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Lattimore, T. and Szepesvári, C. Bandit algorithms.
2019. URL http://downloads.tor-lattimore.
com/book.pdf.

Mandel, T., Liu, Y.-E., Brunskill, E., and Popović, Z. The
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A. Proof of Theorems 1
The aim of this section is to bound the deviation of the estimator µ̂i from the true mean µi. For this purpose, we first begin
by defining the favorable event, that is, the event for which all confidence intervals hold for all arms at all time steps. We
then prove with Hoeffding’s inequality that this event occurs with high probability. And finally, we derive the desired results
by bounding the bias incurred by µ̂i and leveraging the properties of this favorable event.

Step 1: the favorable event. First let us define the following quantities (for i ≤ K and u ≤ Ti(T )):

ti(u) = inf{t ≥ 0 :
∑
u≤t

1{Iu = i} = u},

Ci,u = Cti(u),

Di,u = Dti(u).

Here ti(u) is the time where we pulled arm i for the u-th time, Ci,u, Di,u are respectively the corresponding reward and
delay. Note that

t∑
u=1

Xu,t−u1{Iu = i} =

Ti(t)∑
u=1

Ci,u1{ti(u) +Di,u ≤ t}. (7)

We define the event ξ as follows;

ξ ,

{
∀i ∈ {1, ...,K},∀t ∈ {1, ..., T},∀s ∈ {1, ..., Ti(t)} :

∣∣∣∣∣
s∑

u=1

Ci,u1{ti(u) +Di,u ≤ t} −
s∑

u=1

τi(t− ti(u))µi

∣∣∣∣∣ ≤
√

2 log
2

δ
s

}
·

Note that for fixed i ∈ {1, ...,K}, t ∈ {1, ..., T}, s ∈ {1, ..., Ti(t)}, we have that(∑
u≤v

[
Ci,u1{ti(u) +Di,u ≤ t} − τi(t− ti(u))µi

])
v≤s

is a martingale adapted to the filtration
(
σ(Ci,v, Di,v, ti(v))

)
v≤s

. And since the martingale increments
[
Ci,u1{ti(u) +

Di,u ≤ t}−τi(t−ti(u))µi

]
belong to [−1, 1] by assumption, it holds by Azuma-Hoeffding’s inequality that with probability

larger than 1− δ ∣∣∣∣∣∑
u≤s

[
Ci,u1{ti(u) +Di,u ≤ t} − τi(t− ti(u))µi

]∣∣∣∣∣ ≤
√

2 log
2

δ
s.

Since Ti(t) ≤ t, it holds by a union bound that

P(ξ) ≥ 1−KT 2δ. (8)

Step 2: Bound on the |µ̂i(t)− µi| on ξ. By Equation 7, it holds that

ξ ⊂

∀i ∈ {1, ...,K},∀t ∈ {1, ..., T},
∣∣∣∣∣µ̂i(t)− 1

Ti(t)

t∑
u=1

τi(t− u)µi1{Iu = i}

∣∣∣∣∣ ≤
√

2 log 2
δ

Ti(t)

. (9)

Note that we have ∣∣∣ 1

Ti(t)

t∑
u=1

τi(t− u)µi1{Iu = i} − µi
∣∣∣ ≤ 1

Ti(t)

t∑
u=1

|(1− τi(t− u))µi1{Iu = i}|

≤ 1

Ti(t)

t∑
u=1

1{Iu = i}((t− u) ∨ 1)−α,
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since 0 ≤ µi ≤ 1 and since by Assumption 1 it holds that |τi(m)− 1| ≤ (m ∨ 1)−α. And since
∑t
u=1 1{Iu = i} = Ti(t),

we have

∣∣∣ 1

Ti(t)

t∑
u=1

τi(t− u)µi1{Iu = i} − Ti(t)µi
∣∣∣ ≤ 1

Ti(t)

Ti(t)∑
v=0

(v ∨ 1)−α

≤ 1

Ti(t)

[
2 +

∫ Ti(t)

1

v−αdv

]
, (10)

whenever α ≤ 1/2:

1

Ti(t)

[
2 +

∫ Ti(t)

1

v−αdv
]

=
1

Ti(t)

[
2 + [

−1

1− α
v1−α]

Ti(t)
1

]

=
1

Ti(t)

[
2 +

1

1− α
[Ti(t)

1−α − 1]
]

=
1

Ti(t)

[
− 2α

1− α
+

1

1− α
Ti(t)

1−α
]

≤ 1

Ti(t)

[
2Ti(t)

1−α
]

≤ 2Ti(t)
−α = 2Ti(t)

−α∧(1/2).

