
Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

Daniel Y. Fu * 1 Mayee F. Chen * 1 Frederic Sala 1 Sarah M. Hooper 2 Kayvon Fatahalian 1 Christopher Ré 1

Abstract
Weak supervision is a popular method for build-
ing machine learning models without relying on
ground truth annotations. Instead, it generates
probabilistic training labels by estimating the ac-
curacies of multiple noisy labeling sources (e.g.,
heuristics, crowd workers). Existing approaches
use latent variable estimation to model the noisy
sources, but these methods can be computation-
ally expensive, scaling superlinearly in the data.
In this work, we show that, for a class of latent
variable models highly applicable to weak supervi-
sion, we can find a closed-form solution to model
parameters, obviating the need for iterative solu-
tions like stochastic gradient descent (SGD). We
use this insight to build FLYINGSQUID, a weak
supervision framework that runs orders of mag-
nitude faster than previous weak supervision ap-
proaches and requires fewer assumptions. In par-
ticular, we prove bounds on generalization error
without assuming that the latent variable model
can exactly parameterize the underlying data dis-
tribution. Empirically, we validate FLYINGSQUID
on benchmark weak supervision datasets and find
that it achieves the same or higher quality com-
pared to previous approaches without the need to
tune an SGD procedure, recovers model parame-
ters 170 times faster on average, and enables new
video analysis and online learning applications.

1. Introduction
Modern machine learning systems require large amounts
of labeled training data to be successful. Weak supervision
is a class of popular methods for building models without
resorting to manually labeling training data (Dehghani et al.,
2017b;a; Jia et al., 2017; Mahajan et al., 2018; Niu et al.,

*Equal contribution 1Department of Computer Science,
Stanford University 2Department of Electrical Engineering,
Stanford University. Correspondence to: Daniel Y. Fu
<danfu@cs.stanford.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

2012); it drives applications used by billions of people every
day, ranging from Gmail (Sheng et al., 2020) to AI prod-
ucts at Apple (Ré et al., 2020) and search products (Bach
et al., 2019). These approaches use noisy sources, such as
heuristics, crowd workers, external knowledge bases, and
user-defined functions (Gupta & Manning, 2014; Ratner
et al., 2019; Karger et al., 2011; Dawid & Skene, 1979;
Mintz et al., 2009; Zhang et al., 2017; Hearst, 1992) to
generate probabilistic training labels without hand-labeling.

The major technical challenge in weak supervision is to
efficiently estimate the accuracies of—and potentially the
correlations among—the noisy sources without any labeled
data (Guan et al., 2018; Takamatsu et al., 2012; Xiao et al.,
2015; Ratner et al., 2018). Standard approaches to this prob-
lem, from classical crowdsourcing to more recent methods,
use latent variable probabilistic graphical models (PGMs)
to model the primary sources of signal—the agreements
and disagreements between sources, along with known or
estimated source independencies (Dawid & Skene, 1979;
Karger et al., 2011; Ratner et al., 2016).

However, latent variable estimation is challenging, and the
techniques are often sample- and computationally-complex.
For example, Bach et al. (2019) required multiple iterations
of a Gibbs-based algorithm, and Ratner et al. (2019) re-
quired estimating the full inverse covariance matrix among
the sources, while Sala et al. (2019) and Zhan et al. (2019)
required the use of multiple iterations of stochastic gradi-
ent descent (SGD) to learn accuracy parameters. These
limitations make it difficult to use weak supervision in ap-
plications that require modeling complex temporal or spa-
tial dependencies, such as video and image analysis, or in
streaming applications that have strict latency requirements.
In contrast, our solution is motivated by a key observation:
that by breaking the problem into minimal subproblems—
solving parameters for triplets of sources at a time, similar
to Joglekar et al. (2013) and Chaganty & Liang (2014)—we
can reduce parameter estimation into solving systems of
equations that have simple, closed-form solutions.

Concretely, we show that, for a class of binary Ising mod-
els, we can reduce the problem of accuracy and correlation
estimation to solving a set of systems of equations whose
size is linear in the number of sources. These systems ad-
mit a closed-form solution, so we can estimate the model

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

X1

X2

X3

Unlabeled Input

def S_1:
 label +1 if Bernie on screen

def S_2:
 label +1 if background blue

def S_3:
 label -1 if in commercial

Noisy Sources Latent Variable
Model

E[λ1Y1]E[λ2Y1] = E[λ1λ2]

E[λ2Y1]E[λ3Y1] = E[λ2λ3]

E[λ3Y1]E[λ1Y1] = E[λ3λ1]

Solve Triplets
of Sources

μ(λ1,Y1)

μ(λ2,Y1)

μ(λ3,Y1)

μ(λ4,λ5,Y2)

μ(λ6,Y2)

Label Model

Y1

Y2

Y3

0.95

0.87

0.09

Probabilistic
Training Labels

End Model

Y1

Y2

Y3

λ1
λ2

λ4

λ6

λ5

λ7

λ9

λ8

λ3

Figure 1. The FLYINGSQUID pipeline. Users provide weak supervision sources, which generate noisy labels for a set of unlabeled data.
FLYINGSQUID uses a latent variable model and constructs triplets of sources to turn model parameter estimation into a set of minimal
subproblems with closed-form solutions. The label model then generates probabilistic training labels to train a downstream end model.

parameters in time linear in the data with provable bounds,
even though inference is NP-hard in general Ising mod-
els (Chandrasekaran et al., 2008; Koller & Friedman, 2009).
Critically, the class of Ising models we use captures many
weak supervision settings and is larger than that used in pre-
vious efforts. We use these insights to build FLYINGSQUID,
a new weak supervision framework that learns label source
accuracies with a closed-form solution.

We analyze the downstream performance of end models
trained with labels generated by FLYINGSQUID, and prove
the following results:

• We prove that the generalization error of a model
trained with labels generated by FLYINGSQUID scales
at the same asymptotic rate as supervised learning.

• We analyze model misspecification using KL diver-
gence, a more fine-grained result than Ratner et al.
(2019).

• We show that our parameter estimation approach
can be sample optimal up to constant factors via an
information-theoretic lower bound on minimax risk.

• We prove a first-of-its-kind result for downstream gen-
eralization of a window-based online weak supervision
algorithm, accounting for distributional drift.

Next, we empirically validate FLYINGSQUID on three
benchmark weak supervision datasets that have been used to
evaluate previous state-of-the-art weak supervision frame-
works (Ratner et al., 2018), as well as on four video analysis
tasks, where labeling training data is particularly expensive
and modeling temporal dependencies introduces significant
slowdowns in learning graphical model parameters. We find
that FLYINGSQUID achieves the same or higher quality as
previous approaches while learning parameters orders of
magnitude faster. Since FLYINGSQUID runs so fast, we
can learn graphical model parameters in the training loop
of a discriminative end model. This allows us to extend
FLYINGSQUID to the online learning setting with a window-
based algorithm, where we update model parameters at the
same time as we generate labels for an end model. In sum-

mary, we observe the following empirical results:

• We replicate evaluations of previous approaches and
match or exceed their accuracy (up to 4.9 F1 points).

