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Abstract

This paper employs a formal connection of ma-
chine learning with thermodynamics to charac-
terize the quality of learnt representations for
transfer learning. We discuss how information-
theoretic functionals such as rate, distortion and
classification loss of a model lie on a convex,
so-called equilibrium surface. We prescribe dy-
namical processes to traverse this surface un-
der constraints, e.g., an iso-classification pro-
cess that trades off rate and distortion to keep
the classification loss unchanged. We demon-
strate how this process can be used for trans-
ferring representations from a source dataset to
a target dataset while keeping the classification
loss constant. Experimental validation of the the-
oretical results is provided on standard image-
classification datasets.

1. Introduction
A representation is a statistic of the data that is “useful”.
Classical Information Theory creates a compressed repre-
sentation and makes it easier to store or transmit data; the
goal is always to decode the representation to get the origi-
nal data back. If we are given images and their labels, we
could learn a representation that is useful to predict the cor-
rect labels. This representation is thus a statistic of the data
sufficient for the task of classification. If it is also minimal—
say in its size—it would discard information in the data that
is not correlated with the labels. Such a representation is
unique to the chosen task, it would perform poorly to predict
some other labels correlated with the discarded information.
If instead the representation were to have lots of redundant
information about the data, it could potentially predict other
labels correlated with this extra information.

The premise of this paper is our desire to characterize the
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information discarded in the representation when it is fit on
a task. We want to do so in order to learn representations
that can be transferred easily to other tasks.

Our main idea is to choose a canonical task—in this paper,
we pick reconstruction of the original data—as a way to
measure the discarded information. Although one can use
any canonical task, reconstruction is special. It is a “capture
all” task in the sense that achieving perfect reconstruction
entails that the representation is lossless; information dis-
carded by the original task is therefore readily measured as
the one that helps solve the canonical task. This leads to the
study of the following Lagrangian which is similar to the
Information Bottlenck of Tishby et al. (2000)

F (λ, γ) = min
θ∈Θ,eθ(z|x),mθ(z),
dθ(x|z),cθ(y|z)

R+ λD + γC

where the rate R is an upper bound on the mutual infor-
mation of the representation learnt by the encoder eθ(z|x)
with the input data x, distortion D measures the quality
of reconstruction of the decoder dθ(x|z) and C measures
the classification loss of the classifier cθ(y|z). As Alemi
& Fischer (2018) show, this Lagrangian can be formally
connected to ideas in thermodynamics. We heavily exploit
and specialize this point of view, as summarized next.

1.1. Summary of contributions

Our main technical observation is that F (λ, γ) can be in-
tepreted as a free-energy and a stochastic learning process
that minimizes its corresponding Hamiltonian converges
to the optimal free-energy. This corresponds to an “equi-
librium surface” of information-theoretic functionals R,D
and C and a surface Θλ,γ of the model parameters at con-
vergence. We prove that the equilibrium surface is convex
and its dual, the free-energy F (λ, γ), is concave. The free-
energy is only a function of Lagrange multipliers (λ, γ), the
family of model parameters Θ, and the task, and is therefore
invariant of the learning dynamics.

Second, we design a quasi-static stochastic process, akin
to an equilibrium process in thermodynamics, to keep the
model parameters θ on the equilibrium surface. Such a
process allow us to travel to any feasible values of (R,D,C)
while ensuring that the parameters θ of the model are on
the equilibrium surface. We focus on one process, the “iso-
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classification process” which automatically trades off the
rate and distortion to keep the classification loss constant.

We prescribe a quasi-static process that allows for a con-
trolled transfer of learnt representations. It adapts the model
parameters as the task is changed from some source dataset
to a target dataset while keeping the classification loss con-
stant. Such a process is in stark contrast to current tech-
niques in transfer learning which do not provide any guar-
antees on the quality of the model on the target dataset.

We provide extensive experimental results which realize the
theory developed in this paper.

2. Theroetical setup
This section introduces notation and preliminaries that form
the building blocks of our approach.

2.1. Auto-Encoders

Consider an encoder e(z|x) that encodes data x into a latent
code z and a decoder d(x|z) that decodes z back into the
original data x. If the true distribution of the data is p(x)
we may define the following functionals.