Now for α ≥ 1/2:

1

Ti(t)

[
2 +

∫ Ti(t)

1

v−αdv
]
≤ 1

Ti(t)

[
2 +

∫ Ti(t)

1

v−1/2dv
]

=
1

Ti(t)

[
2 + 2[Ti(t)

1/2 − 1]
]

= 2Ti(t)
1/2 = 2Ti(t)

−α∧(1/2).

Note that we have

|µ̂i(t)− µi| =
∣∣∣µ̂i(t)− 1

Ti(t)

t∑
u=1

τt−uµi1{Iu = i}+
1

Ti(t)

t∑
u=1

τt−uµi1{Iu = i} − µi
∣∣∣

≤
∣∣∣µ̂i(t)− 1

Ti(t)

t∑
u=1

τt−uµi1{Iu = i}
∣∣∣+
∣∣∣ 1

Ti(t)

t∑
u=1

τt−uµi1{Iu = i} − µi
∣∣∣.

Now from the definition of the favorable event ξ in Equation (9) and from the bound of the bias in Equation (10), it holds on
ξ that:

|µ̂i(t)− µi| ≤
(

2 log 2
δ

Ti(t)

)1/2

+ 2Ti(t)
−α∧1/2. (11)

B. Proof of Theorems 2 and 3
The proof of these theorems relies on the results obtained in Appendix A. Indeed, we will use the deviation results obtained
on the event ξ to bound the number of pulls of sub-optimal arms in order to derive the upper bounds on the regret.



Stochastic bandits with arm-dependent delays

Step 1: upper bound on the number of pulls of sub-optimal arms. Let’s assume that at some given time t + 1 > K
the algorithm pulls a sub-optimal arm i (such that µi < µ∗). According to the algorithm’s rules, we have: UCBi(t+ 1) ≥
UCBk∗(t+ 1). And so on ξ, we have because of Equation (11)

µ∗ ≤ UCBk∗(t+ 1) ≤ UCBi(t+ 1) ≤ µi + 2

(
2 log 2

δ

Ti(t)

)1/2

+ 4Ti(t)
−α∧1/2.

Rearranging the terms, we have on ξ:

∆i = µ∗ − µi ≤ 2

(
2 log 2

δ

Ti(t)

)1/2

+ 4Ti(t)
−α∧1/2,

which implies that on ξ

Ti(t) ≤
16 log(2/δ)

∆2
i

∨
( 8

∆i

)− 1
α∨2

∨ 1,

and so on ξ, we have for any sub-optimal arm i

Ti(T ) ≤ 16 log(2/δ)

∆2
i

∨
( 8

∆i

) 1
α∨2

∨ 1. (12)

Step 2: Conclusion. Consider a sub-optimal arm i (such that µi < µ∗). Combining Equation(12) with Equation (8), and
since Ti(T ) ≤ T we have

E[Ti(T )] ≤ 16 log(2/δ)

∆2
i

∨
( 8

∆i

) 1
α∨2

∨ 1 +KT 3δ

≤ 16 log(2KT 3)

∆2
i

∨
( 8

∆i

) 1
α∨2

∨ 1 + 1,

for δ , (KT 3)−1. Let us now consider some value ∆ > 0. We have by definition of the regret and with this δ , (KT 3)−1

as above:

RT ≤
∑

i:∆i>∆

∆i

[16 log(2KT 3)

∆2
i

∨
( 8

∆i

) 1
α∨2

∨ 1 + 1
]

+ ∆
∑

i:∆i≤∆

E[Ti(T )]. (13)

Taking ∆ = 0 and recalling that K ≤ T , we obtain the result of Theorem 2, namely

RT ≤
∑

i:∆i>0

[64 log(2T )

∆i
∨
( 8

∆i

) 1−α
α ∨1]

+ 2K.