• On tasks with relatively simple graphical model struc-
tures, FLYINGSQUID learns model parameters 170
times faster on average; on video analysis tasks,
where there are complex temporal dependencies, FLY-
INGSQUID learns up to 4,000 times faster.

• We demonstrate that our window-based online weak su-
pervision extension can both update model parameters
and train an end model completely online, outperform-
ing a majority vote baseline by up to 15.7 F1 points.

We release FLYINGSQUID as a novel layer integrated into
PyTorch.1 This layer allows weak supervision to be inte-
grated off-the-shelf into any deep learning model, learning
the accuracies of noisy labeling sources in the same training
loop as the end model. Our layer can be used in any stan-
dard training set up, enabling new modes of training from
multiple label sources.

2. Weakly Supervised Machine Learning
In this section, we give an overview of weak supervision
and our problem setup. In Section 2.1, we give an overview
of the inputs to weak supervision from the user’s perspec-
tive. In Section 2.2, we describe the formal problem setup.
Finally, in Section 2.3, we show how the problem reduces
to estimating the parameters of a latent variable PGM.

2.1. Background: Weak Supervision

We first give some background on weak supervision at a
high level. In weak supervision, practitioners programmati-
cally generate training labels through the process shown in
Figure 1. Users build multiple weak supervision sources that
assign noisy labels to data. For example, an analyst trying
to detect interviews of Bernie Sanders in a corpus of cable
TV news may use off-the-shelf face detection and identity

1https://github.com/HazyResearch/flyingsquid

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

Y

λ2λ1 λ3 λ4 λm...

Y

λ2λ1 λ3 λ4 λm...

Y1 Y2 Y3

λ3 λ6 λ9

λ1 λ2 λ4 λ5 λ7 λ8

Figure 2. Example of dependency structure graphs and triplets (rectangles). Left: Conditionally independent sources; Middle: With
dependencies. Right: Multiple temporally-correlated labels {Y1, Y2, Y3} with per-label sources.

classification networks to detect frames where Sanders is on
screen, or she may write a Python function to search closed
captions for instances of the text “Bernie Sanders.” Criti-
cally, these weak supervision sources can vote or abstain on
individual data points; this lets users express high-precision
signals without requiring them to have high recall as well.
For example, while the text “Bernie Sanders” in the tran-
script is a strong signal for an interview, the absence of the
text is not a strong signal for the absence of an interview
(once he is introduced, his name is not mentioned for most
of the interview).

These sources are noisy and may conflict with each other,
so a latent variable model, which we refer to as a label
model, is used to express the accuracies of and correlations
between them. Once its parameters are learned, the model
is used to aggregate source votes and generate probabilistic
training labels, which are in turn used to train a downstream
discriminative model (end model from here on).

2.2. Problem Setup

Now, we formally define our learning problem. Let X =
[X1, X2, . . . , XD] ∈ X be a vector of D related elements
(e.g., contiguous frames in a video, or neighboring pixels in
an image). Let Y = [Y1, Y2, . . . , YD] ∈ Y be the vector of
unobserved true labels for each element (e.g., the per-frame
label for event detection in video, or a per-pixel label for
a segmentation mask in an image). We refer to each Yi
as a task. We have (X,Y) ∼ D for some distribution D.
We simplify to binary Yi ∈ {±1} for ease of exposition
(we discuss the multi-class case in Appendix C.2). Let
m be the number of sources S1, . . . , Sm, each assigning a
label λj ∈ {±1} to some single element Xi to vote on its
respective Yi, or abstaining (λj = 0).

The goal is to apply the m weak supervision sources to
an unlabeled dataset {Xi}ni=1 with n data points to create
an n × m label matrix L, combine the source votes into
element-wise probabilistic training labels, {Ỹ i}ni=1, and
use them to train a discriminative classifier fw : X → Y ,
all without observing any ground truth labels.

2.3. Label Model

Now, we describe how we use a probabilistic graphical
model to generate training data based on labeling function
outputs. First, we describe how we use a graph to specify
the conditional dependencies between label sources and
tasks. Next, we describe how to represent the task labels
Y and source votes λ using a binary Ising model from
user-provided conditional dependencies between sources
and tasks. Then, we discuss how to perform inference using
the junction tree formula and introduce the label model
parameters our method focuses on estimating.

Conditional Dependencies Let a graphGdep specify con-
ditional dependencies between sources and tasks, using stan-
dard technical notions from the PGM literature (Koller &
Friedman, 2009; Lauritzen, 1996; Wainwright & Jordan,
2008). In particular, the lack of an edge in Gdep between
a pair of variables indicates independence conditioned on
a separator set of variables (Lauritzen, 1996). We assume
that Gdep is user-provided; it can also be estimated directly
from source votes (Ratner et al., 2019). Figure 2 shows
three graphs, capturing different relationships between tasks
and supervision sources. Figure 2 (left) is a single-task
scenario where noisy source errors are conditionally inde-
pendent; this case covers many benchmark weak supervi-
sion datasets. Here, D = 1, and there are no dependencies
between different elements in the dataset (e.g., randomly
sampled comments from YouTube for sentiment analysis).
Figure 2 (middle) has dependencies between the errors of
two sources (λ1 and λ2). Finally, Figure 2 (right) depicts a
more complex scenario, where three tasks have dependen-
cies between them. This structure is common in applica-
tions with temporal dependencies like video; for example,
Y1, Y2, Y3 might be contiguous frames (Sala et al., 2019).

Binary Ising Model We augment the dependency graph
Gdep to set up a binary Ising model on G = (V,E). Let the
vertices V = {Y ,v} contain a set of hidden variables Y
(one for every task Yi) and observed variables v, generated
by augmenting λ. We generate v by letting there be a pair of
binary observed variables (v2i−1, v2i) for each label source
λi, such that (v2i−1, v2i) is equal to (1,−1) when λi = 1,

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

(−1, 1) when λi = −1, and (1, 1) or (−1,−1) with equal
probability when λi = 0. This mapping also produces an
augmented label matrix L from the empirical label matrix
L, which contains n samples of source labels.

Next, let the edges E be constructed as follows. Let Y dep(i)
denote the task that λi labels for all i ∈ [1,m]. Then for all
i, there is an edge between each of (v2i−1, v2i) and Y dep(i)
representing the accuracy of λi as well as an edge between
v2i−1 and v2i representing the abstain rate of λi. If there is
an edge between λi and λj inGdep, then there are four edges
between (v2i−1, v2i) and (v2j−1, v2j). We also define Y (j)
as the hidden variable that vj acts on for all j ∈ [1, 2m]; in
particular, Y (2i− 1) = Y dep(i).