H = E
x∼p(x)

�
− log p(x)

�
D = E

x∼p(x)

�
−
Z

dz e(z|x) log d(x|z)
�

R = E
x∼p(x)

�Z
dz e(z|x) log

e(z|x)

m(z)

� (1)

We denote expectation over data using the notation
〈ϕ〉p(x) =

R
dx p(x)ϕ. The first functionalH is the Shanon

entropy of the true data distribution; it quantifies the com-
plexity of the data. The distortion D measures the quality of
the reconstruction through its log-likelihood. The rateR is a
Kullback-Leibler (KL) divergence; it measures the average
excess bits used to encode samples from e(z|x) using a code
that was built for our approximation of the true marginal on
the latent factors m(z).

2.2. Rate-Distortion curve

The functionals in (1) come together to give the inequality

H −D ≤ Ie(x; z) ≤ R (2)

where Ie = KL(e(z|x) || p(z|x)) is the KL-divergence be-
tween the learnt encoder and the true (unknown) conditional
of the latent factors. The outer inequality H ≤ D + R
forms the basis for a large body of literature on Evidence
Lower Bounds (ELBO, see Kingma & Welling (2013)).
Consider Fig. 1a, if the capacity of our candidate distribu-
tions e(z|x),m(z) and d(x|z) is infinite, we can obtain the
equality H = R+D. This is the thick black line in Fig. 1a.

For finite capacity variational families, say parameterized by
θ, which we denote by eθ(z|x), dθ(x|z) and mθ(z) respec-
tively, as Alemi et al. (2017) argue, one obtains a convex
RD curve (shown in red in Fig. 1a) corresponding to the
Lagrangian

F (λ) = min
eθ(z|x),mθ(z),dθ(x|z)

R+ λD. (3)

This Lagrangian is the relaxation of the idea that given a
fixed variational family and data distribution p(x), there
exists an optimal value of, say, rate R = f(D) that best
sandwiches (2). The optimal Lagrange multiplier is λ = ∂R

∂D
evaluated at the desired value of D.

(a) (b)
Figure 1. Schematic of the equilibrium surface. Fig. 1a shows
that rate (R) and distortion (D) trade off against each other on the
equilibrium surface. Similarly in Fig. 1b, the equilibrium surface is
a convex constraint that joins rate, distortion and the classification
loss. Training objectives with different (λ, γ) (shown in red and
blue) reach different parts of the equilibrium surface.

2.3. Incorporating the classification loss

Let us create a classifier that uses the learnt representation
z as the input and set the classification loss as the negative
log-likelihood of the prediction

C = E
x∼p(x)

�
−
Z

dz e(z|x) log c(y|z)
�
. (4)

If the parameters of the model—which now consists of the
encoder e(z|x), decoder d(x|z) and the classifier c(y|z)—
are denoted by θ, the training process for the model induces
a distribution p(θ| {(x, y)}) where {(x, y)} denotes a finite
dataset. In addition to R,D and C, the authors in Alemi &
Fischer (2018) define

S = E
x∼p(x),y∼p(y|x)

�
log

p(θ| {x, y})
m(θ)

�
(5)

which is the relative entropy of the distribution on parame-
ters θ after training compared to a prior distribution m(θ) of
our choosing. Using a very similar argument as Section 2.2
the four functionals R,D,C and S form a convex three-
dimensional surface in the RDCS phase space. A schematic
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is shown in Fig. 1b for σ = 0. We can again consider a
Lagrange relaxation of this surface given by

F (λ, γ, σ) = min
e(z|x),m(z),d(x|z),c(y|z)

R+ λD + γC + σS.

(6)

Remark 1 (‘The ‘First Law” of learning). Alemi & Fis-
cher (2018) draw formal connections of the Lagrangian
in (6) with the theory of thermodynamics. Just like the
first law of thermodynamics is a statement about the con-
servation of energy in physical processes, the fact that the
four functionals are tied together in a smooth constraint
f(R,D,C, S) = 0 leads to an equation of the form

dR = −λ dD − γ dC − σ dS (7)

which indicates that information in learning processes is
conserved. The information in the latent representation z is
kept either to reconstruct back the original data or to predict
the labels. The former is captured by the encoder-decoder
pair, the latter is captured by the classifier.

