
t=1

f̃t(z) ≤ O(logT ).

Let us now turn to the stationarization cost, ∑Tt=1 ft(zt, zt−1) − f̃t(zt). The approach of Anava et al. (2015), is to bound the
per-step errors, ∣ft(zt, zt−1) − f̃t(zt)∣. We can directly see that

ft(zt, zt−1) − f̃t(zt) = (1 −wtzt −wt−1zt)
2
− (1 −wtzt −wt−1zt−1)

2

= −2wt−1(1 −wtzt)
⊺
(zt − zt−1) +w

2
t−1(zt−1 + zt)(zt − zt−1)

2

= (−2wt−1(1 −wtzt)
⊺
+w2

t−1(zt−1 + zt))(zt − zt−1).

7The sum of two α-exp-concave functions is α
2

-exp-concave. For a proof, observe that (∇(f + g))⊺(∇(f + g))⊺ ⪯ 2(∇f)(∇f)⊺ +

2(∇g)(∇g)⊺. Hence, if f and g are α-exp concave, we have ∇2
(f + g) ⪰ α(∇f)(∇f)⊺ +α(∇g)(∇g)⊺ ⪰ α

2
(∇(f + g))⊺(∇(f + g))⊺.
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For µ sufficiently small and z ∈ C, we can check that ∣(−2wt−1(1 −wtzt)
⊺ +w2

t−1(zt−1 + zt))∣ ≥
1
16

, so that

∣ft(zt, zt−1) − f̃t(zt)∣ ≥
∣zt − zt−1∣

16
.

Thus, we have

T

∑
t=1

∣ft(zt, zt−1) − f̃t(zt)∣ ≥
1

16
⋅ (movement cost), where (movement cost) =

1

6

T

∑
t=1

∣zt − zt−1∣.

We now show that this movement cost is large. For simplicity, we keep our discussion informal to avoid navigating the
projection step in ONS. Without projections, we have

∣zt − zt−1∣ = ∣ε +
t−1

∑
s=1

∇
2f̃s(zs)∣

−1

(∇f̃t−1(zt−1)).

Observe that for each z ∈ C, ∇2f̃s(z) = µ
2 = 1/T , so that we have ε +∑t−1

s=1∇
2f̃s(zs) = (1 + ε). On the other hand, for

z ∈ C, we can lower bound ∣∇f̃t−1(z)∣ ≥
µ
2
= 1

2
√
T

. Hence,

(movement cost) =
1

16

T

∑
t=1

∣zt − zt−1∣ ≥

√
T

32(1 + ε)
.

Here, we note that the standard implementation perscribes ε to be constant, giving us Ω(
√
T ) movement. Moreover,

increasing ε will degrade the corresponding regret bound, preventing logarithmic combined regret. Note that increasing ε to
1/T 1/4 will partially mitigate the movement cost, but at the expense of increasing the regret on the f̃t sequence.

C.5. Comparison with MDP-E

MDP-E (Even-Dar et al., 2009) is an instantiation of OLwS for MDPs with known non-adversarial dynamics and time varying
adversarial losses `t. In this setting the stationary costs λt(π) represent the long-term costs of a policy π under the loss `t (if
one prefers, the loss can be treated as fixed, and wt can encode loss information). To achieve low regret on the λt-sequence,
MDP-E maintains policy iterates {π

(t)
x } for all states x, and selects its action according to the policy for the corresponding

current state:
ualg
t ← π

(t)

xalg
t

(xalg
t ).

The policy sequence π(t)
x is selected to minimize regret on a certain Q-function: λt,x(π) ∶ π ↦ Qπ(x,π(x)) (here, policies

and Q-functions are regarded as stationary). Under the assumption that the dynamics under benchmark policies are also
stationary, achieving low regret on each {λt,x}-sequence simultaneously for all x ensures low λ-regret (in the sense of
Eq.(22)) over the trajectory xalg

t .8 As a consequence, MDP-E is ill-suited to settings with adversarially changing dynamics.
Since OLwA considers Q-functions and advantages defined with respect to an fixed policy π⋆, it does not require benchmark
policies to have stationary dynamics (which is important, since our adversarial disturbance setting does not have stationary
dynamics).

Moreover, like the stationary costs, the functions λt,x(π) describe long-term performance under π, and still need to be
related to the learner’s realized trajectory, typically via a bound on the movement cost of the policies. As described earlier,
the analysis of OLwA does not require bounding the movement cost.

D. Basic technical results
D.1. Structural results for LQR

In this section we provide a number of useful structural properties for the optimal controller for linear dynamical systems with
quadratic costs and arbitrary bounded disturbances. Even though the results in this section concern the optimal finite-horizon
controllers, we prove bounds on various regularity properties for the controllers that depend only on control-theoretic

8See the proof of Even-Dar et al. (2009, Theorem 5), which uses that the induced state distribution does not change with t.
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parameters for the optimal infinite-horizon controller in the noiseless setting, which is an intrinsic parameter of the dynamical
system. All proofs are deferred to Appendix D.1.2.

For the results in this section and the remainder of the appendix we use that Acl,∞ is (κ∞, γ∞)-strongly stable.

Lemma D.1. Let γ∞ = ∥I − P
−1/2
∞ RxP

−1/2
∞ ∥

1/2
op , and κ∞ = ∥P

1/2
∞ ∥op∥P

−1/2
∞ ∥op. Then the closed loop system Acl,∞ is

(κ∞, γ∞)-strongly stable.

Proof of Lemma D.1. Recall (Bertsekas, 2005) that the infinite-horizon Lyapunov matrix P∞ satisfies the equation

A⊺
cl,∞P∞Acl,∞ − P∞ +Rx = 0.

Since P∞ ≻ 0, if we set H = P
−1/2
∞ and L = P

1/2
∞ Acl,∞P

−1/2
∞ , we deduce from this expression that

L⊺L − I + P −1/2
∞ RxP

−1/2
∞ = 0,

and in particular ∥L∥2
op ≤ ∥I − P

−1/2
∞ RxP

−1/2
∞ ∥op < 1.

Lemma D.2. Let A be (κ, γ)-strongly stable. Then for any i ≥ 0,

∥Ai∥
op

≤ κγi.

Proof of Lemma D.2. Let A =HLH−1, where H and L witness the strong stability property. Then we have

∥Ai∥
op

≤ κ∥Li∥
op

≤ κγi.

Additional notation. For the remainder of the appendix we adopt the following notation. We let Hcl,∞ and Lcl,∞ denote
the matrices that witness strong stability of Acl,∞, so that Acl,∞ =Hcl,∞Lcl,∞H

−1
cl,∞ and we have ∥Hcl,∞∥op ⋅ ∥H

−1
cl,∞∥op ≤

κ∞ and ∥Lcl,∞∥op ≤ γ∞ < 1. We also define Lcl,t =H
−1
cl,∞Acl,tHcl,∞, where we recall that (Acl,t)

T
t=1 denote the closed-loop

dynamics arising from the Riccati recursion. We define Acl,i→t = Acl,tAcl,t−1⋯Acl,i+1, with the convention that Acl,t→t = I .
Finally, we define γ̄∞ = 1

2
(1 + γ∞), ∆stab = 4 ⋅ β⋆Ψ2

⋆Γ⋆ log(2Ψ⋆Γ⋆κ∞(1 − γ∞)−1), and Tstab = T −∆stab.

D.1.1. PROPERTIES OF THE OPTIMAL POLICY

Recall that Theorem 3 characterizes the optimal unconstrained policy given full knowledge of w. Rather than directly
proving this theorem, we state and prove a more general version, Theorem 4, which generalizes the characterization to the
setting of Appendix B.3 in which losses include adversarially chosen targets. The optimal policy for this setting is defined as
follows.

Definition 7 (Optimal policy, Q-function, advantage). Assume aT , bT = 0, and recall that w̄ = (w1∶T , a1∶T , b1∶T ). Define
Q⋆
T (x,u; w̄) = `(x,u), π⋆t (x; w̄) = minuQ

⋆
T (x,u) = 0, and V⋆

T (x; w̄) = `(x,0). For each t < T define

Q⋆
t (x,u; w̄) = ∥x − at∥

2
Q + ∥u − bt∥

2
R +V⋆

t+1(Ax +Bu +wt; w̄),

π⋆t (x; w̄) = arg min
u∈Rdu

Q⋆
t (x,u; w̄),

V⋆
t (x; w̄) = min

u∈Rd
Q⋆
t (x,u; w̄) =Q⋆

t (x,π
⋆
t (x; w̄); w̄).

Finally, define A⋆
t (u;x, w̄) ∶=Q⋆

t (x,u; w̄) −Q⋆
t (x,π

⋆
t (x; w̄); w̄).

Theorem 4 (Generalization of Theorem 3). Set w̄t∶T = (wt∶T , at∶T , bt∶T ). For each time t, we have V⋆
t (x; w̄) = ∥x∥

2
Pt
+

2⟨x, ct(w̄t∶T )⟩ + ft(w̄t∶T ), where ft is a function that does not depend on the state x and ct is defined recursively with
cT+1 = 0 and

ct(w̄t∶T ) = (A −BKt)
⊺
(Pt+1wt + ct+1(w̄t+1∶T )) +K

⊺
t Rubt −Rxat.
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Moreover, if we define

q⋆t (w̄t∶T ) = Σ−1
t

⎛

⎝
−Rubt +B

⊺
T−1

∑
i=t

⎛

⎝

i

∏
j=t+1

A⊺
cl,j

⎞

⎠
Pi+1wi +B

⊺
T−1

∑
i=t+1

⎛

⎝

i−1

∏
j=t+1

A⊺
cl,j

⎞

⎠
(K⊺

i Rubi −Rxai)
⎞

⎠
, (27)

then the optimal controller is given by π⋆t (x; w̄) = −Ktx − q
⋆
t (w̄t∶T ).

Lemma D.3. For all τ1 ≤ τ2, we have

∥
τ2

∏
t=τ1

A⊺
cl,t∥

op

≤

¿
Á
ÁÀ ∥P∞∥op

λmin(Rx)
≤ β

1/2
⋆ Γ

1/2
⋆ .

Lemma D.4. Let ∆stab = 4 ⋅ β⋆Ψ2
⋆Γ⋆ log(2Ψ⋆Γ⋆κ∞(1 − γ∞)−1) = Õ(β⋆Ψ2

⋆Γ⋆), and let γ̄∞ = 1
2
(1 + γ∞). Then it holds

that

∥Lcl,t∥op ≤ γ̄∞ < 1, ∀t ≤ Tstab ∶= T −∆stab.

