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1. Relationship Between the Gradients of
CNA and Supervised Loss

We give additional exposition and description of the similar-
ity betwen the CNA and supervised loss gradients mentioned
in section 4.1:

Consider: Databatch X consisting of n samples and corre-
sponding label batch Y and error terms E , network layers
1, . . . , L, let n` denote the number of neurons in layer `, and
let zk` denote the activation value of the network for neuron
k in layer `. Lastly denote the supervised loss as C(X,Y ).
Then the supervised loss gradient1 derives to:

∇C(X,Y ) =
1

n

∑
x∈X,ε∈E

ε∇zL(x) (1)

And the CNA gradient2 derives to:

∇CNAα(X) =
1

n

∑
x∈X

α(x)∇β(x) (2)

The slope gradient is defined by

∇β(x) =
L∑
`=1

C†
`

n`

L∑
k=1

∇zk` (x) (3)
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1For brevity, our expressions correspond to the 1-dimensional
output case (derivations straightforwardly generalize to larger out-
put dimensions).

2Also for brevity, we consider the mean-aggregated CNA gra-
dient without the standard deviation normalization terms. The
direction of the non-normalized CNA gradient is approximately
equal to the direction of CNA gradient with these terms included,
i.e. they have a cosine similarity of close to 1 in practice. The
direction is what is important since our analysis is primarily con-
cerned with the cosine similarity between the supervised loss and
CNA gradients (cosine similarity is invariant to scaling).

where C† is the row of the pseudoinverse matrix used in
the least squares regression corresponding to the slope term
β(x).

Focusing on the terms ε, α(x), ∇zL(x), and ∇β(x), we
observe some resemblance between the two gradients. They
both have scalars (ε and α(x)) multiplied by gradients of
network output terms (∇zL(xi) and ∇β(x)). We now show
that the terms in both pairs are closely related.

On the similarity of ∇zL(x) and ∇β(x): Note that ∇β(x)
is a weighted sum3 of network output terms ∇z` for ` =
1, . . . , L. There is similarity between ∇zL(x) and ∇β(x)
since they are both linear functions of activation output
gradients. In practice, when training on the MNIST dataset
with an MLP network, we find that, for the vast majority of
datapoints, the cosine angle between ∇zL(x) and ∇β(x),
when using mean-aggregated activations, does not exceed
0.05 radians, meaning their directions are very similar.

Given this large degree of similarity between ∇zL(x) and
∇β(x), if ε and α(x) correlate, we would expect updates
via ∇C(X,Y ) and ∇CNAα(X) to take the network along
similar optimization paths.

2. Additional Expermental Details
We provide additional experimental details for verification
and reproducability.

For the test accuracy and generalization gap experi-
ments seen section 4:

For the MLP architecture, the depth was fixed at 5 hidden
layers of size 500 each. Regularization was not used for the
MLPs, but batch-normalization was used for the VGG-18
and ResNet architectures. Max-pooling was used after every
block of the VGG-18 and ResNet architectures followed by
average pooling in the last block.

For VGG and ResNet architectures, standard image aug-
mentation was used for SVHN, CIFAR-10, CIFAR-100,
and ImageNet. Otherwise, image augmentation was not
used. Across all experiments, ImageNet was downsampled

3In fact, given the nature of C†, it can be shown that is ∇β(x)
is a weighted average of ∇z` terms.
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to resolution 32 x 32 for computational expediency.

For results shown in Figure 6, a quadratic fit of the form
ax2 + bx + c was performed to arrive at the green dotted
curve shown. Points were smoothed in bins of 25 networks
each, ordered by test accuracy, for cleaner visualization.

Across all experiments, training continued until approx-
imately 0 training loss was achieved. For all standard
datasets, we trained MLPs for 100 epochs with a learn-
ing rate of 0.05 and momentum of 0.8 via SGD. For the
VGG-18 and ResNet experiments, a learning rate of 0.01
and momentum of 0.8 were used. The VGG and ResNet
architectures were trained for 100 epochs on CIFAR-10 and
CIFAR-100, 40 epochs on MNIST, Fashion-MNIST, and
SVHN, and 50 epochs on ImageNet. On ImageNet, the
MLP architecture was excluded from analysis since it failed
to converge passed 32% training accuracy after 1000 epochs.
For the Gaussian noise dataset, the same optimization set-
tings were used except all architectures were trained for 40
epochs (since this was a sufficient number for memorization
of the training set).

