
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

First, we provide an extended discussion of related work. Next, we provide a glossary of terms and notation that we use
throughout this paper for easy summary. Next, we discuss additional algorithmic details, and we give the proofs of our main
results (each theorem). Finally, we give additional experimental details.

A. Extended Related Work
The notion of the “triplet” of (conditionally) independent variables as the source of minimal signal in latent variable models
was observed and exploited in two innovative works, both using moments to deal with the challenge of the latent variable.
These are

• Joglekar et al. (2013), in the explicit context of crowdsourcing, and

• Chaganty & Liang (2014), for estimating the parameters of certain latent variable graphical models.

The “3-Differences Scheme” described in 3.1 of Joglekar et al. (2013) is equivalent to our approach in Algorithm 1 in the
basic case where there are no abstains and the signs of the accuracies are non-negative. Joglekar et al. (2013) focuses on
crowdsourcing, and thus offers two contributions for this setting: (i) computing confidence intervals for worker accuracies
and (ii) a set of techniques for extending the three-voters case by collapsing multiple voters into a pair ‘super-voters’ in order
to build a better triplet for a particular worker. Both of these are useful directions for extensions of our work. In contrast, our
approach focuses on efficiently handling the non-binary abstains case critical for weak supervision and develops theoretical
characterizations for the downstream model behavior when using our generated labels.

A more general approach to learning latent variable graphical models is described in Chaganty & Liang (2014). Here there is
an explicit description of the “three-views” approach. It is shown how to estimate the canonical parameters of a remarkably
wide class of graphical models (e.g., both directed and undirected) by applying the tensor decomposition idea (developed in
Anandkumar et al. (2014)) to recover conditional parameters. By comparison, our work is more specialized, looking at
undirected (in fact, specifically Ising) models in the context of weak supervision. The benefits of this specialization are that
we can replace the use of the tensor power iteration technique with a non-iterative closed-form solution, even for non-binary
variables. Nevertheless, the techniques in Chaganty & Liang (2014) can be useful for weak supervision as well, and their
pseudolikelihood approach to recover canonical parameters suggests that forward methods of inference could be used in
our label model. We also note that closed-form triplet methods can be used to estimate part of the parameters of a more
complex exponential family model (where some variables are involved in pairwise interactions at most, others in more
complex patterns), so that resorting to tensor power iterations can be minimized.

A further work that builds on the approach of Chaganty & Liang (2014) is Raghunathan et al. (2016), where moments are
used in combination with a linear technique. However, the setting here is different from weak supervision. The authors
of Raghunathan et al. (2016) study indirect supervision. Here, for any unlabeled data point x, the label y is not seen, but
a variable o is observed. So far this framework resembles weak supervision, but in the indirect setting, the supervision
distribution S(o|y) is known—while for weak supervision, it is not. Instead, in Chaganty & Liang (2014), the S distribution
is given for two particular applications: local privacy and a light-weight annotation scheme for POS tagging.

B. Glossary
The glossary is given in Table 1 below.

C. Further Algorithmic Details
In this section, we present more details on the main algorithm, extensions to more complex models, and the online variant.

C.1. Core Algorithm

We first present the general binary Ising model and the proof of Proposition 1 that follows from this construction. We also
prove another independence property over this general class of Ising models that can be used to factorize expectations over
arbitrarily large cliques. Next, we detail the exact setup of the graphical model when sources can abstain, as well as the
special case when they never abstain, and define the mappings necessary to convert between values over v, G and λ, Gdep.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Symbol Used for

X Unlabeled data vector,X = [X1, X2, . . . , XD] ∈ X
Xi ith unlabeled data vector
Xi ith data element
D Length of the unlabeled data vector
Y Latent, ground-truth label vector, Y = [Y1, Y2, . . . , YD] ∈ Y , also referred to as hidden variables
Y i ith ground-truth label vector
Yi Ground-truth label for ith task, Yi ∈ {−1,+1}
D Distribution from which we assume (X,Y) data points are sampled i.i.d.
Si ith weak supervision source
m Number of weak supervision sources
λi Label of Si forX where λi ∈ {−1, 0, 1}; all m labels perX collectively denoted λ
n Number of data vectors
Ỹ Probabilistic training labels for a label vector
fw Discrimative classifier used as end model, parametrized by w
Gdep Source dependency graph
G Augmented graph G = (V,E) used for binary Ising model, where V = {Y ,v}
v Observed variables of the graphical model corresponding to λ
L Label matrix containing n samples of source labels λ1, . . . , λm

L Augmented label matrix computed from L
Y dep(i) Task that λi labels
Y (i) Hidden variable that the observed variable vi acts on
Cdep Cliqueset (maximal and non-maximal) of Gdep

C̃dep,Sdep The maximal cliques and separator sets of the junction tree over Gdep

µ The label model parameters collectively over all µC , µS , the marginal distributions of C ∈ C̃dep, S ∈ Sdep
P (Ȳ) Class prior for the Y label vector
ai E [viY (i)], the unobservable mean parameters of binary Ising model G
ΩG Set of vertices in V to which the triplet method can be applied
C Cliqueset (maximal and non-maximal) of G
aC The expectation over the product of observed variables in clique C ∈ C and Y (C)
aCdep The expectation over the product of sources in clique Cdep ∈ Cdep and Y dep(Cdep)

Table 1. Glossary of variables and symbols used in this paper.

We then formalize the linear transformation from aCdep to µCdep , and finally we explain the RESOLVESIGNS function used
in Algorithm 1.

First, we give the explicit form of the density for the Ising model we use. Given the graph G = (V,E), we can write the
corresponding joint distribution of Y ,v as

fG(Y ,v) =
1

Z
exp

(D∑
k=1

θYkYk +
∑

(Yk,Yl)∈E

θYk,YlYkYl +
∑
vi∈v

θiviY (i) +
∑

(vk,vl)∈E

θk,lvkvl

)
, (1)

where Z is the partition function, and the θ terms collectively are the canonical parameters of the model. Note that this is the
most general definition of the binary Ising model with multiple dependent hidden variables and observed variables that we
use.

C.1.1. PROOF OF PROPOSITION 1

We present the proof of Proposition 1, which is the underlying independence property of (1) that enables us to use the triplet
method. We aim to show that for any a, b ∈ {−1,+1}2,

P
(
viY (i) = a, vjY (i) = b

)
= P (viY (i) = a) · P (vjY (i) = b), (2)

where vi ⊥⊥ vj |Y (i). For now, assume that Y (j) 6= Y (i).

Because vi and vj are conditionally independent given Y (i), we have that P (vi = a, vj = b|Y (i) = 1) = P (vi = a|Y (i) =

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

1) · P (vj = b|Y (i) = 1), and similarly for vi = −a, vj = −b conditional on Y (i) = −1. Then

P (vi = a, vj = b, Y (i) = 1) · P (Y = 1) = P (vi = a, Y (i) = 1) · P (vj = b, Y (i) = 1)

P (vi = −a, vj = −b, Y (i) = −1) · P (Y = −1) = P (vi = −a, Y (i) = −1) · P (vj = −b, Y (i) = −1). (3)

Note that terms in (2) can be split depending on if Y (i) is 1 or −1, so proving independence of viY (i) and vjY (i) is
equivalent to

P (vi = a, vj = b, Y (i) = 1) + P (vi = −a, vj = −b, Y (i) = −1)

= (P (vi = a, Y (i) = 1) + P (vi = −a, Y (i) = −1)) · (P (vj = b, Y (i) = 1) + P (vj = −b, Y (i) = −1)) .

We substitute (3) into the right hand side. After rearranging, our equation to prove is

P (vi = a, vj = b, Y (i) = 1) · P (Y (i) = −1) + P (vi = −a, vj = −b, Y (i) = −1) · P (Y (i) = 1)

= P (vi = −a, Y (i) = −1) · P (vj = b, Y (i) = 1) + P (vi = a, Y (i) = 1) · P (vj = −b, Y (i) = −1).

Due to symmetry of the terms above, it is thus sufficient to prove

P (vi = a, vj = b, Y (i) = 1) · P (Y (i) = −1) = P (vi = −a, Y (i) = −1) · P (vj = b, Y (i) = 1). (4)

Let N(vi) be the set of vi’s neighbors in v, and N(Yi) be the set of Yi’s neighbors in Y . Let S be the event space for
the hidden and observed variables, such that each element of the set S is a sequence of +1s and −1s of length equal to
|V |. Denote S(vi, vj , Y (i)) to be the event space for V besides vi, vj , and Y (i); we also have similar definitions used for
S(Y (i)),S(vi, Y (i)), S(vj , Y (i)).

Our approach is to write each probability in (4) as a summation of joint probabilities over S(vi, Y (i)),S(vj , Y (i)), and
S(vi, vj , Y (i)) using (1). To do this more efficiently, we can factor each joint probability defined according to (1) into a
product over isolated variables and a product over non-isolated variables. Recall that our marginal variables are vi, vj and
Y (i). Define the set of non-isolated variables to be the marginal variables, plus all variables that interact directly with the
marginal variables according to the potentials in the binary Ising model. Per this definition, the non-isolated variables are
VNI = {vi, vj , Y (i), Y (j), N(Y (i)), N(vi), N(vj), vY (i)} where vY (i) = {v : Y (v) = Y (i)} and the isolated variables
are all other variables not in this set, VI = V \VNI . We can thus factorize each probability into a term ψ(·) corresponding
to factors of the binary Ising model that only have isolated variables and a term ζ(·) coresponding to factors that have
non-isolated variables.

P (vi = a, vj = b, Y (i) = 1) =
1

Z

∑
s(a,b)∈S(vi,vj ,Y (i))

ψ(s(a,b)) · ζ(vi = a, vj = b, Y (i) = 1, s(a,b))

P (Y (i) = −1) =
1

Z

∑
s(Y)∈S(Y (i))

ψ(s(Y)) · ζ(Y (i) = −1, s(Y))

P (vi = −a, Y (i) = −1) =
1

Z

∑
s(a)∈S(vi,Y (i))

ψ(s(a)) · ζ(vi = −a, Y (i) = −1, s(a))

P (vj = b, Y (i) = 1) =
1

Z

∑
s(b)∈S(vj ,Y (i))

ψ(s(b)) · ζ(vj = b, Y (i) = 1, s(b))

To be precise, ψ(·) is

ψ(s(a,b)) = exp
(∑

Yk /∈N(Y (i))
∪Y (i)∪Y (j)

θYkY
(a,b)
k +

∑
Yk,Yl /∈

N(Y (i))∪Y (i)∪Y (j)

θYk,YlY
(a,b)
k Y

(a,b)
l +

∑
Y (k)/∈N(Y (i))∪Y (i)∪Y (j),

k/∈N(vj)∪vj

θkv
(a,b)
k Y (k)(a,b) +

∑
vk,vl /∈N(vi)∪vi
∪N(vj)∪vj

θl,kv
(a,b)
k v

(a,b)
l

)
,

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

where s(a,b) = {Y (a,b)
1 , . . . , Y

(a,b)
D , v

(a,b)
1 , . . . }, and similar definitions hold for s(a), s(b), and s(Y). Then, (4) is equivalent

to showing ∑
s(a,b),s(Y)

ψ(s(a,b)) · ψ(s(Y)) · ζ(vi = a, vj = b, Y (i) = 1, s(a,b)) · ζ(Y (i) = −1, s(Y))

=
∑

s(a),s(b)

ψ(s(a)) · ψ(s(b)) · ζ(vi = −a, Y (i) = −1, s(a)) · ζ(vj = b, Y (i) = 1, s(b)).

We can show this by finding values of s(a) and s(b) that correspond to each s(a,b) and s(Y). Note that the ψ terms will cancel
each other out if we directly set s(a)[VI] = s(Y)[VI] and s(b)[VI] = s(a,b)[VI]. Therefore, we want to set s(a)[VNI] and
s(b)[VNI] such that the products of ζs are equivalent. We write them out explicitly first:

ζ(vi = a, vj = b, Y (i) = 1, s(a,b)) = exp
(
θY (i) +

∑
Yk∈N(Y (i))∪Y (j)

θYkY
(a,b)
k +

∑
Yk∈N(Y (i))

θYk,Y (i)Y
(a,b)
k +

∑
Yk∈N(Y (i))∪Y (j),

Yl /∈N(Y (i))∪Y (i)∪Y (j)

θYk,YlY
(a,b)
k Y

(a,b)
l

+ θia+ θjbY (j)(a,b) +
∑
k 6=i,j,

Y (k)=Y (i)

θkv
(a,b)
k +

∑
k 6=i,j,

Y (k)∈N(Y (i))∪Y (j)
|k∈N(vj)

θkv
(a,b)
k Y (k)(a,b) +

∑
vk∈N(vi)

θi,kav
(a,b)
k

+
∑

vk∈N(vj)

θj,kbv
(a,b)
k

)

ζ(Y (i) = −1, s(Y)) = exp
(
− θY (i) +

∑
Yk∈N(Y (i))∪Y (j)

θYkY
(Y)
k −

∑
Yk∈N(Y (i))

θYk,Y (i)Y
(Y)
k +

∑
Yk∈N(Y (i))∪Y (j),

Yl /∈N(Y (i))∪Y (i)∪Y (j)

θYk,YlY
(Y)
k Y

(Y)
l

− θiv(Y)
i + θjv

(Y)
j Y (j)(Y) −

∑
k 6=i,j,

Y (k)=Y (i)

θkv
(Y)
k +

∑
k 6=i,j,

Y (k)∈N(Y (i))∪Y (j)
|k∈N(vj)

θkv
(Y)
k Y (k)(Y) +

∑
vk∈N(vi),
vl 6=vi

θk,lv
(Y)
k v

(Y)
l

+
∑

vk∈N(vj),
vl 6=vj

θk,lv
(Y)
k v

(Y)
l

)