Now not that since the function ∆i

[
16 log(2KT 3)

∆2
i

∨
(

8
∆i

) 1
α∨2

∨ 1 + 1
]

increases when ∆i decreases, we have for any ∆ > 0

RT ≤ K
[16 log(2KT 3)

∆
∨
( 8

∆

) 1−α
α ∨1]

+ ∆T + 2K

≤ K log(2T )
(64

∆

) 1−α
α ∨1

+ ∆T + 2K.

And so for ∆ =
(
K log(2T )64

1−α
α
∨1

T

)α∧1/2

, we have

RT ≤ 2× 64(1−α)∨1/2T 1−α∧1/2
(
K log(2T )

)α∧1/2

+ 2K,

which concludes the proof of Theorem 3.



Stochastic bandits with arm-dependent delays

C. Proof of Theorem 4
In order to prove this result, we need to show that there exists a bandit problem in the family described in Section 2 such that
the regret at T is Ω(T 1−α). To do so, we construct two problems in that family and show that for at least one of them, the
regret is larger than the desired quantity.

First, for ease of notation, define
p = T−α and q =

p

4− 2p
. (14)

We construct two alternative problems with two arms, K = 2. In both cases, we fix arm 1 such that the distribution of the
rewards ν1 is B(1/2) and the distribution of the delays D1 is δ0 (i.e. a Dirac mass in 0, no delays).

• Problem A: ν(A)
2 is B(1/2− q) and D(A)

2 is δ0.

• Problem B: ν(B)
2 is B(1/2 + q) and D(B)

2 is (1− p)δ0 + pδT .

In Problem A, arm 1 is the best with gap ∆ = q and there are no delays. In Problem B, arm 2 is the best, with gap ∆ = q
too, but delays are sending a proportion p of the rewards to t ≥ T so they cannot be used for learning. Thus, the conditional
distribution of Xs,u|Is = 2 is in fact B((1/2 + q)(1− p)). Note that(

1

2
+ q

)
(1− p) =

1

2
−
(p

2
− q + pq

)
=

1

2
−
(
p

2
− p

4− 2p
+

p2

4− 2p

)
=

1

2
− p

4− 2p
=

1

2
− q.

So the effective mean of arm 2 is 1/2− q, meaning that arm 2 has the same distribution in both problems. This implies in
particular that

EAT2(T ) = EBT2(T ),

where Ea is the expectation in problem a ∈ {A,B}.

And so if we write R
(a)

T for the regret in scenario a ∈ {A,B}:

max
a∈{1,2}

R
(a)

T ≥ qmax(T − EBT2(T ),EAT2(T )) ≥ qT/2.

This concludes the proof as q = p/(4− 2p) ≥ p/4 = T−α/4.

D. Proof of Theorem 5
The proof of this theorem relies on the same tools as for Theorem 4 above, but uses a slightly different reasoning. Namely,
we now fix α > 0 and we restrict the family of algorithms to those that have a regret smaller than T 1−α/8 for any stochastic
bandit problem satisfying Assumption 1 for α. We denote this family Aα.

We want to prove that there exists a bandit problem satisfying Assumption 1 for some α′ > α such that any algorithm in Aα
has regret at least T 1−α/8 > T 1−α′/8. This proves that any algorithm minimax optimal for α is suboptimal for α′ > α.

Similarly to the previous section, fix p = Tα and q = p/(4− 2p) as in Eq. (14), and consider the two problems,

• Problem A: ν(A)
2 is B(1/2− q) and D(A)

2 is δ0.

• Problem B: ν(B)
2 is B(1/2 + q) and D(B)

2 is (1− p)δ0 + pδT .