The Gaussian noise dataset is of training size 50,000 and
test size 10,000, where datapoints are of shape (3,32,32),
are drawn from the standard normal distribution, and are
then normalized between 0 and 1. A total of 10 classes are
randomly assigned to each datapoint.

For the shuffled label datasets (MNIST, Fashion-MNIST,
SVHN, CIFAR-10, CIFAR-100), for each experiment, a
percentage of the training labels was shuffled and trained on
with a new network. The percentages considered were 10%,
20%, 30%, 40%, and 50%, with metrics of the network mea-
sured at the end of training once approximately 0 training
error had been achieved, for a total of 75 additional trained
networks considered. All training settings were consistent
with the original datasets, except the number of epochs were
doubled, since shuffled label datasets require more training
iterations to memorize the training set(Zhang et al., 2016).
The networks at the end of training on shuffled label datasets
were incorporated into analysis of the networks trained ev-
ery 20 epochs on the corresponding non-shuffled datasets.
Lastly, for the MLP architecture, other metrics (L2, L2-path,
Spectral norm, and the 2018 bound) negatively correlated
with generalization gap, performing particularly bad in com-
parison to other settings, thus we show them at 0 correlation
for ease of visualization.

3. Additional Neuroscience Details
We give a slightly expanded description of the neuroscience
study from (Taylor et al., 2015), with more descriptive and
technical terms for those who want to become more familiar
with the neuroscience science details of the study:

The neuroscience study employed large-scale analyses of
fMRI data, spanning twenty years and tens of thousands of
studies to determine the relationships between a variety of
tasks having different levels of abstraction and the associ-
ated neuronal firing patterns across the whole brain. The
study revealed a strong correlation between a given cogni-
tive behavior’s “firing slope” (a geometric characterization
of global neuronal firing patterns) and its level of abstraction.
Firing slope utilizes a distance metric – combining fMRI
latency and accessibility (DTI) that measures the “connec-
tome distance” (CD) of each neuronal Region Of Interest
(ROI) from the brain’s inputs (sensory cortices). Regions of
Interest were binned by their CD to create a layered “connec-
tome depth network” (CDN), similar in structure to a deep
neural network. All fMRI experiments were projected on
the CDN, and experiments that measured the same cognitive
behavior (typically about 1000) were analyzed together.

While brain activity was present at all connectome depths
for each cognitive behavior, findings demonstrated that
deep neurons (those farther from brain inputs on the CDM)
showed higher activation values than shallow neurons when
the brain was engaged in reasoning and other abstract be-
haviors. When graphed against CD, this neuronal activity
showed a positive slope. Conversely, shallow neurons had
higher activation values than deep neurons and neuronal
activity showed a negative slope when less abstract (shorter
CD) tasks were performed. Each of the recorded behav-
iors was identifiable by a specific geometric slope on the
CDN that correlated with the behavior’s level of abstraction.
Perhaps the most novel aspect of the research was the al-
most perfect correlation between firing slope and level of
abstraction.

4. Additional Generalization Gap Results
Here, we show the correlation of the generalization metrics
conditional on datasets in the following table. Conditional
on dataset only, all metrics appear to be inconsistent when
considering all architectures in aggregate. We also include
the CNA-Area, which performs particulary well for this task
in comparison.
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CNA-Area CNA-Margin L2 L2-path Spectral norm 2018 Bound

MNIST 0.98 0.39 0.13 0.05 0.17 0.17
F-MNIST 0.72 0.11 -0.24 -0.45 -0.22 -0.22

SVHN 0.28 0.04 -0.15 -0.16 -0.12 -0.12
CIFAR-10 0.45 0.02 -0.24 0.11 -0.2 -0.2

CIFAR-100 -0.23 0.18 -0.29 0.25 -0.26 -0.26
ImageNet-32 0.82 -0.54 -0.5 -0.28 -0.5 -0.5

Gaussian -0.37 0.37 0.22 -0.29 0.21 0.21