ζ(vi = −a, Y (i) = −1, s(a)) = exp
(
− θY (i) +

∑
Yk∈N(Y (i))∪Y (j)

θYkY
(a)
k −

∑
Yk∈N(Y (i))

θYk,Y (i)Y
(a)
k +

∑
Yk∈N(Y (i))∪Y (j),

Yl /∈N(Y (i))∪Y (i)∪Y (j)

θYk,YlY
(a)
k Y

(a)
l

+ θia+ θjv
(a)
j Y (j)(a) −

∑
k 6=i,j,

Y (k)=Y (i)

θkv
(a)
k +

∑
k 6=i,j,

Y (k)∈N(Y (i))∪Y (j)
|k∈N(vj)

θv
(a)
k Y (k)(a) +

∑
vk∈N(vj),
vl 6=vj

θk,lv
(a)
k v

(a)
l

−
∑

vk∈N(vi)

θi,kav
(a)
k

)

ζ(vj = b, Y (i) = 1, s(b)) = exp
(
θY (i) +

∑
Yk∈N(Y (i))∪Y (j)

θYkY
(b)
k +

∑
Yk∈N(Y (i))

θYk,Y (i)Y
(b)
k +

∑
Yk∈N(Y (i))∪Y (j),

Yl /∈N(Y (i))∪Y (i)∪Y (j)

θYk,YlY
(b)
k Y

(b)
l

+ θiv
(b)
i + θjbY (j)(b) +

∑
k 6=i,j,

Y (k)=Y (i)

θkv
(b)
k +

∑
k 6=i,j,

Y (k)∈N(Y (i))∪Y (j)
|k∈N(vj)

θkv
(b)
k Y (k)(b) +

∑
vk∈N(vi),
vl 6=vi

θk,lv
(b)
k v

(b)
l

+
∑

vk∈N(vj)

θj,kbv
(b)
k

)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

We present a simple mapping from s(a,b) and s(Y) to s(a) and s(b) such that ζ(vi = a, vj = b, Y (i) = 1, s(a,b)) · ζ(Y (i) =
−1, s(Y)) = ζ(vi = −a, Y (i) = −1, s(a)) · ζ(vj = b, Y (i) = 1, s(b)) holds:

s(a) s(b)

vi − −v(Y)
i

vj v
(Y)
j −

Yk ∈ N(Y (i)) ∪ Y (j) Y
(Y)
k Y

(a,b)
k

vk ∈ N(vi) −v(a,b)
k −v(Y)

k

vk ∈ N(vj) v
(Y)
k v

(a,b)
k

vY (i) −v(a,b)
k −v(Y)

k

With this construction of s(a) and s(b), we have shown that viY (i) and vjY (i) are independent. (In the case that Y (j) = Y (i),
the proof is almost exactly the same).

C.1.2. HANDLING LARGER CLIQUES

We discuss how arbitrarily large cliques can be factorized into mean parameters and observable statistics to compute values
of aC in Algorithm 2. This is due to the following general independence property that arises from construction of the Ising
model in (1):

Proposition 1. For a clique C of vk’s all connected to a single Y (C), we have that
∏
k∈C vk ⊥⊥ Y (C) if |C| is even, and∏

k∈C vkY (C) ⊥⊥ Y (C) if |C| is odd.

Therefore, if |C| is even, then aC = E
[∏

k∈C vk
]
· E [Y (C)]. If |C| is odd, then aC = E

[∏
k∈C vk

]
/E [Y (C)].

Proof. We assume that there is only one hidden variable Y , although generalizing to the case whereD > 1 is straightforward
because our proposed independence property only acts on the hidden variable associated with a clique of observed variables.

We first prove the case where |C| is even. We aim to show that for any a, b ∈ {−1,+1}2,

P
(∏
k∈C

vk = a, Y = b
)

= P
(∏
k∈C

vk = a
)
P (Y = b).

Using the concept of isolated variables and non-isolated variables earlier, the set of all observed variables VI besides those in
C and their neighbors can be ignored. Furthermore, suppose that S(C,a) is the set of all k ∈ C such that

∏
k∈C vk = a. For

example, if C = {i, j} and a = −1, S(C,−1) = {(vi, vj) = (1,−1), (−1, 1)}. We write out each of the above probabilities
as well as the partition function Z:

P
(∏
i∈C

vi = a, Y = b
)

=
1

Z

∑
s(a,b)∈S(C,Y)

ψ
(
s(a,b)

) ∑
s(C1,a)∈S(C)

exp
(
θY b+

∑
i∈C

θibs
(C1)
vi +

∑
i/∈C

θibv
(a,b)
i

+
∑

(i,j)∈C

θi,js
(C1)
vi s(C1)

vj +
∑
i∈C

∑
j∈N(vi)\vC

θi,js
(C1)
vi v

(a,b)
j

)

P
(∏
i∈C

vi = a
)

=
1

Z

∑
s(a)∈S(C)

ψ
(
s(a)
) ∑
s(C2,a)∈S(C)

exp
(
θY Y

(a) +
∑
i∈C

θis
(C1)
vi Y (a) +

∑
i/∈C

θiv
(a)
i Y (a)

+
∑

(i,j)∈C

θi,js
(C2)
vi s(C2)

vj +
∑
i∈C

∑
j∈N(vi)\vC

θi,js
(C1)
vi v

(a)
j

)

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

P (Y = b) =
∑

s(b)∈S(Y)

ψ
(
s(b)
)

exp
(
θY b+

∑
i∈C

θibv
(b)
i +

∑
i/∈C

θiv
(b)
i Y (b)

+
∑

(i,j)∈C

θi,jv
(b)
i v

(b)
j +

∑
i∈C

∑
j∈N(vi)\vC

θi,jv
(b)
i v

(b)
j

)
Z =

∑
s(z)∈S

ψ
(
s(z)
)

exp
(
θY Y

(z) +
∑
i∈C

θiv
(z)
i Y (z) +

∑
i/∈C

θiv
(z)
i Y (z) +

∑
(i,j)∈C

θi,jv
(z)
i v

(z)
j

+
∑
i∈C

∑
j∈N(vi)\vC

θi,jv
(z)
i v

(z)
j

)

We want to show that we can map from each s(a,b), s(z) and s(C1) to a respective s(a), s(b), and s(C2). The ψ(·) terms can
be ignored since we can just directly set s(a)[VI] = s(a,b)[VI] and s(b)[VI] = s(z)[VI]. Using the above expressions for
probabilities and the cumulant function, our desired statement to prove for each s(a,b), s(z) and s(C1) is

exp
(
θY (b+ Y (z)) +

∑
i∈C

θi
(
bs(C1)
vi + v

(z)
i Y (z)

)
+
∑
i/∈C

θi
(
bv

(a,b)
i + v

(z)
i Y (z)

)
+

∑
(i,j)∈C

θi,j
(
s(C1)
vi s(C1)

vj + v
(z)
i v

(z)
j

)
+
∑
i∈C

∑
j∈N(vi)\vC

θi,j
(
s(C1)
vi v

(a,b)
k + v

(z)
i v

(z)
k

))
= exp

(
θY
(
b+ Y (a)

)
+
∑
i∈C

θi
(
s(C2)
vi Y (a) + bv

(b)
i

)
+
∑
i/∈C

θi
(
v

(a)
i Y (a) + bv

(b)
i

)
+

∑
(i,j)∈C

θi,j
(
s(C2)
vi s(C2)

vj + v
(b)
i v

(b)
j

)
+
∑
i∈C

∑
j∈N(vi)\vC

θi,j
(
s(C2)
vi v

(a)
j + v

(b)
i v

(b)
j

))
(5)

We can ensure that the above expression is satisfied with the following relationship between s(a,b), s(z), s(C1) and
s(a), s(b), s(C2). If Y (z) = b, then we set Y (a) = b, s(C2)

vi = s
(C1)
vi for i ∈ C, and v(b)

i = v
(z)
i , v

(a)
i = v

(a,b)
i for all

vi. If Y (z) = −b, then we set Y (a) = −b, s(C2)
vi = −s(C1)

vi for i ∈ C, and v(b)
i = −v(z)

i , v
(a)
i = −v(a,b)

i for all vi. However,
note that setting either all s(C2)

vi to be s(C1)
vi or −s(C1)

vi means that both s(C1) and −s(C1) are in S(C). This is only true when
|C| is even because

∏
i∈C(−vi) = (−1)|C|

∏
i∈C vi = (−1)|C|a.

Our proof approach is similar when |C| is odd. We aim to show that for any a, b ∈ {−1,+1}2,

P
(∏
k∈C

vkY = a, Y = b
)

= P
(∏
k∈C

vkY = a
)
P (Y = b).

P (
∏
k∈C vkY = a, Y = b) can be written as P (

∏
k∈C vk = a

b , Y = b), which follows the same format of the probability
we used for the case where |C| is even. We will end up with a desired equation to prove that is identical to (5), except that
we must modify s(C1) and s(C2). s(C1) is now from the set S(C,a/b), and s(C2) is from the set S(C,a/b) when Y (a) = b
and from the set s(C,−a/b) when Y (a) = −b. We can set s(a), s(b), and s(C2) the exact same way as before; in particular,
s

(C2)
vi = s

(C1)
vi when Y (a) = b and s(C2)

vi = −s(C1)
vi when Y (a) = −b. Both s(C1)

vi , Y (a) = b and −s(C1)
vi , Y (a) = −b satisfy∏

i∈C viY = a, since
∏
i∈C(−vi)(−Y) = (−1)|C|+1

∏
i∈C viY = a when |C| is odd.

C.1.3. AUGMENTING THE DEPENDENCY GRAPH

We define the graphical model particular to how Gdep is augmented, which gives way to a concise mapping between each
aC and aCdep .

In the case where no sources can abstain at all, λi takes on values {±1} and thus the augmentation is not necessary. We
have that G = Gdep, v = λ, and the graphical model’s joint distribution (1) reduces to

fG(Y,λ) =
1

Z
exp

(D∑
k=1

θYkYk +
∑

(Yk,Yl)∈E

θYk,YlYkYl +

m∑
i=1

θiλiY (i) +
∑

(λi,λj)∈E

θi,jλiλj

)
. (6)

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Y

λ2λ1 λ3 λ4

Y

v5 v6 v7 v8v4v3v2v1

=⇒

Figure 1. Example of mapping from Gdep to G. Left: Gdep, where boxes indicate valid triplet groupings of sources. Right: G, where
boxes indicate the triplets of observed variables that are sufficient to recover all mean parameters.

All of Algorithm 2 will be done on {Y ,λ}. While the triplet method is still used for recovering mean parameters, the
mapping from aC to aCdep is trivial, and the linear transformation back to µCdep will have terms containing λi = 0 reduced
to 0.

In the case where sources abstain, we have discussed how to generate v from λ and G from Gdep, of which an example is
shown in Figure 1. Most importantly, we suppose that when λi = 0, we set (v2i−1, v2i) to either (1, 1) or (−1,−1) with
equal probability such that

P
(
(v2i−1, v2i) = (1, 1), V \{v2i−1, v2i}

)
= P

(
(v2i−1, v2i) = (−1,−1), V \{v2i−1, v2i}

)
=

1

2
P (λi = 0, V \{v2i−1, v2i}).

(7)

The joint distribution over {Y , v} follows from (1):

fG(Y ,v) =
1

Z
exp

(D∑
k=1

θYkYk +
∑

(Yk,Yl)∈E

θYk,YlYkYl +

m∑
i=1

θi
[
1 −1

] [v2i−1

v2i

]
Y dep(i)

+

m∑
i=1

θi,iv2i−1v2i +
∑

i,j:(λi,λj)∈Edep

θi,j
[
v2i−1 v2i

] [1 −1
−1 1

] [
v2j−1

v2j

])
, (8)

where Edep is Gdep’s edge set. Note that this graphical model has the same absolute values of the canonical parameters
for both v2i−1Y

dep(i) and for all four terms (v2i−1, v2i)× (v2j−1, v2j) due to the balancing in (7). As a result, the mean
parameters also exhibit the same symmetry, which we show in the following lemma.

Lemma 1. For each λi, we have that E
[
λiY

dep(i)
]

= E
[
v2i−1Y

dep(i)
]

= −E
[
v2iY

dep(i)
]
.

Proof. First, we can write out E
[
λiY

dep(i)
]

as

E
[
λiY

dep(i)
]

= P (λiY
dep(i) = 1)− P (λiY

dep(i) = −1) = P (λiY
dep(i) = 1)

− (1− P (λiY
dep(i) = 1)− P (λiY

dep(i) = 0))

= 2P (λiY
dep(i) = 1) + P (λi = 0)− 1.

We know that if we have v2i−1 = 1 or v2i = −1, then λi is either 1 or 0, but never −1; similarly, v2i−1 = −1 and v2i = 1
imply that λi 6= 1. We write out E

[
v2i−1Y

dep(i)
]
:

E
[
v2i−1Y

dep(i)
]

= 2
(
P (v2i−1 = 1, Y dep(i) = 1) + P (v2i−1 = −1, Y dep(i) = −1)

)
− 1

= 2
(
P ((v2i−1, v2i) = (1, 1), Y dep(i) = 1) + P (λi = 1, Y dep(i) = 1)

+ P (λi = −1, Y dep(i) = −1) + P ((v2i−1, v2i) = (−1,−1), Y dep(i) = −1)
)
− 1

= 2
(
P (λiY

dep(i) = 1) +
1

2
P (λi = 0, Y dep(i) = 1) +

1

2
P (λi = 0, Y dep(i) = −1)

)
− 1

= 2P (λiY
dep(i) = 1) + P (λi = 0)− 1 = E

[
λiY

dep(i)
]
.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Similarly, E
[
v2iY

dep(i)
]

is

E
[
v2iY

dep(i)
]

= 2
(
P ((v2i−1, v2i) = (1, 1), Y dep(i) = 1) + P (λi = −1, Y dep(i) = 1)

+ P (λi = 1, Y dep(i) = −1) + P ((v2i−1, v2i) = (−1,−1), Y dep(i) = −1)
)
− 1

= 2
(
P (λiY

dep(i) = −1) +
1

2
P (λi = 0, Y dep(i) = 1) +

1

2
P (λi = 0, Y dep(i) = −1)

)
− 1

= 2P (λiY
dep(i) = −1) + P (λi = 0)− 1

= P (λiY
dep(i) = −1)− (1− P (λi = 0)− P (λiY

dep(i) = −1))

= P (λiY
dep(i) = −1)− P (λiY

dep(i) = 1) = −E
[
λiY

dep(i)
]
.