Lemma D.5. Let τ1 ≤ τ2 be fixed. Then we have

∥
τ2

∏
t=τ1

A⊺
cl,t∥

op

≤ κ∞∥
τ2

∏
t=τ1

L⊺cl,t∥

op

≤ κ2
∞β

1/2
⋆ Γ

1/2
⋆ ⋅ γ̄τ2∧Tstab−τ1∧Tstab

∞ .

Lemma D.6. Let w be any sequence with ∥wt∥ ≤ 1. Let t ∈ [T ] and h ≥ 0 be given. Then we have

∥q⋆t (wt∶T )∥ ∨ ∥q⋆t;t+h(wt∶t+h)∥ ≤ Õ(β
5/2
⋆ Ψ3

⋆Γ
5/2
⋆ κ2

∞(1 − γ∞)
−1

) =∶Dq⋆ , (28)

and

∥q⋆∞;h(wt∶t+h)∥ ≤ β⋆Ψ⋆Γ⋆κ∞(1 − γ∞)
−1

=∶Dq⋆∞ . (29)

Lemma D.7. Let policies πt(x;w) = −K∞x − qt(w) and π̂t(x;w) = −Ktx − qt(w) be given, where qt is arbitrary. Then
the states for both controllers are given by

xπt+1(w) =
t

∑
i=1

At−icl,∞wi −
t

∑
i=1

At−icl,∞Bqi(w) and xπ̂t+1(w) =
t

∑
i=1

Acl,i→twi −
t

∑
i=1

Acl,i→tBqi(w).

Lemma D.8. Let α ≥ 1 be given. Define ∆ = C ⋅ β⋆Ψ2
⋆Γ⋆ log(κ2

∞Ψ⋆Γ⋆(1 − γ∞)−1 ⋅ αT 3), where C > 0 is a numerical
constant. If C is sufficiently large, then for every t ≤ T −∆ ≤ Tstab we are guaranteed that

∥Kt −K∞∥op ≤
1

κ2
∞Ψ⋆ ⋅ (αT 3)

, and ∥Acl,i→t −A
t−i
cl,∞∥

op
≤

1

αT 2
∀t ≤ T −∆. (30)

Lemma D.9. Let policies πt(x;w) = −K∞x − qt(w) and π̂t(x;w) = −Ktx − qt(w) be given, where qt is arbitrary but
satisfies ∥qt∥ ≤Dq for some Dq ≥ 1. Then for all t ∈ [T ], we have

∥xπ(wt)∥ ≤ 2κ∞Ψ⋆(1 − γ∞)
−1Dq, and ∥uπt+1(w)∥ ≤ 3κ∞β⋆Ψ3

⋆Γ⋆(1 − γ∞)
−1Dq,

as well as

∥xπ̂t+1(w)∥ ≤ Õ(κ2
∞β

3/2
⋆ Ψ3

⋆Γ
3/2
⋆ (1 − γ∞)

−1
⋅Dq),

and

∥uπ̂t+1(w)∥ ≤ Õ(κ2
∞β

5/2
⋆ Ψ5

⋆Γ
5/2
⋆ (1 − γ∞)

−1
⋅Dq).
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D.1.2. PROOFS FROM APPENDIX D.1.1

Proof of Theorem 4. We first prove that the identity for the value function,

V⋆
t (x; w̄t∶T ) = ∥x∥

2
Pt
+ 2⟨x, ct(w̄t∶T )⟩ + ft(w̄t∶T ),

holds by induction. Observe that at time T we indeed have V⋆
T (x,wT ) = ∥x∥

2
Rx

= ∥x∥
2
PT

, where we recall aT , bT = 0 by
assumption. Now suppose, that at time t + 1 we have

V⋆
t+1(x; w̄t+1∶T ) = ∥x∥

2
Pt+1

+ 2⟨x, ct+1(w̄t+1∶T )⟩ + ft+1(w̄t+1∶T ).

We prove that the same holds for time t using the following lemma.

Lemma D.10. Let P1 ≻ 0, c1, a0, and b0 be given and define V1(x) = ∥x∥
2
P1
+ 2⟨x, c1⟩ and

V0(x,w, a0, b0) = ∥x − a0∥
2
Rx

+min
u

{∥u − b0∥
2
Ru

+ V1(Ax +Bu +w)}. (31)

Then we have
V0(x,w, a0, b0) = ∥x∥

2
P0
+ 2⟨x, c0⟩ + f(w,a0, b0, c1), (32)

where

P0 = Rx +A
⊺P1A −A⊺P1BΣ−1

0 B⊺P1A,

Σ0 = Ru +B
⊺P1B,

K0 = Σ−1
0 B⊺P1A,

c0 = (A −BK0)
⊺
(P1w + c1) +K

⊺
0Rub0 −Rxa0.

Furthermore, letting u⋆ denote the minimizer in (31), we have

u⋆ = −Σ−1
0 B⊺

(P1(Ax +w) + c1 −Rub0) = −K0x −Σ−1
0 (B⊺

(P1w + c1) −Rub0). (33)

Proof of Lemma D.10. Since the minimization problem in (31) is strongly convex with respect to u, we conclude from
first-order conditions that

B⊺P1(Ax +Bu
⋆
+w) +Ru(u

⋆
− b0) +B

⊺c1 = 0,

Rearranging,

u⋆ = −(Ru +B
⊺P1B)

−1
(B⊺P1A +B⊺c1 + P1w −Rub0) = −K0x −Σ−1

0 (B⊺
(P1w + c1) −Rub0),

which proves (33). Next, observe that for any u, we have

∥u − b0∥
2
Ru

+ V1(Ax +Bu +w) = u⊺Σ0u + 2u⊺(B⊺
(P1Ax + P1w + c1) −Rub0)

+ x⊺A⊺P1Ax + 2x⊺A⊺
(P1w + c1) + g(w, c1, b0),

where g(w, c1, b0) is a function ofw, c1, and b0 but not x orw. Next, observe that for any Σ ≻ 0 and v, minu u
⊺Σu+2⟨v, u⟩ =

−v⊺Σ−1v. Hence,

min
u

∥u − b0∥
2
Ru

+ V1(Ax +Bu +w)

= −∥B⊺
(P1Ax + P1w + c1) −Rub0∥

2
Σ−1

0

+ x⊺A⊺P1Ax + 2x⊺A⊺
(P1w + c1) + g(w, c1, b0),

= x⊺A⊺
(P1 − P1BΣ−1

0 B⊺P1)Ax

− 2(B⊺
(P1w + c1) −Rub0)

⊺Σ−1
0 B⊺P1Ax + 2(P1w + c1)

⊺Ax + g̃(w, c1, b0),
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for an appropriate function g̃. We can further simplify the part of this expression that is linear in x to

− 2(B⊺
(P1w + c1) −Rub0)

⊺Σ−1
0 B⊺P1Ax + 2(P1w + c1)

⊺Ax

= −2(B⊺
(P1w + c1) −Rub0)

⊺K0x + 2(P1w + c1)
⊺Ax

= 2(P1w + c1)
⊺
(A −BK0)x + 2b⊺0RuK0x,

which yields

min
u

{∥u − b0∥
2
Ru

+ V1(Ax +Bu +w)} = x⊺A⊺
(P1 − P1B

⊺Σ−1
0 BP1)Ax

+ 2(P1w + c1)
⊺
(A −BK0)x + 2b⊺0RuK0x + g̃(w, c1, b0).

Therefore,

V0(x,w, a0, b0) = x
⊺P0x − 2a⊺0Rxx + 2b⊺0RuK0x + 2(P1w + c1)

⊺
(A −BK0)x + g̃(w, c0, b0) + ∥a0∥

2
Rx .

This yields the lemma with c0 = (A−BK0)
⊺(P1w+c1)+K

⊺
0Rub0−Rxa0, and f(w,a0, b0, c1) = g̃(w, c1, b0)+∥a0∥

2
Rx

.

Applying Lemma D.10 with P1 = Pt+1 and c1 = ct+1(w̄t+1∶T ), and using the definition of Q⋆
t from Definition 3 we see that

we indeed have

V⋆
t (x; w̄t∶T ) = ∥x∥

2
Pt
+ 2⟨x, ct(w̄t∶T )⟩ + ft(w̄t∶T ),

and that

π⋆t (x;w) = −Ktx −Σ−1
t (B⊺

(Pt+1wt + ct+1(w̄t∶T )) −Rubt).

Unfolding the recursion, we also see that for each t,

ct(w̄t∶T ) =
T−1

∑
i=t

⎛

⎝

i

∏
j=t

A⊺
cl,j

⎞

⎠
Pi+1wi +

T−1

∑
i=t

⎛

⎝

i−1

∏
j=t

A⊺
cl,j

⎞

⎠
(K⊺

i Rubi −Rxai),

with the convention that the empty product is equal to 1. Thus, we indeed have

q⋆t (w̄t∶T ) = Σ−1
t

⎛

⎝
−Rubt +B

⊺
T−1

∑
i=t

⎛

⎝

i

∏
j=t+1

A⊺
cl,j

⎞

⎠
Pi+1wi +B

⊺
T−1

∑
i=t+1

⎛

⎝

i−1

∏
j=t+1

A⊺
cl,j

⎞

⎠
(K⊺

i Rubi −Rxai)
⎞

⎠
.

Proof of Lemma D.3. Consider the noiseless LQR setup where

xt+1 = Axt +But.

The optimal policy for this setup is given by ut = −Ktx. For each t ≤ s, let x⋆s(xt = x) and u⋆s(xt = x) respectively denote
the value of the state xs and control us if we begin with xt = x and follow the optimal policy until time s. Let Vt(x) denote
the optimal finite-horizon value function for this noiseless setup, which satisfies

Vt(x) ≤ ⟨P∞x,x⟩,

and

Vt(x) =
T

∑
s=t

∥x⋆s(xt = x)∥
2
Rx

+ ∥u⋆s(xt = x)∥
2
Ru
.

Note that (x⋆s(xt = x))
⊺ = x⊺∏

s−1
r=t A

⊺
cl,r, and that we have in particular that

∥x⋆s(xt = x)∥
2
Rx

≤ ⟨P∞x,x⟩,
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and so ∥x⋆s(xt = x)∥
2
≤ ⟨P∞x,x⟩/λmin(Rx). Choosing t = τ1 and s = τ2 + 1, we have

∥
τ2

∏
t=τ1

A⊺
cl,tx∥

2

≤
⟨P∞x,x⟩

λmin(Rx)
.