Inference The Ising model defines a joint distribution
P (Y ,λ) (detailed in Appendix C.1), which we wish to use
for inference. We can take advantage of the graphical model
properties of Gdep for efficient inference. In particular, sup-
pose that Gdep is triangulated; if not, edges can always be
added to Gdep until it is. Then, Gdep admits a junction tree
representation with maximal cliques C ∈ C̃dep and separa-
tor sets S ∈ Sdep. Inference is performed via a standard
approach, using the junction tree formula

P (Y ,λ) =
∏

C∈C̃dep

µC/
∏

S∈Sdep

µ
d(S)−1
S , (1)

where µC is the marginal probability of a clique C, µS
is the marginal probability of a separator set S, and d(S)
is the number of maximal cliques S is adjacent to (Lau-
ritzen, 1996; Wainwright & Jordan, 2008). We refer to these
marginals as the label model parameters µ.

We assume the distribution prior P (Ȳ) is user-provided,
but it can also be estimated directly by using source votes
as in Ratner et al. (2019) or by optimizing a composite like-
lihood function as in Chaganty & Liang (2014). Some other
marginals are directly observable from the votes generated
by the sources S1, . . . , Sm. However, marginals containing
elements from both Y and λ are not directly observable,
since we do not observe Y . The challenge is thus recovering
this set of marginals P (Yi, . . . , Yj , λk, . . . , λl).

3. Learning The Label Model
Now that we have defined our label model parameters µ, we
need to recover the parameters directly from the label matrix
L without observing the true labels Y . First, we discuss
how we recover the mean parameters of our Ising model
using Algorithm 1 (Section 3.1). Then, we map the mean
parameters to label model parameters (Section 3.2) by com-
puting expectations over cliques of G and applying a linear
transform to obtain µ. Finally, we discuss an extension to
the online setting (Section 3.3).

Algorithm 1 Triplet Method (before averaging)
Input: Set of variables ΩG, augmented label matrix L
Initialize A = ∅
while ∃ vi ∈ ΩG −A do

Pick vj , vk : vi ⊥⊥ vj |Y (i), vi ⊥⊥ vk|Y (i), vj ⊥⊥
vk|Y (i).
Estimate Ê[vivj] = 1

n

∑
t LitLjt, Ê[vivk] =

1
n

∑
t LitLkt, and Ê[vjvk] = 1

n

∑
t LjtLkt.

âi ←
√
|Ê[vivj] · Ê[vivk] / Ê[vjvk]|

âj ←
√
|Ê[vivj] · Ê[vjvk] / Ê[vivk]|

âk ←
√
|Ê[vivk] · Ê[vjvk] / Ê[vivj]|

A← A ∪ {vi, vj , vk}
end while
return RESOLVESIGNS(âi) ∀ vi ∈ V

Inputs and Outputs As input, we take in a label matrix
L that has, on average, better-than-random samples; depen-
dency graph Gdep; and the prior P (Ȳ). As output, we want
to compute µ, which would enable us to produce probabilis-
tic training data via (1).

3.1. Learning the Mean Parameters

We explain how to compute the mean parameters
E [Yi] ,E [YiYj] ,E [viY (i)], and E [vivj] of the Ising
model. Note that all of these parameters can be directly
estimated besides E [viY (i)]. Although we cannot ob-
serve Y (i), we can compute E [viY (i)] using a closed-form
method by relying on notions of independence and rates of
agreement between groups of three conditionally indepen-
dent observed variables for the hidden variable Y (i). Set
ai := E [viY (i)], which can be thought of as the accuracy
of the observed variable scaled to [−1,+1]. The following
proposition produces sufficient signal to learn from:
Proposition 1. If vi ⊥⊥ vj |Y (i), then viY (i) ⊥⊥ vjY (i).

Our proof is provided in Appendix C.1.1. This follows from
a symmetry argument applied to the conditional indepen-
dence of two variables vi and vj given Y (i). Then

aiaj = E [viY (i)]E [vjY (i)] = E
[
vivjY (i)2

]
= E [vivj] ,

where we used Y (i)2 = 1. While we cannot observe ai, the
product of aiaj is just E [vivj], the observable rate at which
a pair of variables act together. We can then utilize a third
variable vk such that aiak and ajak are also observable, and
solve a system of three equations for the accuracies up to
sign, e.g., |ai|, |aj |, |ak|. We explain how to recover signs
with the RESOLVESIGNS function in Appendix C.1.5.

Formally, define ΩG = {vi ∈ V : ∃ vj , vk s.t. vi ⊥⊥
vj |Y (i), vj ⊥⊥ vk|Y (i), vi ⊥⊥ vk|Y (i)} to be the set of vari-
ables that can be grouped into triplets in this way. For each

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

Algorithm 2 Label Model Parameter Recovery
Input: Gdep, distribution prior P (Ȳ), label matrix L.
AugmentGdep andL to generateG = (V,E) with clique-
set C and augmented label matrix L.
Obtain set of variables ΩG with solvable accuracies.
Compute mean parameters and estimate all âi =
Ê [viY (i)] using Algorithm 1.
for clique C ∈ C of observed variables do

Compute âC = Ê
[∏

k∈C vkY (C)
]

by factorizing into
observable averages and mean parameters.
Map âC in G to âCdep

in Gdep.
Linearly transform âCdep

to µ̂Cdep
.

end for
return Label model parameters µ̂

variable vi ∈ ΩG, we can compute the accuracy ai by solv-
ing the system aiaj = E [vivj] , aiak = E [vivk] , ajak =
E [vjvk] . In many practical settings, ΩG = V , so the triplet
method of recovery applies to each vi, motivating Algo-
rithm 1 (some examples of valid triplet groupings shown in
Figure 2). Note that variables can appear in multiple triplets,
and variables do not necessarily need to vote on the same
task Y (i) as long as they are conditionally independent
given Y (i). Different triplets give different accuracy values,
so we compute accuracy values from all possible triplets
and use the mean or median over all triplets. In cases where
ΩG is not equal to V , we supplement the triplet method
with other independence properties to recover accuracies on
more complex graphs, detailed in Appendix C.2.

3.2. Mapping to the Label Model Parameters

Now we map the mean parameters of our Ising model to
label model parameters. We use the mean parameters to
compute relevant expectations over the set C of all cliques
in G, map them to expectations over cliques Cdep in Gdep,
and linearly transform them into label model parameters.
Define Y (C) as the hidden variable that the entire clique
C ∈ C of observed variables acts on. Each expectation over
a clique of observed variables C and Y (C), denoted aC :=
E
[∏

k∈C vkY (C)
]
, can be factorized in terms of the mean

parameters and directly observable expectations (Appendix
C.1.2). For instance, vivj ⊥⊥ Y (i, j) for (vi, vj) ∈ E, such
that E [vivjY (i, j)] = E [vivj] · E [Y (i, j)].