The triplets in Algorithm 1 thus only need to be computed over exactly half of v, each corresponding to one source, as shown
in Figure 1. Moreover, this augmentation method for v and G allows us to conclude for any clique of sources Cdep ∈ Cdep,

E
[∏
k∈Cdep

v2k−1Y
dep(Cdep)

]
= E

[∏
k∈Cdep

λkY
dep(Cdep)

]
.

In general, the expectation over a clique in Gdep containing {λi}i∈Cdep is equal to the expectation over the corresponding
clique C in G containing {v2i−1}i∈Cdep such that aC = aCdep .

C.1.4. LINEAR TRANSFORMATION TO LABEL MODEL PARAMETERS

To convert these aCdep into µCdep , we present a way to linearly map from these product probabilities and expectations back
to marginal distributions, focusing on the unobservable distributions over a clique of sources and a task that the sources
vote on. We first restate our example stated in Section 3.2. Define µi(a, b) = P (Y dep(i) = a, λi = b) for a ∈ {−1, 1} and
b ∈ {−1, 0, 1}. We can set up a series of linear equations and denote it as A1µi = ri:

1 1 1 1 1 1
1 0 1 0 1 0
1 1 0 0 0 0
1 0 0 0 0 1
0 0 1 1 0 0
0 0 1 0 0 0

µi(1, 1)
µi(−1, 1)
µi(1, 0)
µi(−1, 0)
µi(1,−1)
µi(−1,−1)

 =

1

P (Y dep(i) = 1)
P (λi = 1)

P (λiY
dep(i) = 1)

P (λi = 0)
P (λi = 0, Y dep(i) = 1)

 . (9)

Note that four entries on the right of the equation are observable or known. P (λiY
dep(i) = 1) can be written in terms of ai,

and by construction of (v2i−1, v2i) and (7), we can factorize P (λi = 0, Y dep(i) = 1) into observable terms:

P (λi = 0, Y dep(i) = 1) = P ((v2i−1, v2i) = (1, 1), Y dep(i) = 1) + P ((v2i−1, v2i) = (−1,−1), Y dep(i) = 1)

= (P ((v2i−1, v2i) = (1, 1)) + P ((v2i−1, v2i) = (−1,−1)))P (Y dep(i) = 1)

= P (λi = 0)P (Y dep(i) = 1).

Here we use the fact that v2i−1v2i and Y dep(i) are independent by Proposition 1. We can verify that A1 is invertible, so
µi(a, b) can be obtained from this system.

There is a way to extend this system to the general case. We form a system of linear equations AsµC = rC for each clique
of sources C in Gdep, where s = |C| is the number of weak sources λi in the clique and µC is the marginal distribution over
these s sources and 1 task. As is a 2(3s)× 2(3s) matrix of 0s and 1s that will help map from rC , a vector of probabilities
known from prior steps of the algorithms or from direct estimation, to the desired label model parameter µC . Define

A0 =

[
1 1
1 0

]
B0 =

[
0 0
0 1

]

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

D =

1 1 1
1 0 0
0 1 0

 E =

0 0 0
0 0 1
0 0 0

Then As and Bs can be recursively constructed with

As = D ⊗As−1 + E ⊗Bs−1

Bs = E ⊗As−1 +D ⊗Bs−1,

where ⊗ is the Kronecker product. To define rC , we first specify an ordering of elements of µC . Let the last λCs in the joint
probability µC take on value λCs = 1 for the first 2× 3s−1 entries, λCs = 0 for the next 2× 3s−1 entries, and λCs = −1
for the last 2× 3s−1 entries. In general, the ith λCi in µC will alternate among 1, 0,−1 every 2× 3i−1 entries. Finally, the
Y (i) entry of µC alternates every other value between 1 and −1.

The ordering of rC follows a similar structure. If we rename the Y and λ variables to z1, . . . , zs+1 for generality, each
entry rC(U,Z) is equal to P (

∏
zi∈Z zi = 1, zj = 0 ∀zj ∈ U), where U ∩ Z = ∅, and U ⊆ C\Y (i), Z ⊆ C. We also

write rC(∅, ∅) = 1. The entries of rC will alternate similarly to µC , for each λCi , the first 2× 3i−1 terms will not contain
λCi in either U or Z, the second 2× 3i−1 terms will have λCi ∈ Z, and the last 2× 3i−1 terms will have λCi ∈ U . For
Y (i), elements of rC will alternate every other value between not having Y (i) in Z and having Y (i) in Z. (9) illustrates an
example of the orderings for µC and rC .

Furthermore, we also have the system BsµC = rBC , where rBC (U,Z) = P (
∏
zi∈Z zi = −1, zj = 0 ∀zj ∈ U) when Z 6= ∅,

and rCB(U, ∅) = 0. The ordering of rBC is the same as that of rC .

Lemma 2. With the setup above, AsµC = rC .

Proof. We prove that AsµC = rC and BsµC = rBC by induction on s. For the base case s = 0, we examine a clique over
just a single Y : [

1 1
1 0

] [
P (Y = 1)
P (Y = −1)

]
=

[
1

P (Y = 1)

] [
0 0
0 1

] [
P (Y = 1)
P (Y = −1)

]
=

[
0

P (Y = −1)

]
,

which are both clearly true. Next, we assume that AkµC = rC and BkµC = rBC for s = k. We want to show that
Ak+1µC′ = rC′ and Bk+1µC′ = rBC′ for a larger clique C ′ where C ⊂ C ′ and |C ′| = s+ 1. By construction of Ak+1 and
Bk+1,

Ak+1 =

Ak Ak Ak
Ak 0 Bk
0 Ak 0

 Bk+1 =

Bk Bk Bk
Bk 0 Ak
0 Bk 0

 .
µC′ , rC′ , and rBC′ can be written as

µC′ =

 µC(λC′k+1
= 1))

µC(λC′k+1
= 0)

µC(λC′k+1
= −1)

 rC′ =

 rC
rC(λC′k+1

∈ Z ′)
rC(λC′k+1

∈ U ′)

 rBC′ =

 rBC
rBC (λC′k+1

∈ Z ′)
rBC (λC′k+1

∈ U ′)

 ,
where µC(λC′k+1

= 1) = P (Y, λC1 , . . . , λCk , λC′k+1
= 1), rC(λC′k+1

∈ Z ′) = rC(U,Z ∪ {λC′k+1
}), and so on. U ′, Z ′ for

C ′ are constructed similarly to U,Z for C.

Then the three equations for Ak we want to show are

Ak(µC(λC′k+1
= 1) + µC(λC′k+1

= 0) + µC(λC′k+1
= −1)) = rC

Ak(µC(λC′k+1
= 1)) +Bk(µC(λC′k+1

= −1)) = rC(λC′k+1
∈ Z ′)

Ak(µC(λC′k+1
= 0)) = rC(λC′k+1

∈ U ′).

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

The first equation is true because λC′k+1
is marginalized out to yield AkµC = rC , which is true by our inductive hypothesis.

In the third equation, the term λC′k+1
= 0 is added as a joint probability to all probabilities in µC and rC , so this also

holds by the inductive hypothesis. In the second equation, Ak(µC(λC′k+1
= 1)) is equal to rC with each probability

having λC′k+1
= 1 as an additional joint probability, and similarly Bk(µC(λC′k+1

= −1)) is equal to rBC with each nonzero
probability having λC′k+1

= −1 as an additional joint probability. For entries where Z 6= ∅, summing these up yields

P
(∏
zi∈Z

zi = 1, λC′k+1
= 1, zj = 0 ∀zj ∈ U

)
+ P

(∏
zi∈Z

zi = −1, λC′k+1
= −1, zj = 0 ∀zj ∈ U

)
=P
(∏
zi∈Z

ziλC′k+1
= 1, zj = 0 ∀zj ∈ U

)
.

And when Z = ∅, we have P (λC′k+1
= 1, zj = 0 ∀zj ∈ U), so all together these probabilities make up rC(λC′k+1

∈ Z ′).

The three equations for Bk are similar:

Bk(µC(λC′k+1
= 1) + µC(λC′k+1

= 0) + µC(λC′k+1
= −1)) = rBC

Bk(µC(λC′k+1
= 1)) +Ak(µC(λC′k+1

= −1)) = rBC (λC′k+1
∈ Z ′)

Bk(µC(λC′k+1
= 0)) = rBC (λC′k+1

∈ U ′).

Again, the first and third equations are clearly true using the inductive hypothesis, and the second equation is also true when
we decompose

∏
zi∈Z′ zi = −1 into

∏
zi∈Z zi = 1, λC′k+1

= −1 and
∏
zi∈Z zi = −1, λC′k+1

= 1.

We complete this proof by induction to conclude that AsµC = rC and BsµC = rBC , showing a recursive approach for
mapping from rC to µC for any clique or separator set C.

Finally, we note that each rC is made up of computable terms. Entries of the form rC(∅, Z) = P (
∏
zi∈Z zi = 1) are

immediately calculated from ac for cliqes c ⊆ C, and entries where Y (i) /∈ Z can be directly estimated. Entries where
Z = {Y (i)}, U 6= ∅ can be factorized into known or directly estimated probabilities, and all other entries can be computed
by calculating each ac conditional on U .

As an example, to construct rij for a clique {λi, λj , Y dep(i, j)}, the only entries of rij that are unobservable from the
data are P (λiY

dep(i, j) = 1), P (λjY
dep(i, j) = 1), P (λiλjY

dep(i, j) = 1), P (λi = 0, Y dep(i, j) = 1), P (λj =
0, Y dep(i, j) = 1), P (λi = 0, λjY

dep(i, j) = 1), P (λj = 0, λiY
dep(i, j) = 1), and P (λi = 0, λj = 0, Y dep(i, j) = 1).

We have discussed how to estimate all but the last three.

To estimate P (λi = 0, λjY
dep(i, j) = 1), we can write this as

P (λjY
dep(i, j) = 1, λi = 0) = P (λjY

dep(i, j) = 1|λi = 0)P (λi = 0)

=
1 + E

[
λjY

dep(i, j)|λi = 0
]
− P (λj = 0|λi = 0)

2
· P (λi = 0)

=
1

2
P (λi = 0) +

1

2
E
[
λjY

dep(i, j)|λi = 0
]
P (λi = 0) +

1

2
P (λj = 0, λi = 0).

We can solve E
[
λjY

dep(i, j)|λi = 0
]

using the triplet method conditional on samples where λi abstains. P (λi = 0, λj =
0, Y dep(i, j) = 1) can be written as P (λi = 0, λj = 0)P (Y dep(i, j) = 1), of which all probabilities are observable, by
Proposition 1.

C.1.5. RESOLVESIGNS

This function is used to determine the signs after we have recovered the magnitudes of accuracy terms such as |E[viY (i)]|.
One way to implement this function is to use one known accuracy sign per Y . We observe that if we know the sign of
ai = E[viY (i)], then we are able to obtain the sign of any other term aj = E[vjY (j)] where Y (j) = Y (i). If vi and vj
are conditionally independent given Y (i), we directly use aiaj = E [vivj] and knowledge of ai’s sign to get the sign of
aj . If vi and vj are not conditionally independent given Y (i), we need two steps to recover the sign: for some vk that is

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

conditionally independent of both vi and vj given Y (i), we first use aiE [vkY (i)] = E [vivk] to get the sign of E [vkY (i)].
Then we use ajE [vkY (i)] = E [vjvk] to get the sign of aj . Therefore, knowing the sign of one accuracy per Y is sufficient
to recover all signs.

The RESOLVESIGNS used in Algorithm 1 uses another approach and follows from the assumption that on average per Y , the
accuracies ai are better than zero. We apply this procedure to the sets of accuracies corresponding to each hidden variable;
for each set, we have two sign choices, and we check which of these two produces a non-negative sum for the accuracies. In
the common case where there is just one task, there are only two choices to check overall.

C.2. Extensions to More Complex Graphical Models

Recall that our Ising model is constructed for binary task labels, with sufficient conditional independence on G and Gdep
such that ΩG = V , and without singleton potentials. We address how to extend our method when each of these conditions
do not hold.

Multiclass Case We have given an algorithm for binary classes for Y (and ternary for the sources, since these can also
abstain). To extend this to higher-class cases, we can apply a one-versus-all reduction repeatedly to apply our core algorithm.

Extension to More Complex Graphs In Algorithm 1, we rely on the fact ΩG = V to compute all accuracies. However,
certain ai’s cannot be recovered when there are fewer than 3 conditionally independent subgraphs in G, where a subgraph
Va is defined as a set of vertices such that if vi ∈ Va and vj /∈ Va, vi ⊥⊥ vj |Y (i). Instead, when there are only 1
or 2 subgraphs, we use another independence property, which states that viY (i) ⊥⊥ Y (i) for all vi. This means that
E [viY (i)] · E [Y (i)] = E

[
viY (i)2

]
= E [vi], and thus ai = E[vi]

E[Y (i)] . This independence property does not require us to
choose triplets of sources; instead we can directly divide to compute ai. However, this approach fails in the presence of
singleton potentials and can be very inaccurate when E [Y (i)] is close to 0. One can use this independence property in
addition to Proposition 1 on G with 2 conditionally independent subgraphs, and when G only consists of 1 subgraph, we
require that there are no singleton potentials on any of the sources.

