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Abstract
Frank-Wolfe algorithm is an efficient method
for optimizing non-convex constrained problems.
However, most of existing methods focus on
the first-order case. In real-world applications,
the gradient is not always available. To address
the problem of lacking gradient in many appli-
cations, we propose two new stochastic zeroth-
order Frank-Wolfe algorithms and theoretically
proved that they have a faster convergence rate
than existing methods for non-convex problems.
Specifically, the function queries oracle of the pro-
posed faster zeroth-order Frank-Wolfe (FZFW)
method isO(n

1/2d
ε2 ) which can match the iteration

complexity of the first-order counterpart approx-
imately. As for the proposed faster zeroth-order
conditional gradient sliding (FZCGS) method, its
function queries oracle is improved to O(n

1/2d
ε ),

indicating that its iteration complexity is even bet-
ter than that of its first-order counterpart NCGS-
VR. In other words, the iteration complelxity of
the accelerated first-order Frank-Wolfe method
NCGS-VR is suboptimal. Then, we proposed a
new algorithm to improve its IFO (incremental
first-order oracle) to O(n

1/2

ε ). At last, the empir-
ical studies on benchmark datasets validate our
theoretical results.

1. Introduction
In this paper, we consider the following constrained finite-
sum minimization problem:

min
x∈Ω

F (x) =
1

n

n∑
i=1

fi(x) , (1)
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where Ω ⊂ Rd denotes a closed convex feasible set, each
component function fi is smooth and non-convex, and n rep-
resents the number of component functions. Many problems
in machine learning can be represented by Eq. (1). A repre-
sentative example is the robust low-rank matrix completion
problem, which is defined as follows:

min
‖X‖∗≤R

∑
(i,j)∈O

(
1− exp

{
− (xi,j − yi,j)2

σ2

})
, (2)

where O denotes the observed elements, σ is a hyper-
parameter, and ‖X‖∗ ≤ R stands for the low-rank con-
straint. Here, the component function is a non-convex func-
tion which is less sensitive to the residual than the least
square loss.

Compared with the non-constraint finite-sum minimization
problem, optimizing Eq. (1) has to deal with the constraint,
which introduces new challenges. A straightforward method
to optimize the large-scale Eq. (1) is the projected gradient
descent method which first takes a step along the gradient
direction and then performs the projection to satisfy the
constraint. However, the computational overhead of the
projection step is usually large. For instance, the low-rank
constraint in Eq. (2) requires the time-consuming singular
value decomposition. Unlike the projected gradient descent
method, Frank-Wolfe method (Frank & Wolfe, 1956) is
more efficient when dealing with the constraint. Specifi-
cally, rather than performing projection, it solves an efficient
linear subproblem to make the solution lie in the feasible
set Ω. Thus, Frank-Wolfe method has been popularly used
in optimizing Eq. (1).

The classical Frank-Wolfe method (a.k.a. Conditional Gra-
dient method) is first proposed for convex constrained prob-
lems. It attracts increasing attention in machine learning
community (Clarkson, 2010; Jaggi; Lacoste-Julien & Jaggi,
2015; Mokhtari et al., 2018; Hassani et al., 2019; Zhang
et al., 2019) since it is efficient to optimize some difficult
machine learning problems, such as the low-rank constraint
problem. As for the convex problem, (Jaggi; Lacoste-Julien
& Jaggi, 2015; Hazan & Luo, 2016; Lan & Zhou, 2016)
analyzed and improved the convergence rate under different
settings. As for the non-convex problem, (Lacoste-Julien,
2016) demonstrated the convergence rate of non-convex FW
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under the batched setting. Later, (Reddi et al., 2016) pro-
posed the stochastic Frank-Wolfe (SFW) method and the
variance reduced variant (SVFW). Specifically, to achieve
ε-solution, SFW requires O( 1

ε4 ) incremental first-order ora-

cle (IFO) and SVFW improves it to O(n+ n2/3

ε2 ). Recently,
(Shen et al., 2019; Yurtsever et al., 2019) proposed a new
variant SPFW which employs a biased estimator (Fang et al.,
2018; Nguyen et al., 2017; Wang et al., 2018) for the gradi-
ent rather than an unbiased estimation like SFW and SVFW
so that the IFO is improved to O(n

1/2

ε2 ). Compared with
SVFW, the improvement is significant when n is huge for
the large-scale data.