Next, we convert the expectations over cliques in G back
into expectations over cliques in Gdep. Denote aCdep

:=

E
[∏

k∈Cdep
λkY

dep(Cdep)
]

for each source clique Cdep ∈
Cdep; then, there exists a C ∈ C over {v2k−1}k∈Cdep

such

that aC = E
[∏

k∈Cdep
v2k−1Y

dep(Cdep)
]

= aCdep
(Ap-

pendix C.1.3).

Finally, the label model parameters, which are marginal

distributions over maximal cliques and separator sets, can be
expressed as linear combinations of aCdep

and probabilities
that can be estimated directly from the data. Below is an
example of how to recover µi(a, b) = P (Y dep(i) = a, λi =
b) from E

[
λiY

dep(i)
]
:

 1 1 1 1 1 1
1 0 1 0 1 0
1 1 0 0 0 0
1 0 0 0 0 1
0 0 1 1 0 0
0 0 1 0 0 0

µi(1,1)
µi(−1,1)
µi(1,0)
µi(−1,0)
µi(1,−1)
µi(−1,−1)

 =

1

P (Y dep(i)=1)
P (λi=1)

P (λiY
dep(i)=1)

P (λi=0)

P (λi=0,Y dep(i)=1)

. (2)

P (λiY
dep(i) = 1) can be written as 1

2 (E
[
λiY

dep(i)
]
−

P (λi = 0)+1) and P (λi = 0, Y dep(i) = 1) is factorizable
due to the construction of G, so all values on the right of (2)
are known, and we can solve for µi. Extending this example
to larger cliques requires computing more aC values and
more directly estimatable probabilities; we detail the general
case in Appendix C.1.4.

3.3. Weak Supervision in Online Learning

Now we discuss an extension to online learning. Online
learning introduces two challenges: first, samples are in-
troduced one by one, so we can only see each Xt once
before discarding it; second, online learning is subject to
distributional drift, meaning that the distribution Pt each
(Xt,Y t) is sampled from changes over time. Our closed-
form approach is fast, both in terms of sample complexity
and wall-clock time, and only requires computing the av-
erages of observable summary statistics, so we can learn
µt online with a rolling window, interleaving label model
estimation and end model training. We describe this online
variant of our method and how window size can be adjusted
to optimize for sampling noise and distributional drift in
Appendix C.3.

4. Theoretical Analysis
In this section, we analyze our method for label model
parameter recovery and provide bounds on its performance.
First, we derive a O(1/

√
n) bound for the sampling error

‖µ̂−µ‖2 in Algorithm 2. Next, we show that this sampling
error has a tight minimax lower bound for certain graphical
models, proving that our method is information-theoretically
optimal. Then, we present a generalization error bound for
the end model that scales in the sampling error and a model
misspecification term, which exists when the underlying
data distributionD cannot be represented with our graphical
model. Lastly, we interpret these results, which are more
fine-grained than prior weak supervision analyses, in terms
of end model performance and label model tradeoffs. All
proofs are provided in Appendix D.

In Appendix C.3.1, we give two further results for the online
variant of the algorithm: selecting an optimal window size to

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

minimize sampling error, and providing a guarantee on end
model performance even in the presence of distributional
drift, sample noise, and model misspecification.

Sampling Error We first control the error in estimating the
label model parameters µ̂. The noise comes from sampling
in the empirical estimates of moments and probabilities used
by Algorithm 2.

Theorem 1. Let µ̂ be an estimate of µ produced by Algo-
rithm 2 using n unlabeled data points. Then, assuming that
cliques in Gdep are limited to 3 vertices,

E [‖µ̂− µ‖2] ≤ 1

a5min

(
3.19C1

√
m

n
+

6.35C2√
r

m√
n

)
,

where amin > 0 is a lower bound on the absolute value
of the accuracies of the sources, and r is the minimum
frequency at which sources abstain, if they do so.

If no sources abstain,
√
r is not present in the bound. For

higher-order cliques, the error scales in m with the size of
the largest clique. In the case of full conditional indepen-
dence, only the first term in the bound is present, so the
error scales as O

(√
m
n

)
.

Optimality We show that our method is sample optimal in
both n and m up to constant factors for certain graphical
models. We bound the minimax risk for the parameter es-
timates to be Ω

(
m√
n

)
via Assouad’s Lemma (Yu, 1997).

This bound holds for any binary Ising model used in our
framework, but in particular it is tight when our observed
variables are all conditionally independent and do not ab-
stain.

Theorem 2. Let P =
{
P (Y,v) = 1

Z exp
(
θY Y +∑m

i=1 θiviY
)
, θ ∈ Rm+1

}
be a family of distributions. Us-

ing L2 norm estimation of the minimax risk, the sampling
error is lower bounded as

inf
µ̂

sup
P∈P

EP [||µ̂− µ(P)||2] ≥ emin
8

√
m

n
.

Here µ(P) is the set of label model parameters correspond-
ing to a distribution P , and emin is the minimum eigenvalue
of Cov [Y,v] for distributions in P .

Generalization Bound We provide a bound quantifying the
performance gap between the end model parametrization
that uses outputs of our label model and the optimal end
model parametrization over the true distribution of labels.

Let Pµ̂(·|λ) be the probabilistic output of our learned la-
bel model parametrized by µ̂ given some source labels
λ. Define a loss function L(w,X,Y) ∈ [0, 1], where w
parametrizes the end model fw ∈ F : X → Y , and choose

ŵ such that

ŵ = argminw
1

n

n∑
i=1

EỸ ∼Pµ̂(·|λ(Xi))

[
L(w,Xi, Ỹ)

]
.

While previous approaches (Ratner et al., 2019) make the
strong assumption that there exists some µ such that sam-
pling (X, Ỹ) from Pµ is equivalent to sampling from D,
our generalization error bound accounts for potential model
misspecification:

Theorem 3. Let w∗ = argminw E(X,Y)∼D [L(w,X,Y)].
There exists a ŵ computed from the outputs of our label
model such that the generalization error for Y satisfies

ED [L(ŵ,X,Y)− L(w∗,X,Y)]

≤ γ(n) +
8|Y|
emin

||µ̂− µ||2 + δ(D, Pµ),

where δ(D, Pµ) = 2
√

2KL(D(Y |X) || Pµ(Y |X)),
emin is the minimum eigenvalue of Cov [Y ,v] over the con-
struction of the binary Ising model, and γ(n) is a decreasing
function that bounds the error from performing empirical
risk minimization to learn ŵ.

Interpreting the Bounds The generalization error in Theo-
rem 3 has two components, involving the noise awareness
of the model and the model misspecification. Using the sam-
pling error result, the first two terms γ(n) and ||µ̂ − µ||2
scale in O(1/

√
n), which can be tight by Theorem 2 and is

the same asymptotic rate as supervised approaches.

The third term δ(D, Pµ) is a divergence between our model
and D. Richer models can represent more distributions and
have a smaller KL term, but may suffer a higher sample com-
plexity. This tradeoff suggests the importance of selecting
an appropriately constrained graphical model in practice.