Dealing with Singleton Potentials Our current Ising model does not include singleton potentials except on Yi terms.
However, we can handle cases where sources are modeled to have singleton potentials. Proposition 1 holds as long as either
vi or vj belongs to a subgraph that has no potentials on individual observed variables. Therefore, the triplet method is able
to recover mean parameters as long as we have at least two conditionally independent subgraph with no singleton potentials
on observed variables. For example, just two sources conditionally independent of all the others with no singleton potential
suffices to guarantee that this modified graphical model still allows for our algorithm to recover label model parameters.

In the case where we have singleton potentials on possibly every source, we have the following alternative approach. We use
a slightly different parametrization and a quadratic version of the triplet method. Instead of tracking mean parameters (and
thus accuracies like E [viY (i)], we shall instead directly compute parameters that involve class-conditional probabilities.
These are, in particular, for vi,

µi =

[
P (vi = 1|Y (i) = 1) P (vi = 1|Y (i) = −1)
P (vi = −1|Y (i) = 1) P (vi = −1|Y (i) = −1)

]
.

Note that these parameters are minimal (the terms P (vi = 0|Y (i) = ±1), indicating the conditional abstain rate, are
determined by the columns above.

We set

Oij =

[
P (λi = 1|λj = 1) P (λi = 1|λj = −1)
P (λi = −1|λj = 1) P (λi = −1|λj = −1)

]
and P =

[
P (Y = 1) 0

0 P (Y = −1)

]
.

For a pair of conditionally independent sources, we have that

µiPµ
T
j = Oij . (10)

Because we can observe terms like Oij , we can again form triplets with i, j, k as before, and solve. Note that this alternative
parametrization does not depend on the presence or absence of singleton potentials in the Ising model, only on the conditional
independences directly defined by it.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Moreover, there is a closed form solution to the resulting system of non-linear equations. To see this, consider the following.
Note that

P (vi = 1|Y (i) = −1) =
P (vi = 1)

P (Y (i) = −1)
− P (vi = 1|Y (i) = 1)P (Y (i) = 1)

P (Y (i) = −1)
.

Note that everything is observable (or known, for class balances), so that we can write the top row of µi as a function of a
single variable. That is, we set α = P (vi = 1|Y (i) = 1), ci = P (vi=1)

P (Y (i)=−1) and di = P (Y (i)=1)
P (Y (i)=−1) . Then, the top row of µi

becomes [α ci − diα], and ci and di are known.

Next, consider some triplets i, j, k, with corresponding µ’s. Similarly, we set the top-left corner in the corresponding µ’s
to be α, β, γ, and the corresponding terms for the top-right corner are ci, cj , ck and di, dj , dk. Then, by considering the
upper-left position in (10), we get the system

(1 + didj)αβ + cicj − cidjβ − cjdiα = Oij/P (Y = 1),

(1 + didk)αγ + cick − cidkγ − ckdiα = Oik/P (Y = 1),

(1 + djdk)βγ + cjck − cjdkγ − ckdjβ = Ojk/P (Y = 1).

To solve this system, we express α and γ in terms of β, using the first and third equations, and then we can plug these into
the second and multiply (for example, when using α, by ((1 + didj)β − cjdi)2) to obtain a quadratic in terms of β. Solving
this quadratic and selecting the correct root, then obtaining the remaining parameters (α, γ) and filling in the rest of the
µi, µj , µk terms completes the procedure. Note that we have to carry out the triplet procedure here twice per µi, since there
are two rows. Lastly, we can convert probabilities over v into equivalent probabilities over λ as discussed in Appendix
C.1.3.

C.3. Online Algorithm

The online learning setting presents new challenges for weak supervision. In the offline setting, the weak supervision
pipeline has two distinct components: first, computing all probabilistic labels for a dataset and then using them to train an
end model. In the online setting however, samples are introduced one by one, so we see eachXi only once and are not able
to store it.

Fortunately, Algorithm 1 and Algorithm 2 both rely on computing estimates of expected moments over the observable weak
sources. Since these are just averages, we can efficiently produce an estimate of the label model parameters at each time step.
For each new sample, we update the averages of the moments using a rolling window and use them to output its probabilistic
label; then the end model is trained on this sample, and the data point itself is no longer needed for further computation.
Our method is fast enough that we can “interleave” the two components of the weak supervision pipeline, in comparison to
Ratner et al. (2019) and Sala et al. (2019), which require a full covariance matrix inversion and SGD.

The online learning environment is also subject to distributional drift over time, where old samples may come from very
different distributions compared to more recent samples. Formally, define distributional drift as the following property:
for (Xt,Y t) ∼ Pt, the KL-divergence between Pi and Pi+1 is less than KL(Pt, Pt+1) ≤ ∆ for any t. If there were no
distributional drift, i.e., ∆ = 0, we would invoke Algorithm 1 or 2 at each time step t for the new sample’s output label,
where the estimates of Ê [vivj] and other observable moments would be cumulatively over t rather than n. However, because
of distributional drift, it is important to prioritize most recent samples. We propose a rolling window of size W , which can
be optimized theoretically, to average over rather than all past t samples. Algorithm 1 describes the general meta-algorithm
for the online setting.

C.3.1. THEORETICAL ANALYSIS

Similar to the offline setting, we analyze our method for online label model parameter recovery and provide bounds on its
performance. First, we derive a bound on the sampling error ||µt − µ̂t||2 in terms of the window size W , concluding that
there exists an optimal W ∗ to minimize this error. Then, we present an online generalization result that describes how well
our end model can “track” new samples coming from a drifting distribution.

Controlling the Online Sampling Error with W The sampling error at each time step t ||µt − µ̂t||2 is dependent on
the window size W which we average samples over to produce estimates. On one hand, a small window will ensure that the

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Algorithm 1 Online Weak Supervision
Input: dependency graph Gdep, window W for rolling averages
for t = 1, 2, . . . : do

Receive source output vector lt and distribution prior Pt(Ȳ).
Run Algorithm 1 and Algorithm 2 with estimates computed over W samples lt−W+1:t and their augmented equivalents
to output µ̂t.
Use junction tree formula to produce probabilistic output Ỹ t ∼ Pµ̂t(· |lt).
Use Ỹ t to update wt, the parametrization of the end model fw.

end for

estimate will be computed using samples from distributions close to Pt, but using few samples results in a high empirical
estimation error. On the other hand, a larger window will allow us to use many samples; however, samples farther in the past
will be from distributions that may not be similar to Pt. Hence, W must be selected to minimize both the effect of using
drifting distributions and the estimation error in the number of samples used.

Theorem 1. Let µ̂t be an estimate of µt, the label model parameters at time t, over W previous samples from the product
distribution PrW =

∏t
i=t−W+1 Pi, which suffers a ∆-distributional drift. Then, still assuming cliques in Gdep are limited

to 3 vertices,

EPrW [||µ̂t − µt||2] =
1

a5
min

(
3.19C1

√
m

W
+

6.35C2√
r

m√
W

)
+

2c(|Cdep|+ |Sdep|)∆W 3/2

√
6αPt

.

where αPt is the minimum non-zero probability that Pt takes. A global minimum for the sampling error as a function of W
exists, so the window size can be set such that W ∗ = argminW E [||µ̂t − µt||2].

Proof. Denote PWt = Pt × . . . Pt︸ ︷︷ ︸
W

. We first bound the difference between EPrW [||µ̂t − µt||2] and EPWt [||µ̂t − µt||2].

∣∣∣EPrW [‖µ̂t − µt‖2]− EPWt [‖µ̂t − µt‖2]
∣∣∣ =

∣∣∣ ∑
{xi}ti=t−W+1

‖µ̂t − µt‖2 · (PrW (xt−w+1, . . . , xt)− PWt (xt−w+1, . . . , xt))
∣∣∣

≤ max ‖µ̂t − µt‖2 ·
∑

{xi}ti=t−W+1

|PrW (xt−w+1, . . . , xt)− PWt (xt−w+1, . . . , xt)|

= max ‖µ̂t − µt‖2 · 2TV (PrW , P
W
t).

Since the label model parameters are all probabilities, ‖µ̂t − µt‖2 is bounded by c · (|Cdep|+ |Sdep|), where c is a constant.
To compute TV (PrW , P

W
t), we use Pinsker’s inequality and tensorization of the KL-divergence:

TV (PrW , P
W
t) ≤

√
1

2
KL(PrW ||PWt) =

√
1

2
KL(Pt−W+1 × · · · × Pt||Pt × · · · × Pt)

=

√√√√1

2

t∑
i=t−W+1

KL(Pi||Pt).

Each KL(Pi||Pt) can be bounded above by 2
αPt

TV (Pi, Pt)
2 by the inverse of Pinsker’s inequality, where αPt =

minx∈X ,Pt(x)>0 Pt(x). Since the triangle inequality is satisfied for total variation distance, TV (Pi, Pt) ≤ ∆(t − i).
Plugging this back in, we get

TV (PrW , P
W
t) ≤

√√√√1

2
· 2

αPt
∆2

t∑
i=t−W+1

(t− i)2 =

√√√√∆2

αPt

W−1∑
i=0

i2

=

√
∆2

αPt
· (W − 1)W (2W − 1)

6
≤ ∆W 3/2

√
6αPt

.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Therefore, ∣∣∣EPrW [‖µ̂t − µt‖2]− EPWt [‖µ̂t − µt‖2]
∣∣∣ ≤ 2c(|Cdep|+ |Sdep|)∆W 3/2

√
6αPt

.

Furthermore, the offline sampling error result applies over PWt , so EPWt [‖µ̂t − µt‖2] ≤ 1
a5min

(
3.19C1

√
m
W + 6.35C2√

r
m√
W

)
.

Hence,

EPrW [‖µ̂t − µt‖2] ≤ 1

a5
min

(
3.19C1

√
m

W
+

6.35C2√
r

m√
W

)
+

2c(|Cdep|+ |Sdep|)∆W 3/2

√
6αPt

,

and we set a window size W ∗ to minimize this expression.

Online Generalization Bound We provide a bound quantifying the gap in probability of incorrectly classifying an unseen
t+ 1th sample between our learned end model parametrization and an optimal end model parametrization.

Because the online learning setting is subject to distributional drift over time, our methods must be able to predict the next
time step’s label with some guarantee despite the changing environment. The ∆ drift is aggravated by (1) potential model
misspecification for each Pt and (2) sample noise. However, we are able to take into account these additional conditions by
modeling the overall drift ∆µ to be a combination of intrinsic distributional drift ∆, model misspecification, and estimation
error of parameters.

Recall thatXi ∼ Pi is drawn from the true distribution at time i, while Ỹi ∼ Pµ̂i(·|λ(Xi)) is the probabilistic output of
our label model. Define the joint distribution of a sample to be (Xi, Ỹ i) ∼ Pi,µ̂i . At each time step t, our goal is train our
end model fw ∈ F and evaluate its performance against the true (Xt,Y t) ∼ Pt, given that we have t− 1 previous samples
drawn from Pi,µ̂i .

We define a binary loss function L(w, x, y) = |fw(x)− y| and choose ŵt to minimize over the past s samples such that

ŵt = argminw
1

s

t−1∑
i=t−s

L(w,Xi, Ỹ i).

We present a new generalization result that bounds the probability that fŵt(X
t) does not equal the true Y t and also accounts

for model misspecification and error from parameter estimation.

Theorem 2. Define ∆µ := dTV (Pi,µ̂i , Pi+1,µ̂i+1
) to be the distributional drift between the two samples and Dµ :=

maxi dTV (Pi, Pi,µ̂i) to be an upper bound for the total variational distance between the true distribution and the noise

aware misspecified distribution. If ∆µ ≤ c(ε−8Dµ)3

VCdim(F) for some constant c > 0, there exists a ŵt computed over the past

s =
⌊
ε−8Dµ

16∆µ

⌋
samples such that, for any time t > s and ε ∈ (8Dµ, 1),

Prµ̂,t(L(ŵt,X
t,Y t) = 1) ≤ ε+ min

w∗
Pt(L(w∗,Xt,Y t) = 1),

where Prµ̂,t =
∏t−1
i=t−s Pi,µ̂i · Pt. Furthermore,

Dµ ≤
√

1

2
max
i
KL(Pi(Y |X) || Pµi(Y |X)) +m

1
4

√
1

emin
max
i
||µi − µ̂i||2.

Proof. We adapt Theorem 2 from Long (1999). Choose ε ≤ 1. Let s =
⌊

ε−8Dµ

16(∆+2Dµ)

⌋
and ∆µ = ∆ + 2Dµ ≤ (ε−8Dµ)3

5000000d ,
where d is the end model’s VC dimension. Let L(w, x, y) = |y − fw(x)| ∈ {0, 1}, where fw(x) is the output of the end
model parametrized by w when given input x.

At time t, the sequence of inputs to the end model so far is (X1, Ỹ 1), (X2, Ỹ 2), . . . (Xt−1, Ỹ t−1), where (Xi, Ỹ i) ∼
Pi,µ̂i . We evaluate the end model’s performance by using a parametrization wt that is a function of the t− 1 inputs so far

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

and computing L(wt,X
t,Y t) where (Xt,Y t) ∼ Pt. In particular, let w∗t = argminwE(Xt,Y t)∼Pt [L(w,Xt,Y t)], and

ŵt = argminw
1
s

∑t−1
i=t−s L(w, xi, ỹi) where xi, ỹi are the values of the random variablesXi and Ỹi.