The result now follows by recalling the definition of the spectral norm.

Proof of Lemma D.4. First observe that for any t, we have

∥Lcl,t∥op ≤ ∥Lcl,∞∥op + ∥Lcl,t −Lcl,∞∥op ≤ γ∞ + κ∞∥Acl,t −Acl,∞∥op

≤ γ∞ + κ∞∥B∥op∥Kt −K∞∥op.

To bound the error between the infinite-horizon optimal controller K∞ and the finite-horizon controller Kt, we appeal to the
following lemma.
Lemma D.11 (Dean et al. (2018), Lemma E.6; Lincoln & Rantzer (2006), Proposition 1). Define

ν = 2∥P∞∥op ⋅ (
∥A∥

2
op

λmin(Rx)
∨

∥B∥
2
op

λmin(Ru)
).

Then for all 0 ≤ t ≤ T , it holds that

∥Kt −K∞∥op ≤ ∥Pt − P∞∥
2
Σt

≤ ∥P∞∥op(1 + 1
ν
)
−(T−t+1)

.

In particular, for ν⋆ ∶= 2β⋆Ψ2
⋆Γ⋆, we have

∥Kt −K∞∥op ≤ ∥Pt − P∞∥
2
Σt

≤ Γ⋆ exp(−
1

2ν⋆
(T − t + 1)).

Lemma D.11 implies that if we set ∆ = 2ν⋆ log(∥P∞∥op/ε), we have ∥Kt −K∞∥op ≤ ε for all t ≤ T −∆. To get the final
result, we choose ε = 1

2
(1 − γ∞)/(κ∞(1 ∨ ∥B∥op)).

Proof of Lemma D.5. Assume for now that τ2 ≤ Tstab; if not, the result follows trivially from Lemma D.3. We write

∥
τ2

∏
t=τ1

L⊺cl,t∥

op

≤ ∥
τ2∧Tstab

∏
t=τ1

L⊺cl,t∥

op

⋅

XXXXXXXXXXX

τ2

∏
t=Tstab+1

L⊺cl,t

XXXXXXXXXXXop

.

For the first term, we have

∥
τ2∧Tstab

∏
t=τ1

L⊺cl,t∥

op

≤
τ2∧Tstab

∏
t=τ1

∥L⊺cl,t∥op
≤ γ̄τ2∧Tstab−τ1

∞ ,

using Lemma D.4. The second term is bounded using Lemma D.3 as
XXXXXXXXXXX

τ2

∏
t=Tstab+1

L⊺cl,t

XXXXXXXXXXXop

≤ κ∞

XXXXXXXXXXX

τ2

∏
t=Tstab+1

A⊺
cl,t

XXXXXXXXXXXop

≤ κ∞β
1/2
⋆ Γ

1/2
⋆ .

Proof of Lemma D.6. We first bound q⋆t and q⋆t;t+h. Let t ∈ [T ] be fixed. Then we have

∥q⋆t (wt∶T )∥ =
XXXXXXXXXXX

T−1

∑
i=t

Σ−1
t B

⊺
⎛

⎝

i

∏
j=t+1

A⊺
cl,j

⎞

⎠
Pi+1wi

XXXXXXXXXXX

≤ ∥Σ−1
t ∥

op
∥B∥op max

i>t
∥Pi+1∥op

T−1

∑
i=t

XXXXXXXXXXX

i

∏
j=t+1

A⊺
cl,j

XXXXXXXXXXXop

.

≤ β⋆Ψ⋆Γ⋆
⎛

⎝
1 +

T−1

∑
i=t+1

XXXXXXXXXXX

i

∏
j=t+1

A⊺
cl,j

XXXXXXXXXXXop

⎞

⎠
.
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Furthermore, the same argument shows that we have

∥q⋆t;t+h(wt∶t+h)∥ ≤ β⋆Ψ⋆Γ⋆
⎛

⎝
1 +

T−1

∑
i=t+1

XXXXXXXXXXX

i

∏
j=t+1

A⊺
cl,j

XXXXXXXXXXXop

⎞

⎠
,

as well. If i > Tstab, we trivially bound the summand as β1/2
⋆ Γ

1/2
⋆ using Lemma D.3. Otherwise, we have t + 1 ≤ i ≤ Tstab,

and we use Lemma D.5, which gives

XXXXXXXXXXX

i

∏
j=t+1

A⊺
cl,j

XXXXXXXXXXXop

≤ κ2
∞β

1/2
⋆ Γ

1/2
⋆ ⋅ γ̄i−(t+1)

∞ .

Summing across the two cases, we have

∥q⋆t (wt∶T )∥ ≤ β⋆Ψ⋆Γ⋆(1 + β
1/2
⋆ Γ

1/2
⋆ ∆stab + κ

2
∞β

1/2
⋆ Γ

1/2
⋆

Tstab

∑
i=t+1

γ̄i−(t+1)
∞ )

≤ β⋆Ψ⋆Γ⋆(1 + β
1/2
⋆ Γ

1/2
⋆ ∆stab + κ

2
∞β

1/2
⋆ Γ

1/2
⋆

∞

∑
i=0

γ̄i∞)

≤ β⋆Ψ⋆Γ⋆(1 + β
1/2
⋆ Γ

1/2
⋆ ∆stab + 2κ2

∞β
1/2
⋆ Γ

1/2
⋆ (1 − γ̄∞)

−1
)

≤ 2β
3/2
⋆ Ψ⋆Γ

3/2
⋆ (∆stab + κ

2
∞(1 − γ̄∞)

−1
).

Recalling the definition of ∆stab, this is at most

Õ(β
5/2
⋆ Ψ3

⋆Γ
5/2
⋆ κ2

∞(1 − γ∞)
−1

).

To bound q⋆∞;h, recall that we have

q⋆∞;h(wh+1) ∶=
h+1

∑
i=1

Σ−1
∞B

⊺
(A⊺

cl,∞)
i−1P∞wi.

It immediately follows that we have

∥q⋆∞;h(wh+1)∥ ≤ ∥
h+1

∑
i=1

Σ−1
∞B

⊺
(A⊺

cl,∞)
i−1P∞wi∥ ≤ β⋆Ψ⋆Γ⋆

h+1

∑
i=1

∥Ai−1
cl,∞∥

op
.

We may further upper bound this by

κ∞β⋆Ψ⋆Γ⋆
h+1

∑
i=1

∥Li−1
cl,∞∥

op
≤ κ∞β⋆Ψ⋆Γ⋆

h+1

∑
i=1

γi−1
∞ ≤ κ∞β⋆Ψ⋆Γ⋆(1 − γ∞)

−1.

Proof of Lemma D.8. By a change of variables, we have

∥Acl,i→t −A
t−i
cl,∞∥

op
≤ κ∞∥Lcl,i→t −L

t−i
cl,∞∥

op
.

Let us drop the “cl” subscript to keep notation succinct. Recall that for all t ≤ Tstab, ∥Lt∥op ≤ γ̄∞ < 1, and that
∥L∞∥op ≤ γ∞ < 1. We proceed by a telescoping argument:

Li→t −L
t−i
∞ = Lt(Li→t−1 −L

t−i−1
∞ ) +Lt−i−1

∞ (Lt −L∞),

and so
∥Li→t −L

t−i
∞ ∥

op
= γ̄∞∥Li→t−1 −L

t−i−1
∞ ∥

op
+ γt−i−1

∞ ∥Lt −L∞∥op.
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Proceedings backwards in the same fashion, we have

∥Acl,i→t −A
t−i
cl,∞∥

op
≤ κ∞γ̄

t−i−1
∞

t

∑
j=i+1

∥Lj −L∞∥op

≤ κ2
∞γ̄

t−i−1
∞

t

∑
j=i+1

∥Acl,j −Acl,∞∥op

≤ κ2
∞Ψ⋆γ̄

t−i−1
∞

t

∑
j=i+1

∥Kj −K∞∥op.

Using Lemma D.11, we are guaranteed that by setting

∆ = C ⋅ β⋆Ψ2
⋆Γ⋆ log(κ2

∞Ψ⋆Γ⋆(1 − γ∞)
−1
⋅ αT 3

) ≥ ∆stab,

where C is a sufficiently large constant, we have

∥Kt −K∞∥op ≤
1

κ2
∞Ψ⋆ ⋅ (αT 3)

∀t ≤ T −∆,

and in particular,

∥Acl,i→t −A
t−i
cl,∞∥

op
≤

1

αT 2
.

Proof of Lemma D.9. We first handle the policy π. Observe the state at each step is given by

xπt+1(w) =
t

∑
i=1

(A −BK∞)
t−iwi −

t

∑
i=1

(A −BK∞)
t−iBqi(w).

Hence, using Lemma D.2, we have

∥xπt+1(wt)∥ ≤ κ∞Ψ⋆

t

∑
i=1

γt−i∞ (1 +max
i≤t

∥qi(w)∥) ≤ κ∞Ψ⋆(1 − γ∞)
−1

(1 +max
i≤t

∥qi(w)∥)

≤ 2κ∞Ψ⋆(1 − γ∞)
−1Dq.

We can now bound the control as

∥uπt+1(w)∥ ≤ ∥K∞x
π
t+1(w)∥ + ∥qt+1(w)∥

≤ 2κ∞β⋆Ψ3
⋆Γ⋆(1 − γ∞)

−1Dq +Dq

≤ 3κ∞β⋆Ψ3
⋆Γ⋆(1 − γ∞)

−1Dq.

where the second inequality uses (41) along with the previous bound on xπt .

We now handle the policy π̂. Recall that the state reached after playing any controller of the form π̂t(x,w) = −Ktx− qt(w)

for every step is given by

xπ̂t+1(w) =
t

∑
i=1

Acl,i→twi −
t

∑
i=1

Acl,i→tBqi(w),

and so

∥xπ̂t+1(w)∥ ≤ (1 +Ψ⋆ max
1≤i≤t

∥qi(w)∥) ⋅
t

∑
i=1

∥Acl,i→t∥op.