5. Evaluation
The primary goal of our evaluation is to validate that FLY-
INGSQUID can achieve the same or higher quality as state-
of-the-art weak supervision frameworks (Section 5.1) while
learning label model parameters orders of magnitude faster
(Section 5.2). We also evaluate the online extension and
discuss how online learning can be preferable to offline
learning in the presence of distributional shift over time
(Section 5.3).

Datasets We evaluate FLYINGSQUID on three benchmark
datasets and four video analysis tasks. Each dataset consists
of a large (187–64,130) unlabeled training set, a smaller
(50–9,479) hand-labeled development set, and a held-out
test set. We use the unlabeled training set to train the label
model and end model, and use the labeled development set

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

End Model Performance (F1), Label Model Training Time (s) Lift, Speedup

Task D m Prop TS MV DP SDP FLYINGSQUID (l.m. in paren.) TS MV DP SDP

B
en

ch
m

ar
ks

Spouse 1 9 0.07 20.4 ± 0.2 19.3 ± 0.01 44.7 ± 1.7 – 49.6 ± 2.4 (47.0) +29.3 +30.3 +4.9 –
– – 7.5 ± 0.9 – 0.017 ± 0.003 – – 440× –

Spam 1 10 0.49 91.5 88.3 91.8 – 92.3 (89.1) +0.8 +4.0 +0.5 –
– – 0.76 ± 0.1 – 0.014 ± 0.002 – – 54× –

Weather 1 103 0.53 74.6 87.3 87.3 – 88.9 (77.6) +14.3 +1.6 +1.6 –
– – 0.78 ± 0.1 – 0.150 ± 0.03 – – 5.2× –

V
id

eo
A

na
ly

si
s

Interview 6 24 0.03 80.0 ± 3.4 58.0 ± 5.3 8.7 ± 0.2 92.0 ± 2.2 91.9 ± 1.6 (93.0) +11.9 +33.9 +83.2 -0.1
– – 31.5 ± 1.0 256.6 ± 5.4 0.423 ± 0.04 – – 74.5× 607×

Commercial 6 24 0.32 90.9 ± 1.0 91.8 ± 0.2 90.5 ± 0.4 89.8 ± 0.5 92.3 ± 0.4 (88.4) +1.4 +0.5 +1.8 +2.5
– – 23.3 ± 1.0 265.6 ± 6.2 0.067 ± 0.01 – – 350× 4,000×

Tennis Rally 14 84 0.34 57.6 ± 3.4 80.2 ± 1.0 82.5 ± 0.3 80.6 ± 0.7 82.8 ± 0.4 (82.0) +25.2 +2.6 +0.3 +2.2
– – 41.1 ± 1.9 398.4 ± 7.5 0.199 ± 0.04 – – 210× 2,000×

Basketball 8 32 0.12 26.8 ± 1.3 8.1 ± 5.4 7.7 ± 3.3 38.2 ± 4.1 37.9 ± 1.9 (27.9) +11.1 +29.8 +30.2 -0.3
– – 28.7 ± 2.0 248.6 ± 7.7 0.092 ± 0.03 – – 310× 2,700×

Table 1. FLYINGSQUID performance in terms of F1 score (first row of each task), and label model training time in seconds (second row).
We report mean ± standard deviation across five random weight initializations of the end model (except for Spam and Weather, which
use logistic regression). Improvement in terms of mean end model lift, speedup in terms of mean runtime. We compare FLYINGSQUID’s
end model and label model (label model in parentheses) against traditionally supervised (TS) end models trained on the labeled dev
set, majority vote (MV), data programming (DP) and sequential data programming (SDP). D: number of related elements modeled
(contiguous sequences of frames for video tasks). m: number of supervision sources. Prop: proportion of positive examples.

for a) training a traditional supervision baseline, and b) for
hyperparameter tuning of the label and end models. More
details about each task and the experiments in Appendix E.

Benchmark Tasks. We draw three benchmark weak super-
vision datasets from a previous evaluation of a state-of-
the-art weak supervision framework (Ratner et al., 2018).
Spouse seeks to identify mentions of spouse relationships in
a set of news articles (Corney et al., 2016), Spam classifies
whether YouTube comments are spam (Alberto et al., 2015),
and Weather is a weather sentiment task from Crowd-
flower (Cro, 2018).

Video Analysis Tasks. We use video analysis as another
driving task: video data is large and expensive to label, and
modeling temporal dependencies is important for quality but
introduces significant slowdowns in label model parameter
recovery (Sala et al., 2019). Interview and Commercial
identify interviews with Bernie Sanders and commercials in
a corpus of TV news, respectively (Fu et al., 2019; Int, 2018).
Tennis Rally identifies tennis rallies during a match from
broadcast footage. Basketball identifies basketball videos
in a subset of ActivityNet (Caba Heilbron et al., 2015).

5.1. Quality

We now validate that end models trained with labels gener-
ated by FLYINGSQUID achieve the same or higher quality as
previous state-of-the-art weak supervision frameworks. We
also discuss the relative performance of FLYINGSQUID’s
label model compared to the end model, and ablations of
our method.

End Model Quality To evaluate end model quality, we
use FLYINGSQUID to generate labels for the unlabeled train-

ing set and compare the end models trained with these labels
against four baselines:

1. Traditional Supervision [TS]: We train the end model
using the small hand-labeled development set.

2. Majority Vote [MV]: We generate training labels over
the unlabeled training set using majority vote.

3. Data Programming [DP]: We use data programming, a
state-of-the-art weak supervision framework that mod-
els each data point separately (Ratner et al., 2019).

4. Sequential Data Programming [SDP]: For the video
tasks, we also use a state-of-the-art sequential weak
supervision framework, which models sequences of
frames (Sala et al., 2019).

Table 1 shows our results. We achieve the same or higher
end model quality compared to previous weak supervision
frameworks. Since FLYINGSQUID does not rely on SGD to
learn label model parameters, there are fewer hyperparame-
ters to tune, which can help us achieve higher quality than
previous reported results.

Label Model vs. End Model Performance Table 1 also
shows the performance of FLYINGSQUID’s label model. In
four of the seven tasks, the end model outperforms the label
model, since it can learn new features directly from the
input data that are not available to the noisy sources. For
example, the sources in the Commercial task rely on simple
visual heuristics like the presence of black frames (in our
dataset, commercials tend to be book-ended on either side
by black frames); the end model, which is a deep network,
is able to pick up on subtler features over the pixel space.
In three tasks, however, the label model nearly matches

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

Streaming End Model (F1) Improvement

Task TS MV FLYINGSQUID TS MV

Interview 41.9 ± 4.0 37.8 ± 9.5 53.5 ± 0.5 +11.6 +15.7
Commercial 56.5 ± 1.7 78.9 ± 14.5 93.0 ± 0.5 +36.5 +14.1
Tennis Rally 41.5 ± 1.7 81.6 ± 0.6 82.7 ± 0.4 +25.2 +1.1
Basketball 20.7 ± 4.2 22.0 ± 11.3 26.7 ± 0.3 +6.0 +4.7

Table 2. We compare performance of an end model trained with
an online pass over the training set, and then the test set with
labels from FLYINGSQUID, against a model trained with majority
vote (MV) labels over the training and test set, and a traditionally
supervised (TS) model trained with ground truth labels over the
test set. We report mean ± standard deviation from five random
weight initializations.

or slightly outperforms the end model. In these cases, the
sources have access to features that are difficult for an end
model to learn with the amount of unlabeled data available.
For example, the sources in the Interview task rely on an
identity classifier that has learned to identify Bernie Sanders
from thousands of examples.