Suppose that TV (Pi, Pi+1) ≤ ∆. Then TV (Pi,µ̂i , Pi+1,µ̂i+1
) is

TV (Pi,µ̂i , Pi+1,µ̂i+1) ≤ TV (Pi,µ̂i , Pi) + ∆ + TV (Pi+1, Pi+1,µ̂i+1) ≤ ∆ + 2Dµ = ∆µ.

Let β ≥ 6∆µs+ 4Dµ, and α = β
2 − 2Dµ ≥ 3∆µs. Note that TV (Pi,µ̂i , Pt,µ̂t) ≤ ∆µs = κ for any i = t− s, . . . , t− 1.

Denote Prµ̂ =
∏t−1
i=t−s Pi,µ̂i . Then by Lemma 12 of Long (1999),

Prµ̂

{
∃w :

∣∣∣1
s

t−1∑
i=t−s

L(w,Xi, Ỹ i)− E(Xt,Ỹ t)∼Pt,µ̂t

[
L(w,Xt, Ỹ t)

] ∣∣∣ > α
}
≤ 8 · 41d exp

(
− (α− κ)2s

1600

)
.

For any real numbers a, b, c, and x > y, if |a − b| ≥ x and |b − c| ≤ y, then |a − b| − |b − c| ≥ x − y and thus
|a− c| = |a− b+ b− c| ≥ ||a− b| − |b− c|| ≥ x− y. Applying this,

Prµ̂

{
∃w :

∣∣∣1
s

t−1∑
i=t−s

L(w,Xi, Ỹ i)− E(Xt,Y t)∼Pt
[
L(w,Xt,Y t)

] ∣∣∣ > α+ 2Dµ,∣∣∣E(Xt,Y t)∼Pt [L(w,Xt,Y t)]− E(Xt,Ỹ t)∼Pt,µ̂t

[
L(w,Xt, Ỹ t)

] ∣∣∣ < 2Dµ
}

≤ Prµ̂

{
∃w :

∣∣∣1
s

t−1∑
i=t−s

L(w,Xi, Ỹ i)− E(Xt,Ỹ t)∼Pt,µ̂t

[
L(w,Xt, Ỹ t)

] ∣∣∣ > α
}
≤ 8 · 41d exp

(
− (α− κ)2

1600

)
.

By Lemma 3, the difference in the expected loss E[L(w,Xt,Y t)] whenXt,Y t is from Pt versus Pt,µ̂t is always less than
2Dµ, so the above becomes

Prµ̂

{
∃w :

∣∣∣1
s

t−1∑
i=t−s

L(w,Xi, Ỹ i)− E(Xt,Y t)∼Pt
[
L(w,Xt,Y t)

] ∣∣∣ > α+ 2Dµ
}

≤ 8 · 41d exp

(
− (α− κ)2s

1600

)
.

We can write this in terms of β. Note that ∆µs ≤ β
6 −

2Dµ

3 . The RHS is equivalent to

8 · 41d exp

(
− (α− κ)2m

1600

)
= 8 · 41d exp

(
− s

1600

(
β

2
− 2Dµ −∆µs

)2
)

≤ 8 · 41d exp

(
− s

1600

(
β

2
− 2Dµ − β

6
+

2Dµ

3

)2
)

= 8 · 41d exp
(
− s

14400
(β − 4Dµ)2

)
.

So the probability becomes

Prµ̂

{
∃w :

∣∣∣1
s

t−1∑
i=t−s

L(w,Xi, Ỹ i)− E(Xt,Y t)∼Pt
[
L(w,Xt,Y t)

] ∣∣∣ > β

2

}
≤ 8 · 41d exp

(
− s

14400
(β − 4Dµ)2

)
.

Next, note that the probability that at least one of ŵt or w∗t satisfies
∣∣∣ 1s∑t−1

i=t−s L(w,Xi, Ỹ i) −

E(Xt,Y t)∼Pi [L(w,Xt,Y t)]
∣∣∣ > β

2 is less than the probability that there exists a w that satisfies the above inequality. In

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

general, if |a− b| > β, then |a| > β
2 or |b| > β

2 (or both). Then

Prµ̂

{∣∣∣1
s

t−1∑
i=t−s

L(w∗t ,X
i, Ỹ i)− E(Xt,Y t)∼Pt [L(w∗t ,X

t,Y t)]

− 1

s

t−1∑
i=t−s

L(ŵt,X
i, Ỹ i) + E(Xt,Y t)∼Pt [L(ŵt,X

t,Y t)]
∣∣∣ > β

}

≤ Prµ̂

{∣∣∣1
s

t−1∑
i=t−s

L(w∗t ,X
i, Ỹ i)− E(Xt,Y t)∼Pt [L(w∗t ,X

t,Y t)]| > β

2
, ∪

∣∣∣− 1

s

t−1∑
i=t−s

L(ŵt,X
i, Ỹ i) + E(Xt,Y t)∼Pt [L(ŵt,X

t,Y t)]
∣∣∣ > β

2

}
≤ 8 · 41d exp

(
− s

14400
(β − 4Dµ)2

)
.

By definition of w∗t and ŵt, 1
s

∑t−1
i=t−s L(w∗t ,X

i, Ỹ i) > 1
s

∑t−1
i=t−s L(ŵt,X

i, Ỹ i) and E(Xt,Y t)∼Pt [L(ŵt,X
t,Y t)] >

E(Xt,Y t)∼Pt [L(w∗t ,X
t,Y t)]. Therefore,

Prµ̂

{
E(Xt,Y t)∼Pt [L(ŵt,X

t,Y t)]− E(Xt,Y t)∼Pt [L(w∗t ,X
t,Y t)] > β

}
≤ 8 · 41d exp

(
− s

14400
(β − 4Dµ)2

)
.

Now we apply Lemma 13 from Long (1999). Define

φ(β) =

{
8 · 41d exp

(
− s

14400 (β − 4Dµ)2
)

β ≥ 6∆µs+ 4Dµ

1 o.w.
.

Let a0 = 0 and a1 = 6∆µs + 4Dµ. For all other ai where i > 1 until some an where an+1 > 1, define ai =√
14400(ln 8+(ln 41)d+i ln 2)

s + 4Dµ. This way, φ(ai>1) = 2−i. Then Lemma 13 states

E{(Xi,Ỹ i)∼Pi,µ̂i}
t−1
i=t−s

[Pt(L(ŵt,X
t,Y t) = 1)− Pt(L(w∗t ,X

t,Y t) = 1)]

≤ 1 · a1 +

∞∑
i=1

(√
14400(ln 8 + (ln 41)d+ i ln 2)

s
+ 4Dµ

)
2−i

≤ 6∆µs+ 4Dµ + 341

√
d

s
+ 4Dµ = 6∆µs+ 8Dµ + 341

√
d

s
.

Plugging in our values of s and ∆µ, we get that 6∆µs+ 8Dµ+ 341
√

d
s ≤ ε. Therefore, if the drift between two consecutive

samples is less than TV (Pi,µ̂i , Pi+1,µ̂i+1) ≤ ∆µ ≤ (ε−8Dµ)3

5000000d , there exists an algorithm that computes a ŵt over the past

s =
⌊

ε−8Dµ

16(∆+2Dµ)

⌋
inputs to the end model, such that

Prµ̂,t(L(ŵt,X
t,Y t) = 1) ≤ ε+ min

w∗
Pt(L(w∗,Xt,Y t) = 1),

where Dµ ≤
√

1
2 maxi EX∼Pi [KL(Pi(Y |X) || Pµi(Y |X))] +m1/4

√
1

σmin
maxi ||µi − µ̂i||2 by Lemma 4.

Lemma 3. The difference in the expected value of L(w,X,Y) when samples are drawn from Pt,µ̂t versus Pt is∣∣∣E(Xt,Ỹ t)∼Pt,µ̂t
[L(w,Xt, Ỹ t)]− E(Xt,Y t)∼Pt [L(w,Xt,Y t)]

∣∣∣ ≤ 2Dµ.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Proof. We use the definition of total variation distance:∣∣∣E(Xt,Ỹ t))∼Pt,µ̂t
[L(w,Xt, Ỹ t]− E(Xt,Y t)∼Pt [L(w,Xt,Y t)]

∣∣∣
=
∣∣∣∑
x,y

L(w, x, y)(Pt,µ̂t(x, y)− Pt(x, y))
∣∣∣

≤
∑
x,y

L(w, x, y)|Pt,µ̂t(x, y)− Pt(x, y)|

≤
∑
x,y

|Pt,µ̂t(x, y)− Pt(x, y)| = 2TV (Pt,µ̂t , Pt) ≤ 2Dµ.

Lemma 4.

Dµ ≤
√

1

2
max
i
KL(Pi(Y |X) || Pµi(Y |X)) +m1/4

√
1

σmin
max
i
||µi − µ̂i||2.

Here, σmin is the minimum singular value of the covariance matrix Σ of the variables V = {Y ,v} in the graphical model.

Proof. We first use the triangle inequality on TV distance to split Dµ into two KL-divergences.

Dµ ≤ max
i
TV (Pi,µ̂i , Pi) ≤ max

i
TV (Pi,µ̂i , Pi,µi) + max

i
TV (Pi,µi , Pi)

≤
√

1

2
max
i
KL(Pi,µi ||Pi,µ̂i) +

√
1

2
max
i
KL(Pi||Pi,µi).

To simplify the first divergence, we use the binary Ising model definition in (1), which for simplicity we write as fG(Y ,v) =
1
Z exp(θTφ(V)), where φ(V) is the vector of all potentials.

KL(Pi,µi ||Pi,µ̂i) = (θ̂i − θi)TE[φ(V)] + ln
Ẑ

Z
≤ |θ̂i − θi|1 + ln

Ẑ

Z
≤
√
m||θ̂i − θi||2 + ln

∑
s∈S exp(θ̂Ti φ(s))∑
s∈S exp(θTi φ(s))

≤
√
m||θ̂i − θi||2 +

1

Ẑ

∑
s∈S

exp(θ̂Ti φ(s)) ln
exp(θ̂Ti φ(s))

exp(θTi φ(s))

≤
√
m||θ̂i − θi||2 +

1

Ẑ

∑
s∈S

exp(θ̂Ti φ(s))((θ̂i − θi)Tφ(s))

≤
√
m||θ̂i − θi||2 +

1

Ẑ

∑
s∈S

exp(θ̂Ti φ(s))
√
m||θ̂i − θi||2 ≤ 2

√
m||θ̂i − θi||2

≤ 2
√
m

σmin
||µ̂i − µi||2.

Here we used φ(s),E [φ(V)] ∈ [−1,+1], the log sum inequality, and Lemma 8. The second divergence can be simplified
into a conditional KL-divergence.

KL(Pi||Pi,µi) =
∑
x,y

Pi(x, y) ln
Pi(x, y)

Pi,µi(x, y)
=
∑
x,y

Pi(x, y) ln
Pi(y|x)Pi(x)

Pi,µi(y|x)Pi,µi(x)

=
∑
x,y

Pi(x, y) ln
Pi(y|x)Pi(x)

Pµi(y|x)Pi(x)
=
∑
x

Pi(x)
∑
y

Pi(y|x) ln
Pi(y|x)

Pµi(y|x)

=
∑
x

Pi(x)KL(Pi(Y |x)||Pµi(Y |x)) = KL(Pi(Y |X) || Pµi(Y |X)),

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

where

KL(Pi(Y |X) || Pµi(Y |X)) = EPi [KL(Pi(Y |x) || Pµi(Y |x))].

This result suggests that, with a small enough ∆µ, our parametrization of the end model using past data will perform only ε
worse in probability than the best possible parametrization of the end model on the next data point. Furthermore, note that s
is decreasing in Dµ; more model misspecification and sampling error intuitively suggests that we want to use fewer previous
data points to compute ŵt, so again having a simple yet suitable graphical model allows the end model to train on more data
for better prediction.

D. Proofs of Main Results
D.1. Proof of Theorem 1 (Sampling Error)

We first present three concentration inequalities - one on the accuracies estimated via the triplet method, and the other two
on directly observable values. Afterwards, we discuss how to combine these inequalities into a sampling error result for µ
when Gdep has small cliques of size 3 or less.

Estimation error for ai using Algorithm 1

Lemma 5. Denote M as the second moment matrix over all observed variables, e.g. Mij = E [vivj]. Let â be an estimate
of the m desired accuracies a using M̂ computed from n samples. Define amin = min{mini |âi|,mini |ai|}, and assume
sign(ai) = sign(âi) for all ai. Furthermore, assume that the number of samples n is greater than some n0 such that
amin > 0, and M̂ij 6= 0. Then the estimation error of the accuracies is

∆a = E[‖â− a‖2] ≤ Ca
1

a5
min

√
m

n
,

for some constant Ca.

Proof. We start with a few definitions. Denote a triplet as Ti(1), Ti(2), Ti(3), and in total suppose we need τ number of
triplets. Recall that our estimate of a can be obtained with

|âTi(1)| =

(
|M̂Ti(1)Ti(2)||M̂Ti(1)Ti(3)|

|M̂Ti(2)Ti(3)|

) 1
2

.