Remark 2 (Setting σ = 0). The distribution p(θ| {(x, y)})
is a posterior on the parameters of the model given the
dataset. While this distribution is well-defined under minor
technical conditions, e.g., ergodicity, performing computa-
tions with this distribution is difficult. We therefore only
consider the case when σ = 0 in the sequel and leave the
general case for future work.

The following lemma (proved in Appendix B) shows that the
constraint surface connecting the information-theoretic func-
tionals R,D and C is convex and its dual, the Lagrangian
F (λ, γ) is concave.

Lemma 3 (The RDC constraint surface is convex). The
constraint surface f(R,D,C) = 0 is convex and the La-
grangian F (λ, γ) is concave.

We can show using a similar proof that the entire surface
joining R,D,C and S is convex by considering the cases
λ = 0 and γ = 0 separately. Note that the constraint is
convex in R,D and C; it need not be convex in the model
parameters θ that parameterize eθ(z|x),mθ(z), etc.

2.4. Equilibrium surface of optimal free-energy

We next elaborate upon the objective in (6). Consider the
functionals R,D and C parameterized using parameters
θ ∈ Θ ⊆ RN . First, consider the problem

F (λ, γ) = min
e(z|x), θ∈Θ

R+ λD + γC. (8)

We can solve this using calculus of variations to get

e(z|x) ∝ mθ(z)dθ(x|z)λ exp

�
γ

Z
dy p(y|x) log cθ(y|z)

�
.

We assume in this paper that the labels are a deterministic
function of the data, i.e., p(y|x) = δ(y − yx) where yx is
the true label of the datum x. We therefore have

e(z|x) =
mθ(z)dθ(x|z)λcθ(yx|z)γ

Zθ,x

where the normalization constant is

Zθ,x =

Z
dz mθ(z)dθ(x|z)λcθ(yx|z)γ . (9)

The objective F (λ, γ) can now be rewritten as maximizing
the log-partition function, also known as the free-energy in
statistical physics (Mezard & Montanari, 2009),

F (λ, γ) = min
θ∈Θ

−〈logZθ,x〉p(x) . (10)

Remark 4 (Why is it called the “equilibrium” surface?).
Given a finite dataset {(x, y)}, one may minimize the objec-
tive in (8) using stochastic gradient descent (SGD, Robbins
& Monro (1951)) on a Hamiltonian

H(z;x, θ, λ, γ) ≡ − logmθ(z)−λ log dθ(x|z)−γ log cθ(y|z)
(11)

with updates given by

θk+1 = θk−σ∇θ E
x∼p(x)

�Z
dz eθk(z|x)H(z;x, θk, λ, γ)

�
(12)

where σ > 0 is the step-size; the gradient ∇θ is evaluated
over samples from p(x) and eθ(z|x). Using the same tech-
nique as that of Chaudhari & Soatto (2017), one can show
that the objective

E
θ∼p(θ|{x,y})

�
〈− logZθ,x〉p(x)

�
− σH(p(θ | {x, y})).

decreases monotonically. Observe that our objective in (8)
corresponds to the limit σ → 0 of this objective along
with a uniform non-informative prior m(θ) in (5). In fact,
this result is analogous to the classical result that an er-
godic Markov chain makes monotonic improvements in
the KL-divergence as it converges to the steady-state, also
known as, equilibrium, distribution (Levin & Peres, 2017).
The posterior distribution of the model parameters induced
by the stochastic updates in (12) is the Gibbs distribution
p∗(θ | {(x, y)}) ∝ exp (−2(R+ λD + γC)/σ).

It is for the above reason that we call the surface in Fig. 1b
parameterized by

Θλ,γ =
n
θ ∈ Θ : −〈logZθ,x〉p(x) = F (λ, γ)

o
(13)

as the “equilibrium surface”. Learning, in this case mini-
mizing (8), is initialized outside this surface and converges
to specific parts of the equilibrium surface depending upon
(λ, γ); this is denoted by the red and blue curves in Fig. 1b.
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The constraint that ties results in this equilibrium surface
is that variational inequalities such as (2) (more are given
in Alemi & Fischer (2018)) are tight up to the capacity of
the model. This is analogous to the concept of equilibrium
in thermodynamics (Sethna, 2006)