By Lemma D.3, we have

t

∑
i=1

∥Acl,i→t∥op ≤
t

∑
i=1

κ2
∞β

1/2
⋆ Γ

1/2
⋆ γ̄Tstab∧t−Tstab∧(i+1)

∞

≤ C ⋅ κ2
∞β

1/2
⋆ Γ

1/2
⋆ (∆stab + (1 − γ̄∞)

−1
),
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where C is a universal constant. Recalling the value for ∆stab, this gives

t

∑
i=1

∥Acl,i→t∥op ≤ Õ(κ2
∞β

3/2
⋆ Ψ2

⋆Γ
3/2
⋆ (1 − γ∞)

−1
).

Hence, we can bound the state norm as

∥xπ̂t+1(w)∥ ≤ Õ(κ2
∞β

3/2
⋆ Ψ3

⋆Γ
3/2
⋆ (1 − γ∞)

−1
⋅Dq).

Finally, we bound the control norm as

∥uπ̂t+1(w)∥ ≤ ∥Kt∥op∥x
π̂
t+1(w)∥ + ∥qt+1(w)∥.

We use that Pt ⪯ P∞ for all t to bound
∥Kt∥op ≤ β⋆Ψ2

⋆Γ⋆,

which gives

∥uπ̂t+1(w)∥ ≤ Õ(κ2
∞β

5/2
⋆ Ψ5

⋆Γ
5/2
⋆ (1 − γ∞)

−1
⋅Dq).

D.2. Performance difference lemma

Below we state a variant of the performance difference lemma for an abstract MDP setting that generalizes the LQR setting
studied in this paper. The setting as follows:

Begin at state x1 ∈ X . Then, for t = 1, . . . , T :

• Agent selects control ut ∈ U .

• Agent observes wt ∈W and experiences instantaneous loss `(xt, ut,wt).

• State evolves as xt+1
i.i.d.
∼ p(xt, ut,wt), where p(x,u,w) ∈ ∆(X ).

We define the expected loss of a policy πt(x;w) in this setting as

JT (π;w) = Eπ,w[
T

∑
t=1

`(xt, ut,wt)], (34)

where Eπ,w denotes expectation with respect to the system dynamics with w fixed. For each policy π, we define the
action-value function for π as follows:

Q̂π
t∶τ(x,u;wτ) = Eπ,wτ [

τ

∑
s=t

`(xs, us,ws) ∣ xt = x,ut = u]. (35)

The performance difference lemma can now be stated as follows.

Lemma D.12 (Performance difference lemma). Let π̂ and π be any pair of policies of the form πt(x;w) (i.e., Markovian,
but with potentially arbitrary dependence on the sequence w). Then it holds that

JT (π̂;w) − JT (π;w) = Eπ,w[
T

∑
t=1

Q̂π̂
t (xt, π̂(xt;w);w) − Q̂π̂

t (xt, π(xt;w);w)] (36)

= Eπ̂,w[
T

∑
t=1

Q̂π
t (xt, π̂(xt;w);w) − Q̂π

t (xt, π(xt;w);w)]. (37)
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Proof of Lemma D.12. Let t be fixed. Observe that for any x, we have

Q̂π
t (x,πt(x;w);w)

= `(x,πt(x;w),wt) +E[Q̂π
t+1(xt+1, πt+1(xt+1;w);w) ∣ xt = x,ut = πt(x;w),w].

We can alternatively write

`(x,πt(x;w),wt) = Q̂π̂
t (x,πt(x;w);w)

−E[Q̂π̂
t+1(xt+1, π̂t+1(xt+1;w);w) ∣ xt = x,ut = πt(x;w),w].

Combining these identities, we have

Q̂π̂
t (x, π̂t(x;w);w) − Q̂π

t (x,πt(x;w);w) (38)

= Q̂π̂
t (x, π̂t(x;w);w) − Q̂π̂

t (x,πt(x;w);w)

+E[Q̂π̂
t+1(xt+1, π̂t+1(xt+1;w);w) − Q̂π

t+1(xt+1, πt+1(xt+1;w);w) ∣ xt = x,ut = πt(x;w),w].

To prove the result, we simply observe that

JT (π̂;w) − JT (π;w) = Q̂π̂
1 (x1, π̂(x;w);w) − Q̂π

1 (x1, π(x;w);w).

The equality (36) now follows by applying the identity (38) to the right-hand side above recursively. To prove (37) we use
the same argument, except that we replace the one-step identity (38) with

Q̂π̂
t (x, π̂t(x;w);w) − Q̂π

t (x,πt(x;w);w)

= Q̂π
t (x, π̂t(x;w);w) − Q̂π

t (x,πt(x;w);w)

+E[Q̂π̂
t+1(xt+1, π̂t+1(xt+1;w);w) − Q̂π

t+1(xt+1, πt+1(xt+1;w);w) ∣ xt = x,ut = π̂t(x;w),w].

E. Proofs from Section 2
E.1. Proof of Theorem 1

Theorem 1. For an appropriate choice of parameters, Riccatitron ensures

K0-RegT ≤ O⋆(dxdu log3 T ),

where O⋆ suppresses polynomial dependence on system parameters. Suppressing only logarithmic dependence on system
parameters, the regret is at most

Õ(dxdu log3 T ⋅ β11
⋆ Ψ19

⋆ Γ11
⋆ κ

8
0(1 − γ0)

−4).

Proof of Theorem 1. Throughout the proof, we let π̂ denote the policy of Riccatitron, which takes the form π̂t(x,wt−1) =

−K∞x − q
Mt(wt−1), where Mt =Mt(wt−1) is selected as in Algorithm 1. The proof is split into multiple subsections.

E.1.1. REDUCTION TO ONLINE PREDICTION

As a first step, we appeal to Lemma 2.1 which, by choosingM0 =M(m,R⋆, γ0) for m = (1 − γ0)
−1 log((1 − γ0)

−1T ),
ensures that

JT (π̂;w) − inf
K∈K0

JT (π
K ,w) ≤ JT (π̂;w) − inf

M∈M0

JT (π
(M),w) +Capx.

Next, we recall that by the performance difference lemma (2), we have that for any M ∈M0,

JT (π̂;w) − JT (π
(M);w) =

T

∑
t=1

A⋆
t (u

π̂
t ;xπ̂t ,w) −A⋆

t (u
π(M)
t ;xπ

(M)
t ,w).
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We apply Theorem 2 to both terms in this summation individually. In particular, by choosing

h = 2(1 − γ∞)
−1 log(κ2

∞β
2
⋆Ψ⋆Γ2

⋆T
2
),

we are guaranteed that

JT (π̂;w) − inf
M∈M0

JT (π
(M);w)

≤
T

∑
t=1

Ât;h(Mt;wt+h) − inf
M∈M0

T

∑
t=1

Ât;h(M ;wt+h) +Cadv.

Defining a “loss function” ft(M) = Ât;h(Mt;wt+h) = ∥qMt (wt−1) − q
⋆
∞;h(wt∶t+h)∥

2
Σ∞ , the regret-like quantity above is

equivalent to
T

∑
t=1

ft(Mt) − inf
M∈M0

T

∑
t=1

ft(M), (39)

where {Mt} are the disturbance-action matrices selected by Riccatitron.

E.1.2. APPLYING THE ONLINE NEWTON STEP ALGORITHM

As described in the main body, Riccatitron is simply an instance of the generic reduction from online convex optimization
with delays to vanilla online convex optimization, with either online Newton step or Vovk-Azoury-Warmuth as the base
algorithm in the reduction. For online Newton step, since we have delay h, Lemma 2.2 ensures that we have

T

∑
t=1

ft(Mt) − inf
M∈M0

T

∑
t=1

ft(M) ≤ (h + 1)RONS(T /(h + 1)),

whereRONS(T /(h+1)) is an upper bound on the regret of each ONS instance applied to its respective subsequence of losses.
Moreover, by Lemma 2.4 we are guaranteed that if we choose ηons = 2 max{4GocoDoco, α

−1
oco} and εons = η

2
ons/Doco, then

RONS(T ) ≤ 5(α−1
oco +GocoDoco)dim(M0) logT,

where αoco, Goco, and Doco are regularity parameters for the losses ft which are specified by the following lemma.

Lemma E.1. The weight setM0 and loss functions ft(M) in (39) satisfy the following properties:

• supM,M ′∈M0
∥M −M ′∥F ≤ 4β⋆Ψ2

⋆Γ⋆κ
2
0(1 − γ0)

−1 ⋅
√
dx ∧ du =∶Doco.

• supM∈M0
∥∇ft(M)∥F ≤ Õ(DqΨ

2
⋆Γ⋆(1 − γ0)

−1/2) =∶ Goco.

• ft is αoco-exp-concave overM0, where αoco ∶= (4D2
qΨ

2
⋆Γ⋆)

−1.

With this lemma, we can crudely bound the regret of ONS as

RONS(T ) = Õ((GocoDoco + α
−1
oco)dim(M0) logT)

= Õ(mdxdu(GocoDoco + α
−1
oco) logT )

= Õ((1 − γ0)
−1dxdu(GocoDoco + α

−1
oco) log2 T)

= Õ(dxdu
√
dx ∧ du ⋅D

2
qκ

2
0β⋆Ψ2

⋆Γ2
⋆(1 − γ0)

−5/2 log2 T)

≤ Õ(dxdu
√
dx ∧ du ⋅ κ

6
0β

6
⋆Ψ8

⋆Γ7
⋆(1 − γ0)

−9/2 log2 T).

E.1.3. APPLYING THE VOVK-AZOURY-WARMUTH ALGORITHM

If we use VAW as the base algorithm instead of ONS, then Lemma 2.2 implies that

T

∑
t=1

ft(Mt) − inf
M∈M0

T

∑
t=1

ft(M) ≤ (h + 1)RVAW(T /(h + 1)),
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where RVAW(T /(h + 1)) is an upper bound on the regret of each VAW instance. Theorem 5 (detailed in Appendix E.3)
ensures that by setting εvaw = ∥Σ∞∥opD

2
qD

−2
oco, we have

RVAW(T ) ≤ 5∥Σ∞∥opDq dim(M0) log(1 +D−2
q D

2
ocoQocoT /dim(M0)),

where Doco is as in Lemma E.1 and

Qoco ∶= sup
M≠0

∥qM(w)∥

∥M∥F
≤ sup
M≠0

∑
m
i=1∥M

[i]∥
op

∥M∥F
≤
√
m.