Because we assume that signs are completely recoverable,

‖â− a‖2 = ‖|â| − |a|‖2 ≤

(
τ∑
i=1

(|âTi(1)| − |aTi(1)|)2 + (|âTi(2)| − |aTi(2)|)2 + (|âTi(3)| − |aTi(3)|)2

) 1
2

. (11)

Note that |â2
i − a2

i | = |âi − ai||âi + ai|. By the reverse triangle inequality, (|âi| − |ai|)2 = ‖âi| − |ai‖2 ≤ |âi − ai|2 =(
|â2i−a

2
i |

|âi+ai|

)2

≤ 1
4a2min

|â2
i − a2

i |2, because |âi + ai| = |âi| + |ai| ≥ 2amin. For ease of notation, suppose we examine a

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

particular Ti = {1, 2, 3}. Then

(|â1| − |a1|)2 ≤ 1

4a2
min

|â2
1 − a2

1|2 =
1

c2

∣∣∣∣∣ |M̂12||M̂13|
|M̂23|

− |M12||M13|
|M23|

∣∣∣∣∣
2

=
1

4a2
min

∣∣∣∣∣ |M̂12||M̂13|
|M̂23|

− |M̂12||M̂13|
|M23|

+
|M̂12||M̂13|
|M23|

− |M̂12||M13|
|M23|

+
|M̂12||M13|
|M23|

− |M12||M13|
|M23|

∣∣∣∣∣
2

≤ 1

4a2
min

(∣∣∣M̂12M̂13

M̂23M23

∣∣∣‖M̂23| − |M23||+
∣∣∣M̂12

M23

∣∣∣‖M̂13| − |M13‖+
∣∣∣M13

M23

∣∣∣‖M̂12| − |M12‖

)2

≤ 1

4a2
min

(∣∣∣M̂12M̂13

M̂23M23

∣∣∣|M̂23 −M23|+
∣∣∣M̂12

M23

∣∣∣|M̂13 −M13|+
∣∣∣M13

M23

∣∣∣|M̂12 −M12|

)2

. (12)

Clearly, all elements of M̂ and M must be less than 1. We further know that elements of |M | are at least a2
min, since

E [vivj] = E [viY]E [vjY] ≥ a2
min. Furthermore, elements of |M̂ | are also at least a2

min because |M̂ij | = âiâj ≥ a2
min by

construction of our algorithm. Define ∆ij = M̂ij −Mij . Then

(|â1| − |a1|)2 ≤ 1

4a2
min

(
1

a4
min

|∆23|+
1

a2
min

|∆13|+
1

a2
min

|∆12|
)2

≤ 1

4a2
min

(∆2
23 + ∆2

13 + ∆2
12)

(
1

a8
min

+
2

a4
min

)
.

(11) is now

‖â− a‖2 ≤

(
3

4a2
min

(
1

a8
min

+
2

a4
min

) τ∑
i=1

(
∆2
Ti(1)Ti(2) + ∆2

Ti(1)Ti(3) + ∆2
Ti(2)Ti(3)

)) 1
2

.

To bound the maximum absolute value between elements of M̂ and M , note that the Frobenius norm of the 3× 3 submatrix
defined over Ti is

‖M̂Ti −MTi‖F =
(

2
(

∆2
Ti(1)Ti(2) + ∆2

Ti(1)Ti(3) + ∆2
Ti(2)Ti(3)

)) 1
2

.

Moreover, ‖M̂Ti −MTi‖F =
√∑3

j=1 σ
2
j (M̂Ti −MTi) ≤

√
3‖M̂Ti −MTi‖2. Putting everything together,

‖â− a‖2 ≤

(
3

4a2
min

(
1

a8
min

+
2

a4
min

)
· 1

2

τ∑
i=1

‖M̂Ti −MTi‖2F

) 1
2

≤

(
3

4a2
min

(
1

a8
min

+
2

a4
min

)
· 3

2

τ∑
i=1

‖M̂Ti −MTi‖22

) 1
2

.

Lastly, to compute E[‖â− a‖2], we use Jensen’s inequality and linearity of expectation:

E‖â− a‖2] ≤

(
3

4a2
min

(
1

a8
min

+
2

a4
min

)
· 3

2

τ∑
i=1

E[‖M̂Ti −MTi‖22]

) 1
2

.

We use the matrix Hoeffding inequality as described in Ratner et al. (2019), which says

P (‖M̂ −M‖2 ≥ γ) ≤ 2m exp

(
− nγ2

32m2

)
.

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

To get the probability distribution over ‖M̂ −M‖22, we just note that P (‖M̂ −M‖2 ≥ γ) = P (‖M̂ −M‖22 ≥ γ2) to get

P (‖M̂ −M‖22 ≥ γ) ≤ 2m exp
(
− nγ

32m2

)
.

From which we can integrate to get

E[‖M̂Ti −MTi‖22] =

∫ ∞
0

P (‖M̂Ti −MTi‖22 ≥ γ)dγ ≤ 64(3)3

n
.

Substituting this back in, we get

E[‖â− a‖2] ≤
(

3

4a2
min

(
1

a8
min

+
2

a4
min

)
· 3τ

2

1728

n

) 1
2

≤
(

1944

a2
min

·
(

1

a8
min

+
2

a4
min

)
· τ
n

) 1
2

.

Finally, note that

1

a2
min

·
(

1

a8
min

+
2

a4
min

)
=

1

a2
min

· 1 + 2a4
min

a8
min

≤ 3

a10
min

.

Therefore, the sampling error for the accuracy is bounded by

E[‖â− a‖2] ≤
(

1944 · 3
a10

min

· τ
n

) 1
2

≤ Ca
1

a5
min

√
m

n
.

This is because at most we will use a triplet to compute each relevant ai, meaning that τ ≤ m. The term Ca here is 18
√

6.

Remark 1. Although a lower bound on accuracy amin invariably appears in this result, the dependence on a single
low-accuracy source λmin can be reduced. We improve our bound from having a 1

a5min
dependency to one additive term

of order 1
amin

√
n

, while other terms are not dependent on amin and are overall of order
√

m−1
n . In (12), the 4a2

min can be

tightened to 4a2
i for each λi, and M23 and M̂23 are not in terms of amin if neither of the two labeling functions at hand

are λmin. Therefore, for any λi 6= λmin, we do not have a dependency on amin if we ensure that the triplet used to recover
its accuracy in Algorithm 1 does not include λmin. Then only one term in our final bound will have a 1

amin
√
n

dependency

compared to the previous 1
a5min

√
m
n .

Concentration inequalities on observable data

Lemma 6. Define p(i)(x) = P (λi = x) and p̂(i)(x) = 1
n

∑n
k=1 1

{
L

(i)
k = x

}
, and let p(x), p̂(x) ∈ Rm denote the vectors

over all i. Then

∆p := E [‖p̂(x)− p(x)‖2] ≤
√
m

n
.

Proof. Note that E
[
1

{
L

(i)
k = x

}]
= P (λi = 1). Then using Hoeffding’s inequality, we have that

P (|p̂(i)(x)− p(i)(x)| ≥ ε) ≤ 2 exp

(
−2n2ε2

n(1)2

)
≤ 2 exp

(
−2nε2

)
.

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

This expression is equivalent to

P (|p(i)(x)− p(i)(x)|2 ≥ ε) ≤ 2 exp (−2nε) .

We can now compute E
[
|p̂(i)(x)− p(i)(x)|2

]
:

E
[
|p̂(i)(x)− p(i)(x)|2

]
≤
∫ ∞

0

2 exp (−2nε) dε = −2 · 1

2n
exp (−2nε)

∣∣∣∣∞
0

=
1

n
.

The overall L2 error for p(x) is then

E [‖p̂(x)− p(x)‖2] = E

[(m∑
i=1

|p̂(i)(x)− p(i)(x)|2
)1/2

]
≤

√√√√ m∑
i=1

E
[
|p̂(i)(x)− p(i)(x)|2

]
≤
√
m

n
.

Lemma 7. Define M(a, b) to be a second moment matrix where M(a, b)ij = E [aibj] for some random variables
ai, bj ∈ {−1, 0, 1} each corresponding to λi, λj . Let ‖ · ‖ij be the Frobenius norm over elements indexed at (i, j), where
λi and λj share an edge in the dependency graph. If Gdep has d conditionally independent subgraphs, the estimation error
of M is

∆M := E[‖M̂(a, b)−M(a, b)‖ij] ≤ Cm

√
d− 1 + (m− d+ 1)2

n
≤ Cm

m√
n
.

For some constant Cm.

Proof. Recall that the subgraphs are defined as sets V1, . . . , Vd, and let E1, . . . , Ed be the corresponding sets of edges
within the subgraphs. We can split up the norm ‖M̂(a, b)−M(a, b)‖ij into summations over sets of edges.

‖M̂(a, b)−M(a, b)‖ij =
(∑

(i,j)∈Edep

(M̂(a, b)ij −M(a, b)ij)
2
) 1

2

=
(d∑
k=1

∑
(i,j)∈Ek

(M̂(a, b)ij −M(a, b)ij)
2
) 1

2

≤
(d∑
k=1

∑
i,j∈Vk

(M̂(a, b)ij −M(a, b)ij)
2
) 1

2

=
(d∑
k=1

1

2
‖M̂(a, b)Vk −M(a, b)Vk‖2F

) 1
2

.

We take the expectation of both sides by using linearity of expectation and Jensen’s inequality:

E[‖M̂(a, b)−M(a, b)‖ij] ≤
(d∑
k=1

1

2
E[‖M̂(a, b)Vk −M(a, b)Vk‖2F]

) 1
2

.

We are able to modify Proposition A.3 of Bunea & Xiao (2015) into a concentration inequality for the second moment matrix

rather than the covariance matrix, which states that E[‖M̂(a, b)Vk −M(a, b)Vk‖2F] ≤ (32e−4 + e+ 64)
(

4c1tr(MVk
)√

n

)2

for
some constant c1. We are able to use this result because our random variables are sub-Gaussian and have bounded higher
order moments. Then our bound becomes

E[‖M̂(a, b)−M(a, b)‖ij] ≤
(d∑
k=1

1

2
(32e−4 + e+ 64)

16c21|Vk|2

n

) 1
2 ≤

(8c21(32e−4 + e+ 64)

n

d∑
k=1

|Vk|2
) 1

2

.

∑d
k=1 |Vk|2 is maximized when we have d − 1 sugraphs of size 1 and 1 subgraph of size m − d + 1, in which case the

summation is d− 1 + (m− d+ 1)2. Intuitively, when there are more subgraphs, this value will be smaller and closer to an
order of m rather than m2. Putting this together, our bound is

E[‖M̂(a, b)−M(a, b)‖ij] ≤
(

8c21(32e−4 + e+ 64)
d− 1 + (m− d+ 1)2

n

) 1
2 ≤ Cm

m√
n
.

Where Cm =
√

8c21(32e−4 + e+ 64).

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Estimating µi We first estimate µi = P (λi, Y
dep(i)) for all relevant λi. For ease of notation, let Y refer to Y dep(i) in

this section. Denote µi to be the vector of all µi across all λ. Note that

‖µ̂i − µi‖2 ≤ ‖diagm(A−1
1)‖2‖ρ̂− ρ‖2.

ρ is the vector of all ri for i = 1, . . . ,m, and diagm(A−1
1) is a block matrix containing m A−1

1 on its diagonal; note that
the 2-norm of a block diagonal matrix is just the maximum 2-norm over all of the block matrices, which is ‖A−1

1 ‖2. Recall
that ri = [1 P (λi = 1) P (λi = 0) P (Y = 1) P (λiY = 1) P (λi = 0, Y = 1)]T . For each term of ri, we have a
corresponding sampling error to compute over ρ:

• P (λi = 1): We need to compute P̂ (λi = 1)− P (λi = 1) for each λi. All together, the sampling error for this term is
equivalent to ‖p̂(1)− p(1)‖2.

• P (λi = 0): The sampling error over all P̂ (λi = 0)− P (λi = 0) is equivalent to ‖p̂(0)− p(0)‖2.

• P (λiY = 1): Since ai = E [v2i−1Y] = E [λiY] = P (λiY = 1) − P (λiY = −1) = 2P (λiY = 1) + P (λi =
0) − 1 and the sampling error over all P̂ (λiY = 1) − P (λiY = 1) is at most 1

2‖(â − a) − (p̂(0) − p(0))‖2 ≤
1
2 (‖â− a‖2 + ‖p̂(0)− p(0)‖2).

• P (λi = 0, Y = 1): This expression is equal to P (λi = 0)P (Y = 1), so the sampling error is P (Y = 1)‖p̂(0) −
p(0)‖2 ≤ ‖p̂(0)− p(0)‖2.

Putting these error terms together, we have an expression for the sampling error for ρ:

‖ρ̂− ρ‖2 =

√
‖p̂(1)− p(1)‖22 + 2‖p̂(0)− p(0)‖22 +

1

4
(‖â− a‖2 + ‖p̂(0)− p(0)‖2)2

≤ ‖p̂(1)− p(1)‖2 +
√

2‖p̂(0)− p(0)‖2 +
1

2
(‖â− a‖+ ‖p̂(0)− p(0)‖)

= ‖p̂(1)− p(1)‖2 +
(1

2
+
√

2
)
‖p̂(0)− p(0)‖2 +

1

2
‖â− a‖2,

where we use concavity of the square root in the first step. Therefore,

E [‖ρ̂− ρ‖2] ≤ E [‖p̂(1)− p(1)‖2] +
(1

2
+
√

2
)
E [‖p̂(0)− p(0)‖2] +

1

2
E [‖â− a‖2]

=
(3

2
+
√

2
)

∆p +
1

2
∆a.

Plugging this back into our error for µi and using Lemmas 5 and 6,

E [‖µ̂i − µi‖2] ≤ ‖A−1
1 ‖2

((
3

2
+
√

2

)√
m

n
+

Ca
2a5
|min|

√
m

n

)
.

Therefore, if there are no cliques of size 3 or greater in Gdep, the sampling error is O(
√
m/n).

Estimating all µij Now we estimate µij = P (λi, λj , Y
dep(i, j)) for λi, λj sharing an edge in Gdep. For ease of notation,

let Y refer to Y dep(i, j) in this section. Denote µij to be the vector of all µij . Note that

‖µ̂ij − µij‖2 ≤ ‖diag|E|(A2)−1‖2‖ψ̂ − ψ‖2 = ‖A−1
2 ‖2‖ψ̂ − ψ‖2.