3. Dynamical processes on the equilibrium
surface

This section prescribes dynamical processes that explore
the equilibrium surface. For any parameters� 2 � , not
necessarily on the equilibrium surface, let us de�ne

J (�; �; 
 ) = � h logZ �;x i p(x ) : (14)

If � 2 � �;
 we haveJ (�; �; 
 ) = F (�; 
 ) which implies

r � J (�; �; 
 ) = 0 for all � 2 � �;
 : (15)

Quasi-static process. A quasi-static process in thermo-
dynamics happens slowly enough for a system to remain
in equilibrium with its surroundings. In our case, we are
interested in evolving Lagrange multipliers(�; 
 ) slowly
and simultaneously keep the model parameters� on the
equilibrium surface; the constraint (15) thus holds at each
time instant. The equilibrium surface is parameterized by
R; D andC so changing(�; 
 ) adapts the three functionals
to track their optimal values corresponding toF (�; 
 ).

Let us choose some values( _�; _
 ) and the trivial dynamics
d
dt � = _� and d

dt 
 = _
 . The quasi-static constraint leads to
the following partial differential equation (PDE)

0 �
d
dt

r � J (�; �; 
 ) = r 2
� J _� + _�

@
@�

r � J + _

@

@

r � J

(16)
valid all � 2 � �;
 . At each location� 2 � �;
 the above
PDE indicates how the parameters should evolve upon
changing the Lagrange multipliers(�; 
 ). We can rewrite
the PDE using the HamiltonianH in (11) as shown next.

Lemma 5 (Equilibrium dynamics for parameters � ).
Given( _�; _
 ), the parameters� 2 � �;
 evolve as

_� = A � 1b�
_� + A � 1b
 _


= � �
_� + � 
 _


(17)

whereH is the Hamiltonian in (11) and

A = r 2
� J

= E
x � p(x )

� 

r 2

� H
�

+ hr � H i hr � H i > �


r � H r >

� H
� �

;

b� = �
@

@�
r � J

= � E
x � p(x )

��
@r � H

@�

�
�

�
@H
@�

r � H
�

+
�

@H
@�

�
hr � H i

�
;

b
 = �
@

@

r � J

= � E
x � p(x )

��
@r � H

@


�
�

�
@H
@


r � H
�

+
�

@H
@


�
hr � H i

�
:

All the inner expectationsh�i above are taken with respect
to the Gibbs measure of the Hamiltonian, i.e.,h' i =R

' exp( � H (z)) d zR
exp( � H (z)) d z . The dynamics for the parameters� is

therefore a function of the two directional derivatives

� � = A � 1 b� ; and � 
 = A � 1 b
 (18)

with respect to� and
 . Note thatA in (17) is the Hessian
of a strictly convex functional.

This lemma allows us to implement dynamical processes
for the model parameters� on the equilibrium surface. As
expected, this is an ordinary differential equation (17) that
depends on our chosen evolution for( _�; _
 ) through the di-
rectional derivatives� � ; � 
 . The utility of the above lemma
therefore lies in the expressions for these directional deriva-
tives. Appendix C gives the proof of the above lemma.

Remark 6 (Implementing the equilibrium dynamics).
The equations in Lemma 5 may seem complicated to com-
pute but observe that they can be readily estimated using
samples from the datasetx � p(x) and those from the en-
coderz � e� (zjx). The key difference between (17) and,
say, the ELBO objective is that the gradient in the former
depends upon the Hessian of the HamiltonianH . These
equations can be implemented using Hessian-vector prod-
ucts (Pearlmutter, 1994). If the dynamics involves certain
constrains among the functionals, as Remark 7 shows, we
simplify the implementation of such equations.

3.1. Iso-classi�cation process

An iso-thermal process in thermodynamics is a quasi-static
process where a system exchanges energy with its surround-
ings and remains in thermal equilibrium with the surround-
ings. We now analogously de�ne an iso-classi�cation pro-
cess that adapts parameters of the model� while the free-
energy is subject to slow changes in(�; 
 ). This adaptation
is such that the classi�cation loss is kept constant while the
rate and distortion change automatically.