Recalling that ∥Σ∞∥op ≤ 2Ψ2
⋆Γ⋆, Dq ≤ Õ(β

5/2
⋆ Ψ3

⋆Γ
5/2
⋆ κ2

0(1 − γ0)
−1) and (using the choice of m from Lemma 2.1)

dim(M0) = dxdum = Õ(dxdu(1 − γ0)
−1 logT ),

we can simplify to

RVAW(T ) ≤ Õ(∥Σ∞∥opDqdxdum logT)

≤ Õ(dxdu log2 T ⋅ β
5/2
⋆ Ψ5

⋆Γ
7/2
⋆ κ2

0(1 − γ0)
−2

).

E.1.4. PUTTING EVERYTHING TOGETHER

We now summarize the development so far. Suppose we chooseM0 as in Lemma 2.1, usingm = (1−γ0)
−1 log((1−γ0)

−1T ).
Lemma 2.4 implies that if we run VAW as the base algorithm in the reduction using εvaw = ∥Σ∞∥opD

2
qD

−2
oco and delay

parameter h = 2(1 − γ∞)−1 log(κ2
∞β

2
⋆Ψ⋆Γ2

⋆T
2), we have

T

∑
t=1

ft(Mt) − inf
M∈M0

T

∑
t=1

ft(M) ≤ (h + 1)RVAW(T /(h + 1))

≤ Õ(h ⋅ dxdu log2 T ⋅ β
5/2
⋆ Ψ5

⋆Γ
7/2
⋆ κ2

0(1 − γ0)
−2

)

≤ Õ(dxdu log3 T ⋅ β
5/2
⋆ Ψ5

⋆Γ
7/2
⋆ κ2

0(1 − γ0)
−3

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Creg

.

In total, we have

K0-RegT ≤ Creg +Capx +Cadv ≤ Õ(dxdu log3 T ⋅ β11
⋆ Ψ19

⋆ Γ11
⋆ κ

8
0(1 − γ0)

−4).

E.2. Supporting lemmas

Lemma 2.1 (Expressivity of DAP). Suppose we choose our set of disturbance-action matrices asM0 ∶=M(m,R⋆, γ0),
where m = (1 − γ0)

−1 log((1 − γ0)
−1T ) and R⋆ = 2β⋆Ψ2

⋆Γ⋆κ
2
0. Then for all w, we have

inf
M∈M0

JT (π
(M);w) ≤ inf

K∈K0

JT (π
K ;w) +Capx,

where Capx ≤ O(β2
⋆Ψ8

⋆Γ2
⋆κ

7
0(1 − γ0)

−2).

Proof of Lemma 2.1. Let K ∈K0 be fixed. Consider a policy

π
(M)

t (x;wt−1) = −K∞x − q
M

(wt−1),

Following (Agarwal et al., 2019a), we set

M [i]
= (K −K∞)(A −BK)

i−1.
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Suppose for now that π(M) and πK have ∥xt∥ ∨ ∥ut∥ ≤ D̃ for all t. Then Lemma 5.2 of (Agarwal et al., 2019a) implies that

JT (π̌
M ;w) ≤ JT (π

K ;w) +O(D̃Ψ3
⋆κ

5
0 ⋅mγ

m+1
0 T ). (40)

Let us bound the norms for the matrices M [i] that achieve this bound. First observe that

∥K∞∥op ≤ ∥Σ∞∥
−1
op∥A∥op∥B∥op∥P∞∥op ≤ β⋆Ψ2

⋆Γ⋆, and ∥K∥op ≤ κ0. (41)

Consequently, Lemma D.2 implies that

∥M [i]∥
op

≤ (∥K∥op + ∥K∞∥op)κ0γ
i−1
0 ≤ 2κ2

0β⋆Ψ2
⋆Γ⋆γ

i−1
0 .

Hence, if the use controller π(M), it would suffice to take

M0 = {M = {M [i]}
i∈[m]

∣ ∥M [i]∥
op

≤ 2β⋆Ψ2
⋆Γ⋆κ

2
0γ
i−1
0 }.

To conclude the proof, we provide a bound on D̃. To begin, note that each M ∈M0 has

∥qMi (wi−1)∥ ≤
m

∑
i=1

∥M [i]∥
op

≤ 2β⋆Ψ2
⋆Γ⋆κ

2
0(1 − γ0)

−1
=∶DM. (42)

We now provide a bound on D̃. First, observe that when π is the static linear controller πK , we have

xt+1(wt) =
t

∑
i=1

(A −BK)
t−iwi,

and so, use Lemma D.2, we have

∥xt(wt−1)∥op ≤ κ0

t

∑
i=1

γt−i0 ≤ κ0(1 − γ0)
−1,

and ∥ut(wt−1)∥ = ∥Kxt(wt−1)∥op ≤ κ2
0(1 − γ0)

−1. To bound the radius for the policies π(M), we use Lemma D.9, along
with the bound (42) to get the following result.

Corollary 1. For any M ∈M0, the controller π(M) has

∥xπ
(M)
t+1 (wt)∥ ≤ 2β⋆Ψ3

⋆Γ⋆κ
3
0(1 − γ0)

−2, and ∥uπ
(M)
t+1 (wt)∥ ≤ 3β2

⋆Ψ5
⋆Γ2

⋆κ
3
0(1 − γ0)

−2.

Hence, we may take
D̃ = 2β2

⋆Ψ5
⋆Γ2

⋆κ
3
0(1 − γ0)

−2,

and so (40) yields
JT (π

(M);w) ≤ JT (π
K ;w) +O(β2

⋆Ψ8
⋆Γ2

⋆(1 − γ0)
−2κ7

0 ⋅mγ
m+1
0 T ).

By choosing m = (1 − γ0)
−1 log((1 − γ0)

−1T ), we are guaranteed that

JT (π
(M);w) ≤ JT (π

K ;w) ≤ Capx.

As a closing remark, we observe that (42) implies that we may take Dq = max{2κ2
0β⋆Ψ2

⋆Γ⋆(1 − γ0)
−1,Dq⋆}, as the radius

for the predictions qMt by the learner, benchmark class, and optimal policy. Hence, recalling the value for Dq⋆ from
Lemma D.6, we may take

Dq ≤ Õ(β
5/2
⋆ Ψ3

⋆Γ
5/2
⋆ κ2

0(1 − γ0)
−1

).

Lemma E.1. The weight setM0 and loss functions ft(M) in (39) satisfy the following properties:

• supM,M ′∈M0
∥M −M ′∥F ≤ 4β⋆Ψ2

⋆Γ⋆κ
2
0(1 − γ0)

−1 ⋅
√
dx ∧ du =∶Doco.
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• supM∈M0
∥∇ft(M)∥F ≤ Õ(DqΨ

2
⋆Γ⋆(1 − γ0)

−1/2) =∶ Goco.

• ft is αoco-exp-concave overM0, where αoco ∶= (4D2
qΨ

2
⋆Γ⋆)

−1.

Proof of Lemma E.1. For the first property, observe that for each M ∈M0, we have

∥M∥F =

¿
Á
ÁÀ

m

∑
i=1

∥M [i]∥
2

F
≤
√
dx ∧ du

¿
Á
ÁÀ

m

∑
i=1

∥M [i]∥
2

op

≤
√
dx ∧ du ⋅ 2κ

2β⋆Ψ2
⋆Γ⋆

¿
Á
ÁÀ

m

∑
i=1

γ
2(i−1)
0

≤
√
dx ∧ du ⋅ 2κ

2β⋆Ψ2
⋆Γ⋆(1 − γ0)

−1.

The bound for Doco now follows by triangle inequality.

For the second property, we directly prove that ft is Lipschitz as follows: For any M,M ′ ∈M0,

∥q⋆t∶t+m(wt∶t+m) − qM(wt−1)∥
2

Σt
− ∥q⋆t∶t+m(wt∶t+m) − qM

′
(wt−1)∥

2

Σt

≤ 2∥Σt∥opDq∥q
M

(wt−1) − q
M ′

(wt−1)∥

= 2∥Σt∥opDq∥
m

∑
i=1

(M [i]
−M ′[i]

)wt−i∥.

We finish the bound as follows:
m

∑
i=1

∥M [i]
−M ′[i]∥

op
≤

m

∑
i=1

∥M [i]
−M ′[i]∥

F
≤
√
m∥M −M ′

∥F .

To simplify the bound, we use that ∥Σt∥op ≤ Ψ2
⋆Γ⋆ and that

√
m = Õ((1 − γ0)

−1/2).

For the third property, we observe that that ft(M) obeys the structure in Lemma 2.3, since qM(wt−1) is a linear mapping
from∏mi=1 Rdu×dx to Rdu , and since Σt ≻ 0. Thus, to prove the exp-concave property, we simply bound the range of the
loss as

∥q⋆t∶t+m(wt∶t+m) − qM(wt−1)∥
2

Σt
≤ 2D2

q∥Σt∥op ≤ 2D2
qΨ

2
⋆Γ⋆.

E.3. Vector-valued Vovk-Azoury-Warmuth algorithm

In this section we develop a variant of the Vovk-Azoury-Warmuth algorithm (Vovk, 1998; Azoury & Warmuth, 2001) for a
vector-valued online regression setting. At each timestep t = 1, . . . , T , the learner receives a matrix At ∈ Rd1×d2 , predicts
zt ∈ Rd2 , then receives bt ∈ Rd1 and experiences loss ft(zt), where ft(z) = ∥Atz − bt∥

2
Σ and Σ ≻ 0 is a known matrix. The

goal of the learner is to attain low regret
T

∑
t=1

ft(zt) − inf
z∈C

T

∑
t=1

ft(z),

where C is a convex constraint set. Recall from Algorithm 3 that VAW is the algorithm which, at time t, predicts with

zt = arg min
z∈C

{⟨z,−2∑
t−1
i=1 A

⊺
iΣbi⟩ + ∥z∥

2
Et

}, (43)

where Et = εI +∑ti=1A
⊺
iΣAi.

Theorem 5. Let ∥Σ∥op ≤ S. Suppose that we run the VAW strategy (Algorithm 3) with parameter ε, and that for all t we
have ∥bt∥ ≤ Y and ∥At∥op ≤ R. Then we are guaranteed that for all z ∈ C,

T

∑
t=1

ft(zt) −
T

∑
t=1

ft(z) ≤ ε∥z∥
2
+ 4SY 2

⋅ d2 log(1 + SR2T /(d2ε)). (44)
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Algorithm 3 Vector-valued Vovk-Azoury-Warmuth (VAW(ε,C,Σ))
1: parameters: Regularization parameter ε > 0, convex constraint set C, cost matrix Σ ≻ 0.