Ablations We describe the results of two ablation studies
(detailed results in Appendix E.4). In the first study, we re-
place abstentions with random votes instead of augmenting
Gdep. This results in a degradation of 25.6 points, demon-
strating the importance of allowing supervision sources to
abstain. In the second study, we examine the effect of using
individual triplet assignments instead of taking the median
or mean over all possible assignments. On average, taking
random assignments results in a degradation of 23.8 points
compared to taking an aggregate. Furthermore, there is a
large degree of variance in label model performance when
using individual triplet assignments. While the best assign-
ments can match FLYINGSQUID, bad assignments result in
significantly worse performance.

5.2. Speedup

We now evaluate the speedup that FLYINGSQUID provides
over previous weak supervision frameworks. Table 1 shows
measurements of how long it takes to train each label model.
Since FLYINGSQUID learns source accuracies and corre-
lations with a closed-form solution, it runs orders of mag-
nitude faster than previous weak supervision frameworks,
which rely on multiple iterations of stochastic gradient de-
scent and thus scale superlinearly in the data. Speedup
varies due to the optimal number of iterations for DP and
SDP, which are SGD-based (number of iterations is tuned
for accuracy), but FLYINGSQUID runs up to 440 times faster
than data programming on benchmark tasks, and up to 4,000
times faster than sequential data programming on the video
tasks (where modeling sequential dependencies results in
much slower performance).

5.3. Online Weak Supervision

We now evaluate the ability of our online extension to simul-
taneously train a label model and end model online for our
video analysis tasks. We also use synthetic experiments to
demonstrate when training a model online can be preferable
to training a model offline.

Core Validation We first validate our online extension by
using the FLYINGSQUID PyTorch layer to simultaneously
train a label model and end model online for our video
analysis tasks. We train first on the training set and then on
the test set (using probabilistic labels for both). We compare
against online traditional supervision (TS) and majority
vote (MV) baselines. Since the training set is unlabeled,
the TS model is trained only on the ground-truth test set
labels, while the MV baseline uses majority vote to label
the training and test sets. To mimic the online setting, each
datapoint is only seen once during training.

Table 2 shows our results. Our method outperforms MV
by up to 15.7 F1 points, and TS by up to 36.5 F1 points.
Even though TS is trained on ground-truth test set labels,
it underperforms both other methods because it only does
a single pass over the (relatively small) test set. MV and
FLYINGSQUID, on the other hand, see many more examples
in the weakly-labeled training set before having to classify
the test set.

The online version of FLYINGSQUID often underperforms
its offline equivalent (Table 1), since the online model can
only perform a single iteration of SGD with each datapoint.
However, in 2 cases, the online model overperforms the
offline model, for two reasons: a) the training set is large
enough to make up the difference in having multiple epochs
with SGD, and b) online training over the test set enables
continued specialization to the test set.

Distributional Drift Over Time We also study the effect
of distributional drift over time using synthetic experiments.
Distributional drift can mean that label model parameters
learned on previous data points may not describe future
data points. Figure 3 shows the results of online vs. offline
training in two settings with different amounts of drift. On
the left is a setting with limited drift; in this setting, the
offline model learns better parameters than the online model,
since it has access to more data, all of which is representative
of the test set. On the right is a setting with large amounts
of periodic drift; in this setting, the offline model cannot
learn parameters that work for all data points. But the online
model, which only learns parameters for a recent window
of data points, is able to specialize to the periodic shifts.

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

No Distributional Drift Periodic Distributional Drift
Ac

cu
ra

cy

100

80

60

40

0
0 40,000 60,000 0 40,000 60,000

FlyingSquid, o�ine
FlyingSquid, online (window 6,000)

Majority Vote

Data Points over Time

Figure 3. When there is large distributional drift, online learning
can outperform offline learning by adapting over time (synthetic).

6. Related Work
Latent Variable Estimation Latent variable estimation
is a classic problem in machine learning, used for hidden
Markov Models, Markov random fields, topic modeling,
and more (Wainwright & Jordan, 2008; Koller & Friedman,
2009). General algorithms do not admit closed-form solu-
tions; classical techniques like expectation maximization
and Gibbs sampling can require many iterations to converge,
while techniques like tensor decomposition run the expen-
sive power method (Anandkumar et al., 2014). We show
that the weak supervision setting allows us to break down
the parameter estimation problem into subproblems with
closed-form solutions.

Our solution is similar to previous methods that have ex-
ploited triplets of conditionally-independent variables to
solve latent variable estimation (Joglekar et al., 2013; Cha-
ganty & Liang, 2014). Joglekar et al. (2013) focuses on
the explicit context of crowdsourcing and is equivalent to a
simplified version of Algorithm 1 when all the label sources
are conditionally independent from each other and do not
abstain. In contrast, our work handles a wider variety of use
cases critical for weak supervision (such as sources that can
abstain) and develops theoretical characterizations for down-
stream model behavior. Chaganty & Liang (2014) shows
how to estimate the canonical parameters of a wide class
of graphical models by applying tensor decomposition to
recover conditional parameters. By comparison, our work
is more specialized, which lets us replace tensor decompo-
sition with a non-iterative closed-form solution, even for
non-binary variables. A more detailed comparison against
both of these methods is available in Appendix A.

Weak Supervision Our work is related to several such
techniques, such as distant supervision (Mintz et al., 2009;
Craven et al., 1999; Hoffmann et al., 2011; Takamatsu
et al., 2012), co-training methods (Blum & Mitchell, 1998),
pattern-based supervision (Gupta & Manning, 2014) and fea-
ture annotation (Mann & McCallum, 2010; Zaidan & Eisner,
2008; Liang et al., 2009). Recently, weak supervision frame-
works rely on latent graphical models and other methods
to systematically integrate multiple noisy sources (Ratner
et al., 2016; 2018; Bach et al., 2017; 2019; Guan et al., 2018;

Khetan et al., 2018; Sheng et al., 2020; Ré et al., 2020). Two
recent approaches have proposed new methods for modeling
sequential dependencies in particular, which is important in
applications like video (Zhan et al., 2019; Sala et al., 2019;
Safranchik et al., 2020). These approaches largely rely on
iterative methods like stochastic gradient descent, and do
not run closed-form solutions to latent variable estimation.