Following the development in Lemma 5, it is easy to create
an iso-classi�cation process. We simply add a constraint of
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the form

d
dt

r � J = 0 (Quasi-Static Condition)

d
dt

C = 0 (Iso-classi�cation Condition):
(19)

Using a very similar computation (given in Appendix D) as
that in the proof of Lemma 5, this leads to the constrained
dynamics

0 = C�
_� + C
 _


_� = � �
_� + � 
 _
:

(20)

The quantitiesC� andC
 are given by

C� = � E
x � p(x )

��
@H
@�

�
h̀ i �

�
@H
@�

`
�

+


� >

� r � H
�

h̀ i �


`� >

� r � H
�

+


� >

� r � `
�
�

C
 = � E
x � p(x )

��
@H
@


�
h̀ i �

�
@H
@


`
�

+


� >


 r � H
�

h̀ i �


`� T


 r � H
�

+


� >


 r � `
�
�

(21)
where` = log c� (yx jz) is the logarithm of the classi�ca-
tion loss. Observe that we are not free to pick any values
for ( _�; _
 ) for the iso-classi�cation process anymore, the
constraintdC

dt = 0 ties the two rates together.

Remark 7 (Implementing an iso-classi�cation process).
The �rst constraint in (20) allows us to choose

_� = � �
@C
@


= � �
@2F
@
2

_
 = �
@C
@�

= �
@2F
@�@


(22)

where� is a parameter to scale time. The second equalities
in both rows follow becauseF (�; 
 ) is the optimal free-
energy which implies relations likeD = @F

@� andC = @F
@
 .

We can now compute the two deriatives in (22) using �nite
differences to implement an iso-classi�cation process. This
is equivalent to running the dynamics in (20) using �nite-
difference approximation for the terms@H

@� , @H
@
 , @r � H

@� ,
@r � H

@
 . While approximating all these listed quantities at
each update of� would be cumbersome, exploiting the
relations in (20) is ef�cient even for large neural networks,
as our experiments show.

Remark 8 (Other dynamical processes of interest).In
this paper, we focus on iso-classi�cation processes. How-
ever, following the same program as that of this section,
we can also de�ne other processes of interest, e.g., one that
keepsC + � � 1R constant while �ne-tuning a model. This is
similar to the alternative Information Bottlenck of Achille &
Soatto (2017) wherein the rate is de�ned using the weights
of a network as the random variable instead of the latent
factorsz. This is also easily seen to be the right-hand side
of the PAC-Bayes generalization bound (McAllester, 2013).
A dynamical process that preserves this functional would be
able to control the generalization error which is an interest-
ing prospect for future work.

4. Transferring representations to new tasks

Section 3 demonstrated dynamical processes where the La-
grange multipliers�; 
 change with time and the process
adapts the model parameters� to remain on the equilibrium
surface. This section demonstrates the same concept under a
different kind of perturbation, namely the one where the un-
derlying task changes. The prototypical example one should
keep in mind in this section is that of transfer learning where
a classi�er trained on a datasetps(x; y) is further trained on
a new dataset, saypt (x; y). We will assume that the input
domain of the two distributions is the same.

4.1. Changing the data distribution

If i.i.d samples from the source task are denoted byX s =�
xs

1; : : : ; xs
n s

	
and those of the target distribution areX t =�

x t
1; : : : ; x t

n t

	
the empirical source and target distributions

can be written as

ps(x) =
1
ns

n sX

i =1

� x � x s
i
; and pt (x) =

1
nt

n tX

i =1

� x � x t
i

respectively; here� x � x 0 is a Dirac delta distribution atx0.
We will consider a transport problem that transports the
source distributionps(x) to the target distributionpt (x). For
anyt 2 [0; 1] we interpolate between the two distributions
using a mixture

p(x; t ) = (1 � t)ps(x) + tpt (x): (23)

Observe that the interpolated data distribution equals the
source and target distribution att = 0 andt = 1 respec-
tively and it is the mixture of the two distributions for other
times. We keep the labels of the data the same and do not
interpolate them. As discussed in Appendix F we can also
use techniques from optimal transportation (Villani, 2008)
to obtain a better transport; the same dynamical equations
given below remain valid in that case.