// OCO with costs fk(z) ∶= ∥Akz − bk∥
2
Σ, where Ak ∈ Rd1×d2, bk ∈ Rd1 and z ∈ C ⊂ Rd2.

2: initialize:
Let d2 = dim(C).
Set E0 = ε ⋅ Id2 .

3: for k = 1,2, . . . : do
4: receive matrix Ak ∈ Rd1×d2 .
5: Ek ← Ek−1 +A

⊺
kΣAk.

6: zk ← arg minz∈C{⟨z,−2∑
k−1
i=1 A

⊺
iΣbi⟩ + ∥z∥

2
Ek

}

7: Play zk and receive feedback bk ∈ Rd1 .

In particular, if supz∈C∥z∥ ≤ B, then by setting ε = SY 2/B2 we are guaranteed that

T

∑
t=1

ft(zt) − inf
z∈C

T

∑
t=1

ft(z) ≤ 5SY 2
⋅ d2 log(1 +B2R2Y −2T /d2). (45)

Proof of Theorem 5. We assume Σ = I without loss of generality by reparameterizing via A′
t = Σ1/2At and b′t = Σ1/2bt,

with Y and R scaled up by a factor of S1/2.

Our proof follows the treatment of VAW in Orabona et al. (2015), which views the algorithm as an instance of online mirror
descent with a sequence of time-varying regularizers. Consider the following algorithm parameterized by a sequence of
convex regularizersRt ∶ C → R.

• Initialize θ1 = 0.
• For t = 1, . . . , T :

– Let zt = arg minz∈C{⟨z, θt⟩ +Rt(z)}.
– Receive gt and set θt+1 = θt + gt.

The following lemma bounds the regret of this strategy for online linear optimization.

Lemma E.2 (Orabona et al. (2015), Lemma 1). Suppose that each function Rt is β-strongly convex with respect to a
norm ∥⋅∥t, and let ∥⋅∥t,⋆ denote the dual norm. Then the online mirror descent algorithm ensures that for every sequence
g1, . . . , gT , for all z ∈ C,

T

∑
t=1

⟨gt, zt − z⟩ ≤RT (z) +
T

∑
t=1

⎛

⎝

∥gt∥
2
t,⋆

2β
+Rt−1(zt) −Rt(zt)

⎞

⎠
. (46)

Observe that the VAW algorithm (43) is equivalent to running online mirror descent with gt = −2A⊺
t bt andRt(z) = ∥z∥

2
Et

.
We use this observation to bound the regret through Lemma E.2. In particular, letting ∥⋅∥t = ∥⋅∥

2
Et

, we may take β = 1, which
gives

T

∑
t=1

ft(zt) − ft(z) =
T

∑
t=1

∥Atzt − bt∥
2
− ∥Atz − bt∥

2

=
T

∑
t=1

2⟨−A⊺
t bt, zt − z⟩ +

T

∑
t=1

∥Atzt∥
2
−

T

∑
t=1

∥Atz∥
2

=
T

∑
t=1

⟨gt, zt − z⟩ +
T

∑
t=1

∥Atzt∥
2
−RT (z) + ε∥z∥

2

≤RT (z) +
T

∑
t=1

(
1

2
∥gt∥

2
E−1
t
+Rt−1(zt) −Rt(zt)) +

T

∑
t=1

∥Atzt∥
2
−RT (z) + ε∥z∥

2

=
T

∑
t=1

(
1

2
∥gt∥

2
E−1
t
+Rt−1(zt) −Rt(zt)) +

T

∑
t=1

∥Atzt∥
2
+ ε∥z∥

2
,
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where the inequality uses Lemma E.2, along with the fact that the dual norm for ∥⋅∥t is ∥⋅∥E−1
t

. To simplify further, we

observe thatRt−1(zt) −Rt(zt) = −∥Atzt∥
2, so that

T

∑
t=1

ft(zt) − ft(z) ≤ ε∥z∥
2
+

1

2

T

∑
t=1

∥gt∥
2
E−1
t

= ε∥z∥
2
+ 2

T

∑
t=1

∥A⊺
t bt∥

2

E−1
t

≤ ε∥z∥
2
+ 2Y 2

T

∑
t=1

∥E
−1/2
t A⊺

t ∥
2

op
.

To bound the right-hand side we use a generalization of the usual log-determinant potential argument. Throughout the
argument we use that since Et ≻ A⊺

tAt, 0 ≤ ∥E
−1/2
t A⊺

t ∥
op

< 1. To begin, observe that for each t, we have

det(Et−1) = det(Et −A
⊺
tAt) = det(Et) ⋅ det(I −E

−1/2
t A⊺

tAtE
−1/2
t ).

Consequently,

det(Et)

det(Et−1)
=

1

det(I −E
−1/2
t A⊺

tAtE
−1/2
t )

=
1

∏
d2

i=1(1 − λi(E
−1/2
t A⊺

tAtE
−1/2
t ))

=
d2

∏
i=1

1

1 − λi(E
−1/2
t A⊺

tAtE
−1/2
t )

.

Next we observe that since 0 ≤ ∥E
−1/2
t A⊺

t ∥
op

< 1, we are guaranteed that 1

1−λi(E
−1/2
t A⊺

tAtE
−1/2
t )

≥ 1 for all i, and consequently

d2

∏
i=1

1

1 − λi(E
−1/2
t A⊺

tAtE
−1/2
t )

≥
1

1 − λmax(E
−1/2
t A⊺

tAtE
−1/2
t )

≥ 1 + λmax(E
−1/2
t A⊺

tAtE
−1/2
t ),

where the second inequality uses that 1
1−x

≥ 1 + x for x ∈ [0,1). Since logx is increasing, this establishes that

log(1 + ∥E
−1/2
t A⊺

t ∥
2

op
) = log(1 + λmax(E

−1/2
t A⊺

tAtE
−1/2
t )) ≤ log(

det(Et)

det(Et−1)
).

Next we use that since ∥E
−1/2
t A⊺

t ∥
op

≤ 1, we have

∥E
−1/2
t A⊺

t ∥
2

op
≤ 2 ⋅ log(1 + ∥E

−1/2
t A⊺

t ∥
2

op
),

using the elementary inequality x ≤ 2 log(1 + x) for all x ∈ [0,1]. Altogether, this gives

T

∑
t=1

∥E
−1/2
t A⊺

t ∥
2

op
≤ 2

T

∑
t=1

log(
det(Et)

det(Et−1)
) = 2 log(

det(ET )

det(E0)
),

where we recall E0 = εI . Finally, we have

log(
det(ET )

det(E0)
) =

d2

∑
i=1

log(1 + λi(
T

∑
t=1

A⊺
tAt)/ε) ≤ d2 log(1 +R2T /(d2ε)).

E.4. Supporting lemmas for online learning

Lemma 2.2 (cf. Joulani et al. (2013)). The generic delayed online learning reduction has regret at most

T

∑
t=1

ft(zt) − inf
z∈C

T

∑
t=1

ft(z) ≤ (h + 1)R(T /(h + 1)),

where R(T ) is the regret of the base instance.
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Proof of Lemma 2.2. Let Ii denote the rounds in which instance i was used. Then we have

RegT = sup
z∈C

{
T

∑
t=1

ft(zt) −
T

∑
t=1

ft(z)}

= sup
z∈C

⎧⎪⎪
⎨
⎪⎪⎩

h+1

∑
i=1

∑
t∈Ii

ft(zt) − ft(z)

⎫⎪⎪
⎬
⎪⎪⎭

≤
h+1

∑
i=1

sup
z∈C

⎧⎪⎪
⎨
⎪⎪⎩

∑
t∈Ii

ft(zt) − ft(z)

⎫⎪⎪
⎬
⎪⎪⎭

≤
h+1

∑
i=1

R(T /(h + 1))

= (h + 1)R(T /(h + 1)).

Lemma 2.3. Let A ∈ Rd1×d2 , and consider the function f(z) = ∥Az − b∥
2
Σ, where Σ ⪰ 0. If we restrict to z ∈ Rd2 for which

f(z) ≤ R, then f is (2R)−1-exp-concave.

Proof of Lemma 2.3. Recall that the function f is α-exp-concave if and only if

∇
2f(z) ⪰ α∇f(z)∇f(z)⊺.

We have
∇f(z) = 2A⊺Σ(Az − b), and ∇

2f(z) = 2A⊺ΣA.

Hence
∇f(z)∇f(z)⊺ ⪯ 4A⊺ΣA∥b −Az∥

2
Σ ≤ 2R ⋅ ∇

2f(z).

F. Proofs from Section 3
F.1. Proof of Theorem 2

We restate Theorem 2 here for reference.

Theorem 2. Let π be any policy of the form πt(x;w) = −K∞x − q
Mt(wt−1), where Mt = Mt(w) ∈ M0. Then, by

choosing h = 2(1 − γ∞)−1 log(κ2
∞β

2
⋆Ψ⋆Γ2

⋆T
2) as the horizon parameter, we have

T

∑
t=1

∣A⋆
t (u

π
t ;xπt ,w) − Ât;h(Mt;wt+h)∣ ≤ Cadv,

where Cadv = Õ(β11
⋆ Ψ19

⋆ Γ11
⋆ κ

8
0(1 − γ0)

−4 log2 T ).

Proof of Theorem 2. To begin, recall that by taking Dq as in (6), we have ∥qMt ∥ ≤Dq for all M ∈M0, and we also have
Dq⋆ ≤Dq .

For the first step, let π be any policy of the form πt(x;w) = −K∞x−q
Mt
t (wt−1), and let π̂t(x;w) = −Ktx−q

Mt
t (wt−1) be

the corresponding controller that uses the finite-horizon state-feedback matrices {Kt}
T
t=1. To begin, using the performance

difference lemma (2) along with Lemma 3.4,

∣
T

∑
t=1

A⋆
t (u

π
t ;xπt ,w) −A⋆

t (u
π̂
t ;xπ̂t ,w)∣ ≤ CK∞ .
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Next, using Lemma 3.1, we have

T

∑
t=1

A⋆
t (u

π̂
t ;xπ̂t ,w) =

T

∑
t=1

∥qMt(wt−1) − q
⋆
t (wt∶T )∥

2

Σt
.