Crowdsourcing Our work is related to crowdsourcing
(crowd workers can be thought of as noisy label sources).
A common approach in crowdsourcing is filtering crowd
workers using a small set of gold tasks, or filtering based on
number of previous tasks completed or with monetary incen-
tives (Rashtchian et al., 2010; Shaw et al., 2011; Sorokin &
Forsyth, 2008; Downs et al., 2010; Mitra et al., 2015; Kittur
et al., 2008). In contrast, in our setting, we do not have ac-
cess to ground truth data to estimate source accuracies, and
we cannot filter out noisy sources a priori. Other techniques
can estimate worker accuracies without ground truth anno-
tations, but assume that workers are independent (Karger
et al., 2011). We can also directly model crowd workers
using our label model, as in the Weather task.

Online Learning Training models online traditionally re-
quires hand labels (Cesa-Bianchi & Lugosi, 2006; Shalev-
Shwartz et al., 2012), but recent approaches like Mullapudi
et al. (2019) train models online using a student-teacher
framework (training a student network online based on the
outputs of a more powerful teacher network). In contrast,
our method does not rely on a powerful network that has
been pre-trained to carry out the end task. In both traditional
and newer distillation settings, a critical challenge is updat-
ing model parameters to account for domain shift (Shalev-
Shwartz et al., 2012). For our online setting, we deal with
distributional drift via a standard rolling window.

7. Conclusion
We have proposed a method for latent variable estimation by
decomposing it into minimal subproblems with closed-form
solutions. We have used this method to build FLYINGSQUID,
a new weak supervision framework that achieves the same or
higher quality as previous approaches while running orders
of magnitude faster, and presented an extension to online
learning embodied in a novel FLYINGSQUID layer. We have
proven generalization and sampling error bounds and shown
that our method can be sample optimal. In future work,
we plan to extend our insights to more problems where
closed-form latent variable estimation can result in faster
algorithms or new applications—problems such as structure
learning and data augmentation.

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

Acknowledgments
We thank Avanika Narayan for helping with the Ten-
nis dataset, and Avner May for helpful discussions. We
gratefully acknowledge the support of DARPA under Nos.
FA86501827865 (SDH) and FA86501827882 (ASED);
NIH under No. U54EB020405 (Mobilize), NSF under
Nos. CCF1763315 (Beyond Sparsity), CCF1563078 (Vol-
ume to Velocity), and 1937301 (RTML); ONR under No.
N000141712266 (Unifying Weak Supervision); the Moore
Foundation, NXP, Xilinx, LETI-CEA, Intel, IBM, Mi-
crosoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Ac-
centure, Ericsson, Qualcomm, Analog Devices, the Okawa
Foundation, American Family Insurance, Google Cloud,
Swiss Re, Brown Institute for Media Innovation, the HAI-
AWS Cloud Credits for Research program, Department of
Defense (DoD) through the National Defense Science and
Engineering Graduate Fellowship (NDSEG) Program, Fan-
nie and John Hertz Foundation, National Science Founda-
tion Graduate Research Fellowship under Grant No. DGE-
1656518, Texas Instruments Stanford Graduate Fellowship
in Science and Engineering, and members of the Stanford
DAWN project: Teradata, Facebook, Google, Ant Finan-
cial, NEC, VMWare, and Infosys. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation
thereon. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views, policies, or
endorsements, either expressed or implied, of DARPA, NIH,
ONR, or the U.S. Government.

References
Weather sentiment: Dataset in crowdflower.

https://data.world/crowdflower/weather-sentiment,
2018.

Internet archive: Tv news archive.
https://archive.org/details/tv, 2018.

Alberto, T. C., Lochter, J. V., and Almeida, T. A. Tubespam:
Comment spam filtering on youtube. In 2015 IEEE 14th
International Conference on Machine Learning and Ap-
plications (ICMLA), pp. 138–143. IEEE, 2015.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and
Telgarsky, M. Tensor decompositions for learning latent
variable models. Journal of Machine Learning Research,
15:2773–2832, 2014.

Bach, S. H., He, B., Ratner, A., and Ré, C. Learning the
structure of generative models without labeled data. In
ICML, 2017.

Bach, S. H., Rodriguez, D., Liu, Y., Luo, C., Shao, H.,
Xia, C., Sen, S., Ratner, A., Hancock, B., Alborzi, H.,

et al. Snorkel drybell: A case study in deploying weak
supervision at industrial scale. In Proceedings of the 2019
International Conference on Management of Data, pp.
362–375, 2019.

Blum, A. and Mitchell, T. Combining labeled and unlabeled
data with co-training. In Proceedings of the eleventh
annual conference on Computational learning theory, pp.
92–100. ACM, 1998.

Caba Heilbron, F., Escorcia, V., Ghanem, B., and Car-
los Niebles, J. Activitynet: A large-scale video bench-
mark for human activity understanding. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 961–970, 2015.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge university press, 2006.

Chaganty, A. T. and Liang, P. Estimating latent-variable
graphical models using moments and likelihoods. In
International Conference on Machine Learning, pp. 1872–
1880, 2014.

Chandrasekaran, V., Srebro, N., and Harsha, P. Complexity
of inference in graphical models. In Proceedings of the
Twenty-Fourth Conference on Uncertainty in Artificial
Intelligence, pp. 70–78. AUAI Press, 2008.

Corney, D., Albakour, D., Martinez-Alvarez, M., and
Moussa, S. What do a million news articles look like? In
NewsIR@ ECIR, pp. 42–47, 2016.

Craven, M., Kumlien, J., et al. Constructing biological
knowledge bases by extracting information from text
sources. In ISMB, pp. 77–86, 1999.

Dawid, A. P. and Skene, A. M. Maximum likelihood esti-
mation of observer error-rates using the EM algorithm.
Applied statistics, pp. 20–28, 1979.

Dehghani, M., Severyn, A., Rothe, S., and Kamps, J. Learn-
ing to learn from weak supervision by full supervision.
In NIPS workshop on Meta-Learning (MetaLearn 2017),
2017a.

Dehghani, M., Zamani, H., Severyn, A., Kamps, J., and
Croft, W. B. Neural ranking models with weak super-
vision. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in In-
formation Retrieval, pp. 65–74. ACM, 2017b.

Downs, J. S., Holbrook, M. B., Sheng, S., and Cranor, L. F.
Are your participants gaming the system? screening me-
chanical turk workers. In Proceedings of the SIGCHI
conference on human factors in computing systems, pp.
2399–2402, 2010.

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

Fu, D. Y., Crichton, W., Hong, J., Yao, X., Zhang, H.,
Truong, A., Narayan, A., Agrawala, M., Ré, C., and
Fatahalian, K. Rekall: Specifying video events using
compositions of spatiotemporal labels. arXiv preprint
arXiv:1910.02993, 2019.

Guan, M. Y., Gulshan, V., Dai, A. M., and Hinton, G. E.
Who said what: Modeling individual labelers improves
classification. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

Gupta, S. and Manning, C. Improved pattern learning for
bootstrapped entity extraction. In Proceedings of the Eigh-
teenth Conference on Computational Natural Language
Learning, pp. 98–108, 2014.