Note that, Problem B satisfies Assumption 1 for α, while Problem A satisfies it for any α′ > 0 so in particular for α′ > α.
So for any algorithm in Aα, qEB [T1(t)] < 3T 1−α/16. But, as we proved above, because of the delays, the algorithm
cannot distinguish both problems and we have EAT1(T ) = EBT1(T ), i.e. the average number of pulls of arm 1 is the same
in both problems. Thus,

EAT1(T ) = EB [T1(t)] < q−1T 1−α/8.
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Using that q > p/4 as before,

max
a∈{A,B}

R
(a)

T ≥ q(T − EAT1(T )) >
T−α

4
T − T 1−α/8 = T 1−α/8.

E. Proof of Theorem 6
We start by stating the full version of the theorem that guarantees the performance of Adapt-PatientBandits.
Theorem 7. Let T > K ≥ 1 and α, α, c, µ > 0, such that Assumption 2 holds. The regret of Adapt-PatientBandits is
bounded as

RT ≤ 817

(
1

cµ

)4(
2

c

)4(α∧1/2)/α

log(2T )13/2T (K/T )α∧(1/2).

Before proving Thereom 6, we first provide the following proposition that bounds the error on our estimator of α.
Proposition 1. Let δ ∈ (0, 1). There exists an event of probability larger than 1− 2KT 2δ such that for any t ≤ T,

α ∧ 1/2−
log
(

23
((

2
c

)(α∧1/2)/α
+B

))
log(T t)

≤ α̂t ≤ α ∧ 1/2 +
log
(

27/2B
cµ

)
log T t

,

where B , Bδ ,
√

2 log(2/δ).

Proof of Proposition 1. For a lighter notation we set µt , µIt . Similarly to the analysis of the subset of ξ in Equation 9, we
can prove that the event

ξ′ ,

{
∀t ≤ T, |mt,Dt − µtτIt(Dt)| ≤

√
2 log(2/δ)

T (t−Dt)
, |mt,dt − µtτIt(dt)| ≤

√
2 log(2/δ)

T (t− dt)

}
has probability larger than 1− 2KT 2δ. Let us set

B , Bδ ,
√

2 log(2/δ).

Since dt ≤ Dt, by Assumption 2 we have that on ξ′,

cµtd
−α
t − µtD−αt − 2B√

T (t−Dt)
≤ mt,Dt −mt,dt ≤ µtd−αt +

2B√
T (t−Dt)

·

We now chose dt ,
⌊(

c
2

)1/α
Dt

⌋
, for which we have that cµtd

−α
t − µtD−αt ≥ c

2µtd
−α
t and therefore on ξ′,

c

2
µtd
−α
t − 2B√

T (t−Dt)
≤ mt,Dt −mt,dt ≤ µtd−αt +

2B√
T (t−Dt)

·

Here we have that Dt = bT t/2c, and since T t ≥ 2, we obtain

T
−α
t ≤ D−αt ≤ 22αT

−α
t .

Moreover, since we chose dt =
⌊(

c
2

)1/α
Dt

⌋
, we infer that

T−αt ≤ d−αt ≤ 23α

(
2

c

)α/α
T
−α
t .

Therefore, since T (t−Dt) ≤ T t ≤ 2T (t−Dt), we have that on ξ′,

c

2
µT
−α
t − 23/2BT

−1/2

t ≤ mt,Dt −mt,dt ≤

(
23(α∧1/2)

(
2

c

)(α∧1/2)/α

+ 23/2B

)
T
−α∧1/2

t , CαT
−α∧1/2

t ,

where we use the fact that the µk are in [µ, 1].
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First case — small α First, consider the case where c
4µT

−α
t ≥ 23/2BT

−1/2

t . Then we have that on event ξ′

c

4
µT
−α
t ≤ mt,Dt −mt,dt ≤ CαT

−α∧1/2

t ,

which implies that on ξ′,

− log

(
cµ

4

)
+ α log(T t) ≥ − log(mt,Dt −mt,dt) ≥ − log(Cα) + (α ∧ 1/2) log(T t).

Therefore, on ξ′,

α−
log( cµ4 )

log(T t)
≥ − log(mt,Dt −mt,dt)

log(T t)
≥ α ∧ 1/2− log(Cα)

log(T t)
,

from which we finally get that on ξ′,

α ∧ 1/2 +
log( 4

cµ )

log(T t)
≥ α̂t ≥ α ∧ 1/2− log(Cα)

log(T t)
· (15)

Note that while the left hand side of the above inequality only true under the assumption of the first case that demands
c
4µT

−α
t ≥ 23/2BT

−1/2

t , the right hand side is also true when this assumption does not hold since we did not use it.