Using Lemma 3.3, the choice of h in the theorem statement guarantees that

T

∑
t=1

∣A⋆
t (u

π̂
t ;xπ̂t ,w) − ∥qMt(wt−1) − q

⋆
t;t+h(wt∶t+h)∥

2
Σt

∣ ≤ Ctrunc,

and finally Lemma 3.5 ensures that

∣
T

∑
t=1

∥qMt(wt−1) − q
⋆
t;t+h(wt∶t+h)∥

2
Σt − ∥qMt(wt−1) − q

⋆
∞;h(wt∶t+h)∥

2
Σ∞ ∣

= ∣
T

∑
t=1

∥qMt(wt−1) − q
⋆
t;t+h(wt∶t+h)∥

2
Σt − Ât;h(Mt;wt+h)∣

≤ C∞.

Summing up all the error terms, the total error is proportional to

CK∞ +Ctrunc +C∞

= Õ(κ4
∞β

6
⋆Ψ13

⋆ Γ6
⋆(1 − γ∞)

−2D2
q ⋅ log (DqT )) + Õ(D2

qβ⋆Ψ4
⋆Γ2

⋆(1 − γ∞)
−1 logT )

+ Õ(D2
q ⋅ β

4
⋆Ψ7

⋆Γ4
⋆κ

2
∞(1 − γ∞)

−1h log(DqT )).

Using the value for Dq from (6) and that h = Õ((1 − γ∞)−1 logT ), we upper bound the total error as

Õ(β11
⋆ Ψ19

⋆ Γ11
⋆ κ

8
0(1 − γ0)

−4 log2 T ).

F.2. Supporting lemmas

Lemma 3.2. For any h ∈ [T ] define a truncated version of q⋆t as follows:

q⋆t;t+h(wt∶t+h) =
(t+h)∧T−1

∑
i=t

Σ−1
t B

⊺
⎛

⎝

i

∏
j=t+1

A⊺
cl,j

⎞

⎠
Pi+1wi. (14)

Then for any t such that t + h < T − Õ(β⋆Ψ2
⋆Γ⋆), setting γ̄∞ = 1

2
(1 + γ∞) < 1, we have the bound

∥q⋆t∶t+h(wt∶t+h) − q
⋆
t (wt∶T )∥ ≤ κ

2
∞β

2
⋆Ψ⋆Γ2

⋆(T − h)γ̄h∞, which is geometrically decreasing in h.

Proof of Lemma 3.2. Let τ = t + h. Then we have

q⋆t∶τ(wt∶τ) − q
⋆
t∶T (wt∶T ) =

T−1

∑
i=τ+1

Σ−1
t B

⊺
⎛

⎝

i

∏
j=t+1

A⊺
cl,j

⎞

⎠
Pi+1wi,

Hence we can bound the error as

∥q⋆t∶τ(wt∶τ) − q
⋆
t∶T (wt∶T )∥ = β⋆Ψ⋆Γ⋆

T−1

∑
i=τ+1

XXXXXXXXXXX

i

∏
j=t+1

A⊺
cl,j

XXXXXXXXXXXop

.

We bound each term in the sum as
XXXXXXXXXXX

i

∏
j=t+1

A⊺
cl,j

XXXXXXXXXXXop

≤

XXXXXXXXXXX

τ+1

∏
j=t+1

A⊺
cl,j

XXXXXXXXXXXop

XXXXXXXXXXX

i

∏
j=τ+1

A⊺
cl,j

XXXXXXXXXXXop

.
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Applying Lemma D.5 to the first term and Lemma D.3 to the second, this is at most

≤ κ2
∞β⋆Γ⋆γ̄

τ−t
∞ .

The result follows by summing.

Lemma 3.3. Consider a policy π̂t(x;w) = −Ktxt − qt(w), and suppose that ∥qt∥ ≤ Dq, where Dq ≥ Dq⋆ . If we choose
h = 2(1 − γ∞)−1 log(κ2

∞β
2
⋆Ψ⋆Γ2

⋆T
2), we are guaranteed that

T

∑
t=1

∣A⋆
t (u

π̂
t ;xπ̂t ,w) − ∥qt(w) − q⋆t;t+h(wt∶t+h)∥

2
Σt

∣ ≤ Ctrunc,

where Ctrunc ≤ Õ(D2
qβ⋆Ψ4

⋆Γ2
⋆(1 − γ∞)−1 logT ).

Proof of Lemma 3.3. First recall that we have ∥Σt∥op ≤ ∥R∥op + ∥B∥
2
op∥P∞∥op ≤ 2Ψ2

⋆Γ⋆ =∶ DΣ. Let h be fixed, and let
Ttrunc ∶= Tstab − h, so that t + h ≤ Tstab for all t ≤ Ttrunc. We begin by writing off all of the timesteps after Ttrunc:

T

∑
t=1

∣A⋆
t (π̂t(x

π̂
t );x

π̂
t ,w) − ∥qt(w) − q⋆t;t+h(wt∶t+h)∥

2
Σt

∣

=
T

∑
t=1

∣∥qt(w) − q⋆t (wt∶T )∥
2
Σt − ∥qt(w) − q⋆t;t+h(wt∶t+h)∥

2
Σt

∣

≤
Ttrunc

∑
t=1

∣∥qt(w) − q⋆t (wt∶T )∥
2
Σt − ∥qt(w) − q⋆t;t+h(wt∶t+h)∥

2
Σt

∣ + 4D2
qDΣ(∆stab + h)

≤ 4DqDΣ

Ttrunc

∑
t=1

∥q⋆t (wt∶T ) − q
⋆
t;t+h(wt∶t+h)∥Σt

+ 4D2
qDΣ(∆stab + h).

Since t + h ≤ Tstab for all t in the last summation, Lemma 3.2 implies that

Ttrunc

∑
t=1

∥q⋆t (wt∶T ) − q
⋆
t;t+h(wt∶t+h)∥Σt

≤ κ2
∞β

2
⋆Ψ⋆Γ2

⋆T
2γ̄h∞ ≤ κ2

∞β
2
⋆Ψ⋆Γ2

⋆T
2 exp(−(1 − γ̄∞)h).

By choosing h = (1 − γ̄∞)−1 log(κ2
∞β

2
⋆Ψ⋆Γ2

⋆T
2), the total error from this term is O(1). Combining this with the previous

bound, we see that the total error is at most

O(DqDΣ +D2
qDΣ(∆stab + h)).

Lastly, we simplify by using that ∆stab = Õ(β⋆Ψ2
⋆Γ⋆) and expanding h and DΣ, so that the final error term is at most

Õ(D2
qβ⋆Ψ4

⋆Γ2
⋆(1 − γ∞)

−1 logT ).

Lemma 3.4. Let policies πt(x;w) = −K∞x − qt(w) and π̂t(x;w) = −Ktx − qt(w) be given, where qt is arbitrary but
satisfies ∥qt∥ ≤Dq for some Dq ≥ 1. Then

∣JT (π̂,w) − JT (π,w)∣ ≤ CK∞ ,

where CK∞ ≤ Õ(κ4
∞β

6
⋆Ψ13

⋆ Γ6
⋆(1 − γ∞)−2D2

q ⋅ log (DqT )).

Proof of Lemma 3.4. To begin, suppose that that the states under both controllers satisfy ∥x∥ ≤Dx and the actions satisfy
∥u∥ ≤Du, where Dx,Du ≥ 1. Then, we immediately have

∣JT (π̂,w) − JT (π,w)∣ ≤ 2Ψ⋆

T

∑
t=1

Dx∥x
π̂
t (w) − xπt (w)∥ +Du∥u

π̂
t (w) − uπt (w)∥,
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which follows becase the function x ↦ ∥x∥
2 is 2C-Lipschitz whenever ∥x∥ ≤ C. We will first bound the state and action

errors on the right hand side, then give appropriate bounds on Dx and Du at the end of the proof.

Let ∆0 be fixed, and let T0 = T −∆0. Then we can bound the error further as

∣JT (π̂;w) − JT (π;w)∣

≤ 2Ψ⋆

T

∑
t=1

Dx∥x
π̂
t (w) − xπt (w)∥ +Du∥u

π̂
t (w) − uπt (w)∥

≤ 4Ψ⋆(D
2
x +D

2
u)∆0 + 2Ψ⋆

T0

∑
t=1

Dx∥x
π̂
t (w) − xπt (w)∥ +Du∥u

π̂
t (w) − uπt (w)∥,

For the control error term, we further have

T0

∑
t=1

∥uπ̂t (w) − uπt (w)∥ =
T0

∑
t=1

∥Ktx
π̂
t (w) −K∞x

π
t (w)∥

≤
T0

∑
t=1

∥K∞∥∥xπ̂t (w) − xπt (w)∥ +Dx

T0

∑
t=1

∥Kt −K∞∥op

≤
T0

∑
t=1

β⋆Ψ2
⋆Γ⋆∥x

π̂
t (w) − xπt (w)∥ +Dx

T0

∑
t=1

∥Kt −K∞∥op.

In total, this gives us

∣JT (π̂;w) − JT (π;w)∣

≤ 4Ψ⋆(D
2
x +D

2
u)∆0 + 2Ψ⋆

T0

∑
t=1

(Dx +Duβ⋆Ψ2
⋆Γ⋆)∥x

π̂
t (w) − xπt (w)∥ +DxDu∥Kt −K∞∥op.

To bound the state error, we recall that from Lemma D.7, we have

xπ̂t+1(wt) − x
π
t+1(wt) =

t

∑
i=1

(Acl,i→t −A
t−i
cl,∞)(wi −Bqi(wi−1)),

and so

∥xπ̂t+1(wt) − x
π
t+1(wt)∥ ≤ 2Ψ⋆Dq

t

∑
i=1

∥Acl,i→t −A
t−i
cl,∞∥

op
.