ψ is the vector of all rij for all (i, j) ∈ E. Recall that ai = E [viY], aij = E [vivjY]. We also define X(a)
i = 1 {λi = a}

and M(X(a), X(b))ij = E
[
X

(a)
i X

(b)
j

]
= P (λi = a, λj = b). For each term of ri, we have a corresponding estimation

error to compute.

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

• P (λi = 1): We need to compute P̂ (λi = 1) − P (λi = 1) over all (i, j) ∈ E, so the sampling error for this term is√∑
(i,j)∈E(P̂ (λi = 1)− P (λi = 1))2 ≤

√∑m
i=1m(P̂ (λi = 1)− P (λi = 1))2 =

√
m‖p̂(1)− p(1)‖2.

• P (λi = 0): The sampling error is equivalent to
√
m‖p̂(0)− p(0)‖2.

• P (λj = 1): The sampling error is equivalent to
√
m‖p̂(1)− p(1)‖2.

• P (λj = 0): The sampling error is equivalent to
√
m‖p̂(0)− p(0)‖2.

• P (λiλj = 1): This probability can be written as P (λi = 1, λj = 1) + P (λi = −1, λj = −1), so we would need
to compute P̂ (λi = 1, λj = 1) − P (λi = 1, λj = 1) + P̂ (λi = −1, λj = −1) − P (λi = −1, λj = −1). Then the
sampling error is equivalent to ‖M̂(X(1), X(1))−M(X(1), X(1)) + M̂(X(−1), X(−1))−M(X(−1), X(−1))‖ij .

• P (λi = 0, λj = 1): Using the definition of M , the sampling error over all (i, j) ∈ E for this is ‖M̂(X(0), X(1))−
M(X(0), X(1))‖ij .

• P (λi = 1, λj = 0): Similarly, the sampling error is ‖M̂(X(1), X(0))−M(X(1), X(0))‖ij .

• P (λi = 0, λj = 0): Similarly, the sampling error is ‖M̂(X(0), X(0))−M(X(0), X(0))‖ij .

• P (λiY = 1): Similar to before, the sampling error is 1
2

√
m (‖â− a‖2 + ‖p̂(0)− p(0)‖2).

• P (λi = 0, Y = 1): Similar to our estimate of µi, the sampling error is
√
m‖p̂(0)− p(0)‖2.

• P (λjY = 1): The sampling error is 1
2

√
m (‖â− a‖2 + ‖p̂(0)− p(0)‖2).

• P (λj = 0, Y = 1): The sampling error is
√
m‖p̂(0)− p(0)‖2.

• P (λiλjY = 1): Note that E [λiλjY] = 2P (λiλjY = 1) + P (λiλj = 0)− 1. Moreover, E [λiλjY] can be expressed
as E [Y] · E [λiλj]. Then the sampling error over all P̂ (λiλjY = 1)− P (λiλjY = 1) is at least 1

2‖E [Y] (Ê [λiλj]−
E [λiλj]) − (P̂ (λiλj = 0) − P (λiλj = 0))‖ij . Furthermore, we can write P (λiλj = 0) as P (λi = 0) + P (λj =

0)− P (λi = 0, λj = 0), so our sampling error is now less than 1
2‖M̂(λ, λ)−M(λ, λ)‖ij + 1

2

√
m‖p̂(0)− p(0)‖2 +

1
2

√
m‖p̂(0)− p(0)‖2 + 1

2‖M̂(X(0), X(0))−M(X(0), X(0))‖ij .

• P (λi = 0, λjY = 1): Note that this can be written as 1
2 (P (λi = 0) + E [λjY |λi = 0]P (λi = 0)− P (λi = 0, λj = 0)).

Then the sampling error over all P̂ (λi = 0, λjY = 1)− P (λi = 0, λjY = 1) is equivalent to

1

2

√
m‖p̂(0)− p(0)‖2 +

1

2
‖Ê [λjY |λi = 0] P̂ (λi = 0)− E [λjY |λi = 0]P (λi = 0)

− (M̂(X(0), X(0))−M(X(0), X(0)))‖ij

=
1

2

√
m‖p̂(0)− p(0)‖2 +

1

2
‖M̂(X(0), X(0))−M(X(0), X(0))‖ij +

1

2
‖Ê [λjY |λi = 0] (P̂ (λi = 0)− P (λi = 0))

− (E [λjY |λi = 0]− Ê [λjY |λi = 0])P (λi = 0)‖ij

≤
√
m

2
‖p̂(0)− p(0)‖2 +

1

2
‖M̂(X(0), X(0))−M(X(0), X(0))‖ij +

√
m

2
‖p̂(0)− p(0)‖2

+
1

2
‖E [λjY |λi = 0]− Ê [λjY |λi = 0] ‖ij

=
√
m‖p̂(0)− p(0)‖2 +

1

2
‖M̂(X(0), X(0))−M(X(0), X(0))‖ij +

1

2
‖E [λjY |λi = 0]− Ê [λjY |λi = 0] ‖ij

• P (λj = 0, λiY = 1): Symmetric to the previous case, the sampling error is
√
m‖p̂(0)−p(0)‖2 + 1

2‖M̂(X(0), X(0))−
M(X(0), X(0))‖ij + 1

2‖E [λjY |λi = 0]− Ê [λjY |λi = 0] ‖ij .

• P (λi = 0, λj = 0, Y = 1): This expression is equal to P (λi = 0, λj = 0)P (Y = 1), so the sampling error is
P (Y = 1)‖M̂(X(0), X(0))−M(X(0), X(0))‖ij ≤ ‖M̂(X(0), X(0))−M(X(0), X(0))‖ij .

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

After combining terms and taking the expectation, we have that

E
[
‖ψ̂ − ψ‖2

]
≤ 2
√

2m∆p + 2∆M + 3∆M +
1√
2

(
√
m∆a +

√
m∆p) +

√
2m∆p +

1

2
(∆M + 2

√
m∆p + ∆M)

+
1√
2

(2
√
m∆p + ‖Ê [λiY |λj = 0]− E [λiY |λj = 0] ‖ij + ∆M) + ∆M

=

(
7 +

1√
2

)
∆M +

(
9

2

√
2m+

√
m

)
∆p +

√
m

2
∆a +

1√
2
‖Ê [λiY |λj = 0]− E [λiY |λj = 0] ‖ij .

For E [λiY |λj = 0], this term is equal to 0 when no sources can abstain. Otherwise, suppose that among the sources that do
abstain, each label abstains with frequency at least r. Then ‖Ê [λiY |λj = 0]− E [λiY |λj = 0] ‖ij ≤

√
m · Ca

a5min

√
m
rn since

there are rn samples used to produce the estimate. Using Lemma 5, 6, and 7, we now get that

E [‖µ̂ij − µij‖2] ≤ ‖A−1
2 ‖

((
7 +

1√
2

)
Cm

m√
n

+

(
9
√

2

2
+ 1

)
m√
n

+
Ca

a5
|min|

· m√
n

(
1√
2

+
1√
2r

))
.

Finally, we can compute ‖A−1
1 ‖ and ‖A−1

2 ‖ since both matrices are constants, so the total estimation error is

E [‖µ̂− µ‖2] ≤3.19

((
3

2
+
√

2

)√
m

n
+

Ca
2a5
|min|

√
m

n

)
+

6.35

((
7 +

1√
2

)
Cm

m√
n

+

(
9
√

2

2
+ 1

)
m√
n

+
Ca

a5
|min|

· m√
n

(
1√
2

+
1√
2r

))
.

D.2. Proof of Theorem 2 (Information Theoretical Lower Bound)

For Theorem 2 and Theorem 3, we will need the following lemma.
Lemma 8. Let θ1 and θ2 be two sets of canonical parameters for an exponential family model, and let µ1 and µ2 be the
respective mean parameters. If we define emin to be the smallest eigenvalue of the covariance matrix Σ for the random
variables in the graphical model,

‖θ1 − θ2‖ ≤
1

emin
‖µ1 − µ2‖

.

Proof. Let A(θ) be the log partition function. Now, recall that the Hessian∇2A(θ) is equal to Σ above. Next, since emin is
the smallest eigenvalue,∇2A(θ)− eminI = Σ− eminI is positive semi-definite, so A(θ) is strongly convex with parameter
emin.

Note that since A(·) is strongly convex with parameter emin, then A∗(·), its Fenchel dual, has Lipchitz continuous gradients
with parameter 1

emin
(Zhou, 2018). This means that

‖∇A∗(µ1)−∇A∗(µ2)‖ ≤ 1

emin
‖µ1 − µ2‖.

But ∇A∗(µ) is the inverse mapping from mean parameters to canonical parameters, so this is just

‖θ1 − θ2‖ ≤
1

emin
‖µ1 − µ2‖

.

Now, we provide the proof for Theorem 2. Consider the following family of distributions for a graphical model with one
hidden variable Y , m observed variables that are all conditionally independent given Y , and no sources abstaining:

P =
{
P =

1

z
exp(θY Y +

m∑
j=1

θjλjY) : θ ∈ Rm+1
}

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

We define a set of canonical parameters θv = δv, where δ > 0, v ∈ {−1, 1}m (θY is fixed since it maps to a known mean
parameter), and Pv is the corresponding distribution in P . P induces a δ√

m
-Hamming separation for the L2 loss because

‖θ − θv‖2 =
(m∑
j=1

|θj − [θv]j |2
)1/2

≥
∑m
j=1 1 · |θj − [θv]|j(∑m

j=1 12
)1/2

=
1√
m

m∑
j=1

|θj − [θv]j | ≥
δ√
m

m∑
j=1

1{sign(θj) 6= vj}.

We use Cauchy-Schwarz inequality in the first line and the fact that if the sign of θj is different from vj , then θj and [θv]j
must be at least δ apart. Then applying Assouad’s Lemma (Yu, 1997), the minimax risk is bounded by

Mn(θ(P), L2) = inf
θ̂

sup
P∈P

EP [‖θ̂(X1, . . . , Xn)− θ(P)‖2] ≥ δ

2
√
m

m∑
j=1

1− ‖Pn+j − Pn−j‖TV .

θ̂(X1, . . . , Xn) is an estimate of θ based on the n observable data points, while θ(P) is the canonical parameters of a
distribution P . Pn±j = 1

2m−1

∑
v P

n
v,±j , where Pnv,±j is the product of n distributions parametrized by θv with vj = ±1.

We use the convexity of total variation distance, Pinsker’s inequality, and decoupling of KL-divergence to get

‖Pn+j − Pn−j‖2TV ≤ max
dham(v,v′)≤1

‖Pnv − Pnv′‖2TV ≤
1

2
max

dham(v,v′)≤1
KL(Pnv ‖Pnv′) =

n

2
max

dham(v,v′)≤1
KL(Pv‖Pv′).

v and v′ above only differ in one term. Then our lower bound becomes

Mn(θ(P), L2) ≥ δ

2
√
m

m∑
j=1

1−
√
n

2
max

dham(v,v′)≤1
KL(Pv‖Pv′) =

δ
√
m

2

(
1−

√
n

2
max

dham(v,v′)≤1
KL(Pv‖Pv′)

)
. (13)

We must bound the KL-divergence between Pv and P ′v. Suppose WLOG that v and v′ differ at the ith index with
vi = 1, v′i = −1, and let zv and zv′ be the respective terms used to normalize the distributions. Then the KL divergence is

KL(Pv‖Pv′) = Ev[〈θv − θv′ , λY 〉] + ln
zv′

zv
= 2δEv[λiY] + ln

zv′

zv
. (14)

We can write an expression for Ev[λiY]:

Ev[λiY] = 2(Pv(λi = 1, Y = 1) + Pv(λi = −1, Y = −1))− 1

=
2

zv

(∑
λ¬i

exp(θY + δ +

m∑
j 6=i

(δvj)λj) + exp(−θY + δ −
m∑
j 6=i

(δvj)λj)
)
− 1

=
2

zv
exp(δ)

∑
λ¬i

2 cosh(θY +

m∑
j 6=i

(δvj)λj)− 1. (15)

Similarly, zv and zv′ can be written as

zv = exp(δ)
∑
λ¬i

2 cosh(θY +

m∑
j 6=i

(δvj)λj) +
∑
λ¬i

exp(θY − δ +
∑
j 6=i

(δvj)λj) +
∑
λ¬i

exp(−θY − δ −
∑
j 6=i

(δvj))

= (exp(δ) + exp(−δ))
∑
λ¬i

2 cosh(θY +
∑
j 6=i

(δvj)λj) = 4 cosh(δ)
∑
λ¬i

cosh(θY +
∑
j 6=i

(δvj)λj)

zv′ = 4 cosh(δ)
∑
λ¬i

cosh(θY +
∑
j 6=i

(δv′j)λj)

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Plugging zv back into (15), we get:

Ev [λiY] = 4 ·
exp(δ)

∑
λ¬i

cosh(θY +
∑m
j 6=i(δvj)λj)

4 cosh(δ)
∑
λ¬i

cosh(θY +
∑m
j 6=i(δvj)λj)

− 1 =
exp(δ)

cosh(δ)
− 1.

Also note that zv′zv = 1 since v′j = vj for all j 6= i. The KL-divergence expression (14) now becomes

KL(Pv‖Pv′) = 2δ

(
exp(δ)

cosh(δ)
− 1

)
+ ln(1) = 2δ

(
exp(δ)

cosh(δ)
− 1

)
.

We finally show that this expression is less than 2δ2. Note that for positive δ, f(δ) = exp(δ)
cosh(δ) − 1 < δ, because f(δ) is

concave and f ′(0) = 1. Then we clearly have that KL(Pv‖Pv′) ≤ 2δ2. Putting this back into our expression for the
minimax risk, (13) becomes

Mn(θ(P), L2) ≥ δ
√
m

2
(1−

√
nδ2).