4.2. Iso-classi�cation process with a changing data
distribution

The equilibrium surface� �;
 in Fig. 1b is a function of the
task and also evolves with the task. We now give a dynami-
cal process that keeps the model parameters in equilibrium
as the task evolves quasi-statically. We again have the same
conditions for the dynamics as those in (19). The following
lemma is analogous to Lemma 5.
Lemma 9 (Dynamical process for changing data distri-
bution). Given( _�; _
 ), the evolution of model parameters�
for a changing data distribution given by (23) is

_� = � �
_� + � 
 _
 + � t (24)

where

� t = A � 1 bt =: � A � 1
Z

@p(x; t )
@t

hr � H i dx (25)
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and the other quantities are as de�ned in Lemma 5 with
the only change that expectations on datax are taken with
respect top(x; t ) instead ofp(x). The additional term� t

arises because the data distribution changes with time.

A similar computation as that of Section 3.1 gives a quasi-
static iso-classi�cation process as the task evolves

_� = � �
_� + � 
 _
 + � t

0 = C�
_� + C
 _
 + Ct

(26)

whereC� andC
 are as given in (21) with the only change
being that the outer expectation is taken with respect to
x � p(x; t ). The new term that depends on timet is

Ct = �
Z

@p(x; t )
@t

h̀ i dx � E
x � p(x;t )

�

� >

t r � H
�

h̀ i �


� >

t r � H `
�

+


� >

t r � `
��

(27)
with ` = log c� (yx t jz). Finally get

_� =
�

� � �
C�

C

� 


�
_� +

�
� t �

Ct

C

� 


�

=: �̂ �
_� + �̂ t

: (28)

This indicates that� = � (�; t ) is a surface parameterized by
� andt, equipped with a basis of tangent plane(�̂ � ; �̂ t ).

4.3. Geodesic transfer of representations

The dynamics of Lemma 9 is valid for any( _�; _
 ). We pro-
vide a locally optimal way to change(�; 
 ) in this section.

Remark 10 (Rate-distortion tradeoff). Note that

_C = 0 ;

_D =
@D
@�

_� +
@D
@


_
 = � �

 
@2F
@�2

@2F
@
2

�
�

@2F
@�@


� 2
!

= � � det (Hess(F )) ;

_R =
@R
@D

_D +
@R
@C

_C = � � _D:

(29)
The �rst equality is simply our iso-classi�cation constraint.
For � > 0, the second one indicates that_D < 0 us-
ing Lemma 3 which shows that0 � Hess(F ). This also
gives _� > 0 in (22). The third equality is a powerful obser-
vation: it indicates a trade-off between rate and distortion,
if _D < 0 we have _R > 0. It also shows the geometric
structure of the equilibrium surface by connecting_R and _D
together, which we will exploit next.

Computing the functionalsR; D and C during the iso-
classi�cation transfer presents us with a curve inRDC
space. Geodesic transfer implies that the functionalsR; D
follow the shortest path in this space. But notice that if
we assume that the model capacity is in�nite, theRDC

space is Euclidean and therefore the geodesic is simply a
straight line. Since we keep the classi�cation loss con-
stant during the transfer,_C = 0 , straight line implies
that slopedD=dR is a constant, sayk. Thus _D = k _R.
Observe that_R = @R

@D
_D + @R

@C
_C + @R

@t = � � _D + @R
@t .

Combining the iso-classi�cation constraint and the fact that
_D = k _R = � k� _D + k @R

@t , gives us a linear system:

@D
@t

+
@D
@�

_� +
@D
@


_
 =
k @R

@t

1 + k�
;

@C
@�

_� +
@C
@


_
 +
@C
@t

= 0
(30)

We solve this system to update(�; 
 ) during the transfer.

5. Experimental validation

This section presents experimental validation for the ideas in
this paper. We �rst implement the dynamics in Section 3 that
traverses the equilibrium surface and then demonstrate the
dynamical process for transfer learning devised in Section 4.

Setup. We use the MNIST (LeCun et al., 1998) and
CIFAR-10 (Krizhevsky, 2009) datasets for our experiments.
We use a 2-layer fully-connected network (same as that
of Kingma & Welling (2013)) as the encoder and decoder
for MNIST; the encoder for CIFAR-10 is a ResNet-18 (He
et al., 2016) architecture while the decoder is a 4-layer de-
convolutional network (Noh et al., 2015). Full details of
the pre-processing, network architecture and training are
provided in Appendix A.