Hearst, M. A. Automatic acquisition of hyponyms from
large text corpora. In Proceedings of the 14th conference
on Computational linguistics-Volume 2, pp. 539–545. As-
sociation for Computational Linguistics, 1992.

Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., and
Weld, D. S. Knowledge-based weak supervision for in-
formation extraction of overlapping relations. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies-Volume 1, pp. 541–550. Association for
Computational Linguistics, 2011.

Jia, Z., Huang, X., Eric, I., Chang, C., and Xu, Y. Con-
strained deep weak supervision for histopathology image
segmentation. IEEE transactions on medical imaging, 36
(11):2376–2388, 2017.

Joglekar, M., Garcia-Molina, H., and Parameswaran, A.
Evaluating the crowd with confidence. In Proceedings
of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 686–694,
2013.

Karger, D. R., Oh, S., and Shah, D. Iterative learning for
reliable crowdsourcing systems. In Advances in neural
information processing systems, pp. 1953–1961, 2011.

Khetan, A., Lipton, Z. C., and Anandkumar, A. Learning
from noisy singly-labeled data. In International Confer-
ence on Learning Representations, 2018.

Kittur, A., Chi, E. H., and Suh, B. Crowdsourcing user stud-
ies with mechanical turk. In Proceedings of the SIGCHI
conference on human factors in computing systems, pp.
453–456, 2008.

Koller, D. and Friedman, N. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

Lauritzen, S. Graphical Models. Clarendon Press, 1996.

Liang, P., Jordan, M. I., and Klein, D. Learning from mea-
surements in exponential families. In Proceedings of the
26th annual international conference on machine learn-
ing, pp. 641–648. ACM, 2009.

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri,
M., Li, Y., Bharambe, A., and van der Maaten, L. Ex-
ploring the limits of weakly supervised pretraining. In
Proceedings of the European Conference on Computer
Vision (ECCV), pp. 181–196, 2018.

Mann, G. S. and McCallum, A. Generalized expectation
criteria for semi-supervised learning with weakly labeled
data. Journal of machine learning research, 11(Feb):
955–984, 2010.

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. Distant
supervision for relation extraction without labeled data.
In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Con-
ference on Natural Language Processing of the AFNLP:
Volume 2-Volume 2, pp. 1003–1011. Association for Com-
putational Linguistics, 2009.

Mitra, T., Hutto, C. J., and Gilbert, E. Comparing person-
and process-centric strategies for obtaining quality data
on amazon mechanical turk. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Comput-
ing Systems, pp. 1345–1354, 2015.

Mullapudi, R. T., Chen, S., Zhang, K., Ramanan, D., and
Fatahalian, K. Online model distillation for efficient
video inference. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 3573–3582, 2019.

Niu, F., Zhang, C., Ré, C., and Shavlik, J. W. Deepdive:
Web-scale knowledge-base construction using statistical
learning and inference. VLDS, 12:25–28, 2012.

Rashtchian, C., Young, P., Hodosh, M., and Hockenmaier, J.
Collecting image annotations using amazon’s mechanical
turk. In Proceedings of the NAACL HLT 2010 Workshop
on Creating Speech and Language Data with Amazon’s
Mechanical Turk, pp. 139–147. Association for Computa-
tional Linguistics, 2010.

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., and
Ré, C. Snorkel: Rapid training data creation with weak
supervision. In Proceedings of the 44th International
Conference on Very Large Data Bases (VLDB), Rio de
Janeiro, Brazil, 2018.

Ratner, A. J., Sa, C. M. D., Wu, S., Selsam, D., and Ré, C.
Data programming: Creating large training sets, quickly.
In Proceedings of the 29th Conference on Neural Informa-
tion Processing Systems (NIPS 2016), Barcelona, Spain,
2016.

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods

Ratner, A. J., Hancock, B., Dunnmon, J., Sala, F., Pandey,
S., and Ré, C. Training complex models with multi-task
weak supervision. In Proceedings of the AAAI Conference
on Artificial Intelligence, Honolulu, Hawaii, 2019.

Ré, C., Niu, F., Gudipati, P., and Srisuwananukorn, C.
Overton: A data system for monitoring and improving
machine-learned products. In Proceedings of the 10th
Annual Conference on Innovative Data Systems Research,
2020.

Safranchik, E., Luo, S., and Bach, S. H. Weakly supervised
sequence tagging from noisy rules. In Thirty-Fourth AAAI
Conference on Artificial Intelligence, 2020.

Sala, F., Varma, P., Fries, J., Fu, D. Y., Sagawa, S., Khattar,
S., Ramamoorthy, A., Xiao, K., Fatahalian, K., Priest, J.,
and Ré, C. Multi-resolution weak supervision for sequen-
tial data. In Advances in Neural Information Processing
Systems 32, pp. 192–203, 2019.

Shalev-Shwartz, S. et al. Online learning and online con-
vex optimization. Foundations and Trends® in Machine
Learning, 4(2):107–194, 2012.

Shaw, A. D., Horton, J. J., and Chen, D. L. Designing
incentives for inexpert human raters. In Proceedings
of the ACM 2011 conference on Computer supported
cooperative work, pp. 275–284, 2011.

Sheng, Y., Vo, N. H., Wendt, J. B., Tata, S., and Najork, M.
Migrating a privacy-safe information extraction system to
a software 2.0 design. In Proceedings of the 10th Annual
Conference on Innovative Data Systems Research, 2020.

Sorokin, A. and Forsyth, D. Utility data annotation with
amazon mechanical turk. In 2008 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 1–8. IEEE, 2008.

Takamatsu, S., Sato, I., and Nakagawa, H. Reducing wrong
labels in distant supervision for relation extraction. In Pro-
ceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers-Volume 1,
pp. 721–729. Association for Computational Linguistics,
2012.

Wainwright, M. J. and Jordan, M. I. Graphical models, ex-
ponential families, and variational inference. Foundations
and Trends® in Machine Learning, 1(1-2):1–305, 2008.

Xiao, T., Xia, T., Yang, Y., Huang, C., and Wang, X. Learn-
ing from massive noisy labeled data for image classifica-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2691–2699, 2015.

Yu, B. Assouad, fano, and le cam. In Festschrift for Lucien
Le Cam, pp. 423–435. Springer, 1997.

Zaidan, O. F. and Eisner, J. Modeling annotators: A gener-
ative approach to learning from annotator rationales. In
Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 31–40. Association for
Computational Linguistics, 2008.

Zhan, E., Zheng, S., Yue, Y., Sha, L., and Lucey, P. Gener-
ating multi-agent trajectories using programmatic weak
supervision. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019, 2019.

Zhang, C., Ré, C., Cafarella, M., De Sa, C., Ratner, A.,
Shin, J., Wang, F., and Wu, S. DeepDive: Declarative
knowledge base construction. Commun. ACM, 60(5):
93–102, 2017.