To bound the error, we recall Lemma D.8, restated here.
Lemma D.8. Let α ≥ 1 be given. Define ∆ = C ⋅ β⋆Ψ2

⋆Γ⋆ log(κ2
∞Ψ⋆Γ⋆(1 − γ∞)−1 ⋅ αT 3), where C > 0 is a numerical

constant. If C is sufficiently large, then for every t ≤ T −∆ ≤ Tstab we are guaranteed that

∥Kt −K∞∥op ≤
1

κ2
∞Ψ⋆ ⋅ (αT 3)

, and ∥Acl,i→t −A
t−i
cl,∞∥

op
≤

1

αT 2
∀t ≤ T −∆. (30)

We set α = 4DxDuβ⋆Ψ4
⋆Γ⋆Dq , which ensures that

∣JT (π̂;w) − JT (π;w)∣ ≤ 4Ψ⋆(D
2
x +D

2
u)∆0 +C

′,

where C ′ is an absolute numerical constant. To conclude, we recall from Lemma D.9 that it suffices to take
Dx ≤ Õ(κ2

∞β
3/2
⋆ Ψ3

⋆Γ
3/2
⋆ (1 − γ∞)−1 ⋅Dq) and Du ≤ Õ(κ2

∞β
5/2
⋆ Ψ5

⋆Γ
5/2
⋆ (1 − γ∞)−1 ⋅Dq).

Lemma 3.5. Let (qt)Tt=1 be an arbitrary sequence with ∥qt∥ ≤Dq for some Dq ≥Dq⋆ . Then it holds that

∣
T

∑
t=1

∥qt − q
⋆
t;t+h(wt∶t+h)∥

2
Σt − ∥qt − q

⋆
∞;h(wt∶t+h)∥

2
Σ∞ ∣ ≤ C∞,

where C∞ ≤ Õ(D2
q ⋅ β

4
⋆Ψ7

⋆Γ4
⋆κ

2
∞(1 − γ∞)−1h log(DqT )).
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Proof of Lemma 3.5. Before diving into the proof, we recall that, since Pt ⪯ P∞, we have

∥Σt∥op ≤ ∥Σ∞∥op = ∥Rx +B
⊺P∞B∥

op
≤ 2Ψ2

⋆Γ⋆ =∶DΣ.

We also recall that Dq ≥Dq⋆ . Now let ∆0 ∈ N be a fixed constant to be chosen later, and let T0 = T −∆0. We immediately
upper bound the error as

∣
T

∑
t=1

∥qt − q
⋆
t;t+h(wt∶t+h)∥

2
Σt − ∥qt − q

⋆
∞;h(wt∶t+h)∥

2
Σ∞ ∣

≤ ∣
T0

∑
t=1

∥qt − q
⋆
t;t+h(wt∶t+h)∥

2
Σt − ∥qt − q

⋆
∞;h(wt∶t+h)∥

2
Σ∞ ∣ + 4DΣDq

2∆0.

Now, let t ≤ T0 be fixed. We upper bound the error for each time as

∣∥qt − q
⋆
t;t+h(wt∶t+h)∥

2

Σt
− ∥qt − q

⋆
∞;h(wt∶t+h)∥

2

Σ∞
∣

≤ ∣∥qt − q
⋆
t;t+h(wt∶t+h)∥

2

Σt
− ∥qt − q

⋆
t;t+h(wt∶t+h)∥

2

Σ∞
∣

+ ∣∥qt − q
⋆
t;t+h(wt∶t+h)∥

2

Σ∞
− ∥qt − q

⋆
∞;h(wt∶t+h)∥

2

Σ∞
∣

≤Dq
2
∥Σt −Σ∞∥op

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E1

+4DqDΣ ∥q⋆t;t+h(wt∶t+h) − q
⋆
∞;h(wt∶t+h)∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E2

.

Bounding E1. Expanding the definition of Σt and Σ∞, we immediately see that ∥Σt −Σ∞∥op ≤ Ψ2
⋆∥Pt+1 − P∞∥op. Using

Lemma D.11, we have

∥Pt+1 − P∞∥
2
op ≤ β⋆Γ⋆(1 + ν

−1
⋆ )

−(T−t),

where ν⋆ = 2β⋆Ψ2
⋆Γ⋆. Hence, summing across all rounds, we have

T

∑
t=1

∥Pt − P∞∥op ≤
T

∑
t=1

β
1/2
⋆ Γ

1/2
⋆ (1 + ν−1

⋆ )
−(T−t)/2.

Since ν−1
⋆ ≤ 1 and 1 + x ≥ ex/2 for x ∈ [0,1], we can upper bound by

≤ β
1/2
⋆ Γ

1/2
⋆

T

∑
t=1

e−ν
−1
⋆ (T−t)/4

≤ O(β
1/2
⋆ Γ

1/2
⋆ ν⋆)

= O(β
3/2
⋆ Ψ2

⋆Γ
3/2
⋆ ), (47)

and ∑Tt=1∥Σt −Σ∞∥op ≤ O(β
3/2
⋆ Ψ4

⋆Γ
3/2
⋆ ).

Bounding E2. Let t ≤ T0 ≤ T − h be fixed, then we have

∥q⋆t;t+h(wt∶t+h) − q
⋆
∞;h(wt∶t+h)∥

=

XXXXXXXXXXX

t+h

∑
i=t

Σ−1
t B

⊺
⎛

⎝

i

∏
j=t+1

A⊺
cl,j

⎞

⎠
Pi+1wi −

t+h

∑
i=t

Σ−1
∞B

⊺
(A⊺

cl,∞)
i−tP∞wi

XXXXXXXXXXX

= ∥
t+h

∑
i=t

Σ−1
t B

⊺A⊺
cl,t→iPi+1wi −

t+h

∑
i=t

Σ−1
∞B

⊺
(A⊺

cl,∞)
i−tP∞wi∥

≤
t+h

∑
i=t

∥Σ−1
t B

⊺A⊺
cl,t→iPi+1 −Σ−1

∞B
⊺
(A⊺

cl,∞)
i−tP∞∥

op
.
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Note that for each timestep we have

∥Σ−1
t B

⊺A⊺
cl,t→iPi+1 −Σ−1

∞B
⊺
(A⊺

cl,∞)
i−tP∞∥

op

≤ ∥(Σ−1
t −Σ−1

∞ )B⊺A⊺
cl,t→iPi+1∥op

+ ∥Σ−1
∞B

⊺
(A⊺

cl,t→i − (A⊺
cl,∞)

i−t
)Pi+1∥op

+ ∥Σ−1
∞B

⊺
(A⊺

cl,∞)
i−t

(Pi+1 − P∞)∥
op
.

If we select T0 ≤ Tstab − h, then we are guaranteed by Lemma D.5 that ∥Acl,t→i∥op ≤ β
1/2
⋆ Γ

1/2
⋆ κ2

∞γ̄
i−t
∞ , and we also know

that ∥Ai−tcl,∞∥
op

≤ κ∞γ
i−t
∞ . Hence, we can upper bound the errors above by

β
1/2
⋆ Ψ⋆Γ

3/2
⋆ κ2

∞γ̄
i−t
∞ ∥Σ−1

t −Σ−1
∞ ∥

op
+ β⋆Ψ⋆Γ⋆∥A

⊺
cl,t→i − (A⊺

cl,∞)
i−t∥

op

+ β⋆Ψ⋆κ∞γ
i−t
∞ ∥Pi+1 − P∞∥op.

Furthermore, recall that Σt = Rx +B
⊺Pt+1B ⪰ Rx and Σ∞ = Rx +B

⊺P∞B ⪰ Rx, and so we have

∥Σ−1
t −Σ−1

∞ ∥
op

≤ β2
⋆Ψ2

⋆∥Pt+1 − P∞∥op.

Putting everything together this gives

T0

∑
t=1

∥q⋆t;t+h(wt∶t+h) − q
⋆
∞;h(wt∶t+h)∥

≤ 2β
5/2
⋆ Ψ3

⋆Γ
3/2
⋆ κ2

∞(1 − γ∞)
−1

(h + 1)
T0

∑
t=1

∥Pt+1 − P∞∥op + β⋆Ψ⋆Γ⋆
T0

∑
t=1

t+h

∑
i=t

∥A⊺
cl,t→i − (A⊺

cl,∞)
i−t∥

op

+ β⋆Ψ⋆κ∞
T0

∑
t=1

t+h

∑
i=t

γi−t∞ ∥Pi+1 − P∞∥op

≤ 4β
5/2
⋆ Ψ3

⋆Γ
3/2
⋆ κ2

∞(1 − γ∞)
−1

(h + 1)
T0

∑
t=1

∥Pt+1 − P∞∥op + β⋆Ψ⋆Γ⋆
T0

∑
t=1

t+h

∑
i=t

∥A⊺
cl,t→i − (A⊺

cl,∞)
i−t∥

op
.

Recalling (47), we can further upper bound the first erm:

≤ O(β4
⋆Ψ5

⋆Γ3
⋆κ

2
∞(1 − γ∞)

−1h) + β⋆Ψ⋆Γ⋆
T0

∑
t=1

t+h

∑
i=t

∥A⊺
cl,t→i − (A⊺

cl,∞)
i−t∥

op
.

To bound the last term, we recall Lemma D.8.

Lemma D.8. Let α ≥ 1 be given. Define ∆ = C ⋅ β⋆Ψ2
⋆Γ⋆ log(κ2

∞Ψ⋆Γ⋆(1 − γ∞)−1 ⋅ αT 3), where C > 0 is a numerical
constant. If C is sufficiently large, then for every t ≤ T −∆ ≤ Tstab we are guaranteed that

∥Kt −K∞∥op ≤
1

κ2
∞Ψ⋆ ⋅ (αT 3)

, and ∥Acl,i→t −A
t−i
cl,∞∥

op
≤

1

αT 2
∀t ≤ T −∆. (30)

We choose α = β⋆Ψ⋆Γ⋆DqDΣ, and set ∆0 = C ⋅ β⋆Ψ2
⋆Γ⋆ log(κ2

∞Ψ⋆Γ⋆(1 − γ∞)−1 ⋅ αT 3) ∨∆stab + h, so we are ensured
that

β⋆Ψ⋆Γ⋆
T0

∑
t=1

t+h

∑
i=t

∥A⊺
cl,t→i − (A⊺

cl,∞)
i−t∥

op
≤ C ⋅

1

DqDΣ
.

Putting everything together leads to a final bound of

O(Dq
2β

3/2
⋆ Ψ4

⋆Γ
3/2
⋆ ) +O(DqDΣβ

4
⋆Ψ5

⋆Γ3
⋆κ

2
∞(1 − γ∞)

−1h) +O(DΣDq
2∆0)

= Õ(Dq
2β

3/2
⋆ Ψ4

⋆Γ
3/2
⋆ +Dqβ

4
⋆Ψ7

⋆Γ4
⋆κ

2
∞(1 − γ∞)

−1h +Dq
2
⋅ β⋆Ψ4

⋆Γ2
⋆ log(DqT )).