Then if we set δ = 1
2
√
n

, we get that

Mn(θ(P), L2) ≥
√
m

8
√
n
.

Lastly, to convert to a bound over the mean parameters, we use Lemma 8 to conclude that

inf
µ̂

sup
P∈P

EP [‖µ̂(X1, . . . , Xn)− µ(P)‖2] ≥ emin
8

√
m

n
.

From this, we can conclude that the estimation error on the label model parameters ‖µ̂− µ‖2 is also at least emin8

√
m
n .

D.3. Proof of Theorem 3 (Generalization Error)

We base our proof off of Theorem 1 of Ratner et al. (2019) with modifications to account for model misspecification. To
learn the parametrization of our end model fw, we want to minimize a loss function L(w,X,Y) ∈ [0, 1]. The expected
loss we would normally minimize using some w∗ = argminw L(w) is

L(w) = E(X,Y)∼D [L(w,X,Y)] .

However, since we do not have access to the true labels Y , we instead minimize the expected noise-aware loss. Recall that
µ is the parametrization of the label model we would learn with population-level statistics, and µ̂ is the parametrization we
learn with the empirical estimates from our data. Denote Pµ and Pµ̂ as the respective distributions. If we were to have a
population-level estimate of µ, the loss to minimize would be

Lµ(w) = E(X,Y)∼D

[
EỸ ∼Pµ(·|λ(X))

[
L(w,X, Ỹ)

]]
.

However, because we must estimate µ̂ and further are minimizing loss over n samples, we want to estimate a ŵ that
minimizes the empirical loss,

L̂µ̂(w) =
1

n

n∑
i=1

EỸ ∼Pµ̂(·|λ(Xi))

[
L(w,Xi, Ỹ)

]
.

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

We first write L(w) in terms of Lµ(w).

L(w) = E(X,Y)∼D [L(w,X,Y)] = E(X′,Y ′)∼D
[
E(X,Y)∼D [L(w,X′,Y)|X = X′]

]
= E(X′,Y ′)∼D

[
E(X,Ỹ)∼Pµ [L(w,X′,Y)|X = X′] + E(X,Y)∼D [L(w,X′,Y)|X = X′]

− E(X,Ỹ)∼Pµ [L(w,X′,Y)|X = X′]
]

≤ E(X′,Y ′)∼D

[
E(λ,Ỹ)∼Pµ [L(w,X′,Y)|λ = λ′)]

]
+ E(X′,Y ′)∼D

[∣∣∣∑
x,y

L(w,X′, y)(D(X = x,Y = y|X = X′)− Pµ(X = x,Y = y|X = X′))
∣∣∣]

≤ Lµ(w) + E(X′,Y ′)∼D

[∑
x,y

L(w,X′, y) ·
∣∣D(X = x,Y = y|X = X′)− Pµ(X = x,Y = y|X = X′)

∣∣]
≤ Lµ(w) + E(X′,Y ′)∼D

[∑
x,y

∣∣D(X = x,Y = y|X = X′)− Pµ(X = x,Y = y|X = X′)
∣∣]

Here we have used the fact that L(w,X′, y) ≤ 1. Note that D(X = x,Y = y|X = X′) = D(Y = y|X = X′) only
whenX′ = x, and is 0 otherwise. The same holds for Pµ, so

L(w) ≤ Lµ(w) + E(X′,Y ′)∼D

[∑
y

∣∣D(Y = y|X = X′)− Pµ(Y = y|X = X′)
∣∣] .

Note that the expression
∑
y

∣∣D(Y = y|X = X′)−Pµ(Y = y|X = X′)
∣∣ is just half the total variation distance between

D(Y |X′) and Pµ(Y |X′). Then, using Pinsker’s inequality, we bound L(w) in terms of the conditional KL divergence
between D and Pµ:

L(w) ≤ Lµ(w) + EX′∼D [2 · TV (D(Y |X′), Pµ(Y |X′))]

≤ Lµ(w) + 2 · EX∼D
[√

(1/2)KL(D(Y |X) ‖ Pµ(Y |X))

]
≤ Lµ(w) +

√
2 ·KL(D(Y |X) ‖ Pµ(Y |X)).

There is a similar lower bound on L(w) if we perform the same steps as above on the inequality L(w) ≥ Lµ(w) −
E(X′,Y ′)∼D

[∣∣∣E(X,Y)∼D [L(w,X′,Y)|X = X′]− E(X,Ỹ)∼Pµ [L(w,X′,Y)|X = X′]
∣∣∣]. This yields

L(w) ≥ Lµ(w)−
√

2 ·KL(D(Y |X) ‖ Pµ(Y |X)).

Therefore,

L(ŵ)− L(w∗) ≤ Lµ(ŵ)− Lµ(w∗) + 2
√

2 ·KL(D(Y |X) ‖ Pµ(Y |X)).

We finish the proof of the generalization bound with the procedure from Ratner et al. (2019) but also use the conversion from
canonical parameters to mean parameters as stated in Lemma 8, and note that the estimation error of the mean parameters is
always less than the estimation error of the label model parameters. Then our final generalization result is

L(ŵ)− L(w∗) ≤ γ(n) +
8|Y|
emin

‖µ̂− µ‖2 + δ(D, Pµ),

where δ(D, Pµ) = 2
√

2 ·KL(D(Y |X) ‖ Pµ(Y |X)), emin is the minimum eigenvalue of Cov [λ,Y] over the construc-
tion of the binary Ising model, and γ(n) bounds the empirical risk minimization error.

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

E. Extended Experimental Details
We describe additional details about the tasks, including details about data sources, supervision sources, and end models.
We also report details about our ablation studies. All timing measurements were taken on a machine with an Intel Xeon
E5-2690 v4 CPU and Tesla P100-PCIE-16GB GPU. Details about the sizes of the train/dev/test splits and end models are
shown in Table 2.

E.1. Dataset Details

Dataset End Model Ntrain Ndev Ntest

Spouse LSTM 22,254 2,811 2,701
Spam Logistic Regression 1,586 120 250
Weather Logistic Regression 187 50 50
Commercial ResNet-50 64,130 9,479 7,496
Interview ResNet-50 6,835 3,026 3,563
Tennis Rally ResNet-50 6,959 746 1,098
Basketball ResNet-18 3,594 212 244

Table 2. We report the train/dev/test split of each dataset. The dev and test set have ground truth labels, and we assign labels to the
training set using our method or one of the baseline methods.

Spouse, Weather We use the datasets from Ratner et al. (2018) and the train/dev/test splits from that work (Weather is
called Crowd in that work).

Spam We use the dataset as provided by Snorkel1 and those train/dev/test splits.

Interview, Basketball We use the datasets from Sala et al. (2019) and the train/dev/test splits from that work.

Commercial We use the dataset from Fu et al. (2019) and the train/dev/test splits from that work.

Tennis Rally We obtained broadcast footage from four professional tennis matches, and annotated segments when the two
players are in a rally. We temporally downsampled the images at 1 FPS. We split into dev/test by taking segments from each
match (using contiguous segments for dev and test, respectively) to ensure that dev and test come from the same distribution.

E.2. Task-Specific End Models

For the datasets we draw from previous work (each dataset except for Tennis Rally), we use the previously published
end model architectures (LSTM (Hochreiter & Schmidhuber, 1997) for Spouse, logistic regression over bag of n-grams
for Spam and over Bert features for Weather (Devlin et al., 2018), ResNet pre-trained on ImageNet for the video tasks).
For Tennis Rally, we use ResNet-50 pre-trained on ImageNet to classify individual frames. We do not claim that these
end models achieve the best possible performance for each task; our goal is the compare the relative imporovements that
our weak supervision models provide compare to other baselines through label quality, which is orthogonal to achieving
state-of-the-art performance for these specific tasks.

For end models that come from previous works, we use the hyperparameters from those works. For the label model baselines,
we use the hyperparameters from previous works as well. For our label model, we use class balance from the dev set, or
tune the class balance ourselves with a grid search. We also tune which triplets we use for parameter recovery on the dev set.
For our end model parameters, we either use the hyperparameters from previous works, or run a simple grid search over
learning rate and momentum.

1https://www.snorkel.org/use-cases/01-spam-tutorial

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Spouse Spam Weather

Random abstains 20.9 64.1 69.1
FLYINGSQUID 49.6 92.3 88.9

Single Triplet Worst 4.5 67.0 0.0
Single Triplet Best 51.2 83.6 77.6

Single Triplet Average 37.9 73.4 31.0

FLYINGSQUIDLabel Model 47.0 89.1 77.6

Table 3. End model performance in terms of F1 score with random votes replacing abstentions (first row), compared to FLYINGSQUID,
for the benchmark applications.

E.3. Supervision Sources

Supervision sources are expressed as short Python functions. Each source relied on different information to assign noisy
labels:

Spouse, Weather, Spam For these tasks, we used the same supervision sources as used in previous work (Ratner et al.,
2018). These are all text classification tasks, so they rely on text-based heuristics such as the presence or absence of certain
words, or particular regex patterns.

Interview, Basketball Again, we use sources from previous work (Sala et al., 2019). For Interview, these sources rely
on the presence of certain faces in the frame, as determined by an identity classifier, or certain text in the transcript. For
Basketball, these sources rely on an off-the-shelf object detector to detect balls or people, and use heuristics based on the
average pixel of the detected ball or distance between the ball and person to determine whether the sport being played is
basketball or not.

Commercial In this dataset, there is a strong signal for the presence or absence of commercials in pixel histograms and
the text; in particular, commercials are book-ended on either side by sequences of black frames, and commercial segments
tend to have mixed-case or missing transcripts (whereas news segments are in all caps). We use these signals to build the
weak supervision sources.

Tennis Rally This dataset uses an off-the-shelf pose detector to provide primitives for the weak supervision sources. The
supervision sources are heuristics based on the number of people on court and their positions. Additional supervision
sources use color histograms of the frames (i.e., how green the frame is, or whether there are enough white pixels for the
court markings to be shown).

E.4. Ablation Studies

We report the results of two ablation studies on the benchmark applications. In the first study, we examine the effect of
randomly replacing abstains with votes, instead of augmenting Gdep. In the second study, we examine the effect of using a
single random selection of triplets instead of taking the mean or median over all triplet assignments.

Table 3 (top) shows end model performance for the three benchmark tasks when replacing abstains with random votes (top
row), compared to FLYINGSQUID end model performance. Replacing abstentions with random votes results in a major
degradation in performance.

Table 3 (bottom) shows label model performance when using a single random assignment of triplets, compared to the
FLYINGSQUID label model, which takes the median or mean of all possible triplets. There is large variance when taking a
single random assignment of triplets, whereas using an aggregation is more stable. In particular, while selecting a good seed
can result in performance that matches (Weather) or exceeds (Spouse) FLYINGSQUID label model performance, selecting
a bad seed result in much worse performance (including catastrophically bad predictors). As a result, FLYINGSQUID
outperforms random assignments on average.

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

As a final note, we comment on using means vs. medians for aggregating accuracy scores. For all tasks except for Weather,
there is no difference in label model performance. For Weather, using medians is more accurate, since the supervision
sources have a large abstention rate. As a result, many triplets result in accuracy scores of zero (hence the 0 F1 score in
Table 3). This throws off the median aggregation, since the median accuracy score becomes zero for many sources. However,
mean aggregation is more robust to these zero’s, since the positive accuracy scores from the triplets can correct for the
accuracy.

References
Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M. Tensor decompositions for learning latent variable

models. Journal of Machine Learning Research, 15:2773–2832, 2014.

Bunea, F. and Xiao, L. On the sample covariance matrix estimator of reduced effective rank population matrices, with
applications to fpca. Bernoulli, 21(5):1200–1230, 2015.

Chaganty, A. T. and Liang, P. Estimating latent-variable graphical models using moments and likelihoods. In International
Conference on Machine Learning, pp. 1872–1880, 2014.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

Fu, D. Y., Crichton, W., Hong, J., Yao, X., Zhang, H., Truong, A., Narayan, A., Agrawala, M., Ré, C., and Fatahalian, K.
Rekall: Specifying video events using compositions of spatiotemporal labels. arXiv preprint arXiv:1910.02993, 2019.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural Comput., 9(8):1735–1780, November 1997.

Joglekar, M., Garcia-Molina, H., and Parameswaran, A. Evaluating the crowd with confidence. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 686–694, 2013.

Long, P. M. The complexity of learning according to two models of a drifting environment. Machine Learning, 37(3):
337–354, Dec 1999. ISSN 1573-0565. doi: 10.1023/A:1007666507971. URL https://doi.org/10.1023/A:
1007666507971.

Raghunathan, A., Frostig, R., Duchi, J., and Liang, P. Estimation from indirect supervision with linear moments. In
International conference on machine learning, pp. 2568–2577, 2016.

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., and Ré, C. Snorkel: Rapid training data creation with weak
supervision. In Proceedings of the 44th International Conference on Very Large Data Bases (VLDB), Rio de Janeiro,
Brazil, 2018.

Ratner, A. J., Hancock, B., Dunnmon, J., Sala, F., Pandey, S., and Ré, C. Training complex models with multi-task weak
supervision. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, 2019.

Sala, F., Varma, P., Fries, J., Fu, D. Y., Sagawa, S., Khattar, S., Ramamoorthy, A., Xiao, K., Fatahalian, K., Priest, J., and Ré,
C. Multi-resolution weak supervision for sequential data. In Advances in Neural Information Processing Systems 32, pp.
192–203, 2019.

Yu, B. Assouad, fano, and le cam. In Festschrift for Lucien Le Cam, pp. 423–435. Springer, 1997.

Zhou, X. On the fenchel duality between strong convexity and lipschitz continuous gradient. arXiv preprint
arXiv:1803.06573, 2018.

https://doi.org/10.1023/A:1007666507971
https://doi.org/10.1023/A:1007666507971