5.1. Iso-classi�cation process on the equilibrium
surface

This experiment demonstrates the iso-classi�cation process
in Remark 7. As discussed in Remark 4, training a model
to minimize the funtionalR + �D + 
C decreases the free-
energy monotonically.

Details. Given a value of the Lagrange multipliers(�; 
 ) we
�rst �nd a model on the equilibrium surface by training from
scratch for 120 epochs with the Adam optimizer (Kingma &
Ba, 2014); the learning rate is set to10� 3 and drops by a fac-
tor of 10 every 50 epochs. We then run the iso-classi�cation
process for these models in Remark 7 as follows. We modify
(�; 
 ) according to the equations

_� = � �
@C
@


and _
 = �
@C
@�

: (31)

Changes in(�; 
 ) cause the equilibrium surface to change,
so it is necessary to adapt the model parameters� so as to
keep them on the dynamically changing surface; let us call
this proces of adaptation “equilibriation”. We achieve this
by taking gradient-based updates to minimizeJ (�; 
 ) with a
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(a) (b) (c)
Figure 2.Iso-classi�cation process for MNIST.We run 5 different experiments for initial Lagrange multipliers given by� = 0 :25 and

 2 f 4; 6; 8; 10; 15g. During each experiment, we modify these Lagrange multipliers (Fig. 2b) to keep the classi�cation loss constant and
plot the rate-distortion curve (Fig. 2a) along with the validation loss (Fig. 2c). The validation accuracy is constant for each experiment; it
is between 92–98% for these initial values of(�; 
 ). Similarly the training loss is almost unchanged during each experiment and takes
values between 0.06–0.2 for different values of(�; 
 ).

(a) (b) (c)
Figure 3.Iso-classi�cation process for CIFAR-10. We run 4 different experiments for initial Lagrange multipliers� = 0 :5 and

 2 f 5; 10; 15; 20g. During each experiment, we modify the Lagrange multipliers (Fig. 3b) to keep the classi�cation loss constant and
plot the rate-distortion curve (Fig. 3a) along with the validation accuracy (Fig. 3c). The validation loss is constant during each experiment;
it takes values between 0.5–0.8 for these initial values of(�; 
 ). Similarly, the training loss is constant and takes values between 0.02–0.09
for these initial values of(�; 
 ). Observe that the rate-distortion curve in Fig. 3a is much �atter than the one in Fig. 2a which indicates
that the model family� for CIFAR-10 is much more powerful; this corresponds to the straight line in the RD curve for an in�nite model
capacity is as shown in Fig. 1a.

learning rate schedule that looks like a sharp quick increase
from zero and then a slow annealing back to zero. The learn-
ing rate schedule is given by� (t) = ( t=T)2 (1 � t=T)5

wheret is the number of mini-batch updates taken since the
last change in(�; 
 ) andT is total number of mini-batch
updates of equilibriation. The maximum value of the learn-
ing rate is set to1:5 � 10� 3. The free-energy should be
unchanged if the model parameters are on the equilibrium
surface after equilibriation; this is shown in Fig. 4a. Partial
derivatives in (31) are computed using �nite-differences.

Fig. 2 shows the result for the iso-classi�cation process
for MNIST and Fig. 3 shows a similar result for CIFAR-
10. We can see that the classi�cation loss remains constant
through the process. This experiment shows that we can
implement an iso-classi�cation process while keeping the
model parameters on the equilibrium surface during it.

5.2. Transfer learning between two subsets of MNIST

We next present experimental results of an iso-classi�cation
process for transferring the learnt representation. We pick
the source dataset to be all images corresponding to digits
0–4 in MNIST and the target datast is its complement, im-
ages of digits 5–9. Our goal is to adapt a model trained on
the source task to the target task while keeping its classi�ca-
tion loss constant. We run the geodesic transfer dynamics
from Section 4.3 and the results are shown in Fig. 5.

It is evident that the classi�cation accuracy is constant
throughout the transfer and is also the same as that of train-
ing from scratch on the target. MNIST is an simple dataset
and the accuracy gap between iso-classi�cation transfer,
�ne-tuning from the source and training from scratch is
minor. The bene�t of running the iso-classi�cation trans-
fer however is that we can be guaranteed about the �nal
accuracy of the model. The gap between these three to