Second case — large α Now consider the case where c
4µT

−α
t ≤ 23/2BT

−1/2

t . In this case it holds that

T
α−1/2

t ≥ cµ

27/2B
, b−1,

which means that

α− 1/2 ≥ − log(b)

log T t
,

and therefore,

α ∧ 1/2 ≥ 1/2− log(b)

log T t
·

Now by definition of α̂t, we have

α̂t ≤ 1/2 ≤ α ∧ 1/2 +
log(b)

log T t
·

Taking only the right hand side of the first case in Equation 15, which does not use the assumption of the first case, unlike
the left hand side (cf. the remark under Equation 15), we have that on ξ,

α̂t ≥ α ∧ 1/2− log(Cα)

log(T t)
·

combining the two sides of the bound, we get that on ξ,

α ∧ 1/2 +
log
(

27/2B
cµ

)
log T t

≥ α̂t ≥ α ∧ 1/2− log(Cα)

log(T t)
·

Notice that this inequality holds also in the first case (small α) since 4/(cµ) ≤ 27/2B
cµ . The final result follows immediately

since we have that Cα ≤ 23
((

2
c

)(α∧1/2)/α
+B

)
.

Now leveraging these concentration bounds obtained on the error of the estimation of α as well as the theoretical results
from Theorem 3 we prove the main result.
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Proof of Theorem 6. Recall that, from Proposition 1 with probability larger than 1− 2KT 2δ we have that,

α ∧ 1/2 +
log
(

27/2B
cµ

)
log T t

≥ α̂t ≥ α ∧ 1/2−
log
(

23
((

2
c

)(α∧1/2)/α
+B

))
log(T t)

,

where B , Bδ =
√

2 log(2/δ).

Let Lα , log
(

27/2

cµ

)
+ log

(
23
((

2
c

)(α∧1/2)/α
+ 1
))

. With probability larger than 1− 2KT 2δ,

Ut ,
log
(

27/2B
cµ

)
+ log

(
23
((

2
c

)(α∧1/2)/α
+B

))
log(T t)

≤ Lα + log(B)

log(T t)

is a high probability lower deviation on the lower bound αt on α. Note that T t is the number of pulls of the most pulled arm
at time t and therefore T t ≥ t/K. Furthermore, note that after the initialisation phase, we have guaranteed that t ≥ 2K
from which we get

Ut ≤
2Lα + 2 log(B)

log(t)
·

Moreover, by Theorem 3, we have that conditionally on the event ξ from Proposition 1, the expected regret coming from the
samples pulled after round t can be bounded as

128
√

log(2T )T (K/T )α∧(1/2)−Ut + 2K.

The above bound implies that conditional on the event ξ′ from Proposition 1, the expected regret due to the samples obtained
after round t = T 1/2 can be bounded as

128
√

log(2T )T (K/T )α∧(1/2)−4(Lα+logB)/ log T + 2K.

Now setting δ , (KT 3)−1 in the algorithm - where δ is used to define the event ξ′ in Proposition 1 - we have on ξ′ that,

RT ≤ T 1/2 + 128
√

log(2T )T (K/T )α∧(1/2)−4(Lα+
√

2 log(2 log(2KT 3)))/ log T + 4K,

where the additional regret T 1/2 comes from the first T 1/2 samples to the bound computed above, and where the additional
regret 2K comes from the case when the event ξ′ from Proposition 1 does not hold - leading to a supplementary term
bounded by P((ξ′)c)T ≤ 2K.

Notice that in the expression in the regret bound above,

T 4(Lα+
√

2 log(2 log(2KT 3)))/ log T ≤ e4Lα(8 log(2T ))
4
√

2 ≤ 812

(
1

cµ

)4(
2

c

)4(α∧1/2)/α

log(2T )6

and therefore we can simplify our guarantee to finally obtain

RT ≤ T 1/2 + 816

(
1

cµ

)4(
2

c

)4(α∧1/2)/α

log(2T )13/2T (K/T )α∧(1/2) + 4K.