However, all aforementioned results are based on the avail-
ability of the gradient∇fi. In many applications, only the
function value is available so that we cannot apply aforemen-
tioned methods. Fortunately, the zeroth-order optimization
algorithm can address this challenge. Its basic idea is to
approximate the gradient by the difference of function val-
ues f(x) under small disturbance on x. In (Duchi et al.,
2015; Shamir, 2017; Gao et al., 2018; Dvurechensky et al.,
2018; Wang et al., 2017), the convergence rate of zeroth-
order optimization for convex problems has been explored.
In addition, different works (Balasubramanian & Ghadimi,
2018; Lian et al., 2016; Ghadimi & Lan, 2013; Hajinezhad
et al., 2017; Liu et al., 2018; Nesterov & Spokoiny, 2017;
Ji et al., 2019) have been proposed to analyze the conver-
gence rate for the non-convex problem. For instance, a
string of works (Balasubramanian & Ghadimi, 2018; Sahu
et al., 2019; Chen et al., 2020) have been proposed to study
the non-convex zeroth-order Frank-Wolfe method recently.
In particular, (Chen et al., 2020) proposed a zeroth-order
Frank-Wolfe method for adversarial attack based on full gra-
dient. (Balasubramanian & Ghadimi, 2018) shows that the
zeroth-order stochastic conditional gradient (ZSCG) method
requires O( dε4 ) function queries and (Sahu et al., 2019)
proposes stochastic gradient free Frank-Wolfe (SGFFW)
method whose function queries oracle is O(d

4/3

ε4 ). How-
ever, it is commonly agreed that zeroth-order methods can
share the same iteration complexity with the first-order coun-
terparts besides some constant with respect to the input
dimension (Liu et al., 2018). As discussed earlier, the iter-
ation complexity of the first-order stochastic Frank-Wolfe
method is improved to O(n

1/2

ε2 ), which is much better than
O( dε4 ). Thus, a natural question follows: Is it possible to
improve the stochastic zeroth-order Frank-Wolfe method to
this level? In this paper, we obtain a positive answer. Specif-
ically, to improve the convergence rate, we resort to a biased
variance reduction technique (Fang et al., 2018; Nguyen
et al., 2017; Wang et al., 2018) as SPFW to reduce the vari-
ance when estimating the gradient. However, although the
biased estimator for gradient has been applied to some un-
constrained optimization methods (Fang et al., 2018), yet
there are new challenges in analyzing the convergence of the

stochastic zeroth-order Frank-Wolfe method. On one hand,
most existing works only apply it to unconstrained problems
while Frank-Wolfe optimizes the constrained problem. As a
result, the convergence criterion of Frank-Wolfe method is
totally different from that of unconstrained problems, which
intrigues the difficulty in the convergence analysis. On
the other hand, most existing works only apply this biased
variance reduction technique to first-order methods rather
than zeroth-order methods. The intrinsic properties of the
zeroth-order gradient also introduce difficulty in the con-
vergence analysis. Thus, it is challenging to improve the
convergence rate of the stochastic zeroth-order Frank-Wolfe
method. In this paper, we have addressed these challenges
and improved the number of function queries to O(n

1/2d
ε2 ).

On the other hand, the acceleration technique has shown
superior performance in different kinds of first-order opti-
mization methods. Inspired by that, (Qu et al., 2017) pro-
posed the accelerated non-convex FW. In particular, (Qu
et al., 2017) shows that the accelerated stochastic condi-
tional gradient sliding method (NCGS-VR) enjoys the IFO
ofO(n

2/3

ε ). Following the previous argument about the con-
sistency between the first-order and zeroth-order methods,
another natural question follows: Is it possible to further
improve the stochastic zeroth-order Frank-Wolfe method
to have similar iteration complexity with the accelerated
first-order counterpart? In this paper, we also give a positive
answer. Specifically, with the same biased variance reduc-
tion technique, we proposed a faster zeroth-order stochastic
conditional gradient sliding method which improves the
number of function queries to O(n

1/2d
ε ). In fact, the iter-

ation complexity of this stochastic zeroth-order method is
even better than its first-order counterpart in terms of the
order regarding n. In other words, the convergence rate
of NCGS-VR is suboptimal. Thus, in this paper, we also
proposed a faster first-order conditional gradient descent
method to further improve NCGS-VR. In particular, our pro-
posed method enjoys the IFO of O(n

1/2

ε ), which is better

than O(n
2/3

ε ). At last, we compare the iteration complex-
ity of different methods is Tables 1, 2 and summarize the
contributions of this paper as follows:

• We proposed a faster stochastic zeroth-order Frank-
Wolfe method with FQO as O(n

1/2d
ε2 ).

• We proposed a faster stochastic zeroth-order condi-
tional gradient sliding method and improved the func-
tion queries oracle to O(n

1/2d
ε ).

• We proposed a new stochastic first-order conditional
gradient sliding method with IFO as O(n

1/2

ε ).

2. Preliminaries
In this section, we will list assumptions and some important
definitions for the convergence analysis.
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Table 1. FQO of different zeroth-order algorithms.

Zeroth-Order FQO

ZSCG(Balasubramanian & Ghadimi, 2018) O( dε4 )

SGFFW (Sahu et al., 2019) O(d
4/3

ε4 )

FZFW (this work) O(n
1/2d
ε2 )

FZCGS(this work) O(n
1/2d
ε )

Table 2. IFO of different first-order algorithms.

First-Order IFO

SFW (Reddi et al., 2016) O( 1
ε4 )

SVFW (Reddi et al., 2016) O(n+ n2/3

ε2 )

SPFW (Shen et al., 2019) O(n
1/2

ε2 )

NCGS-VR (Qu et al., 2017) O(n
2/3

ε )

FCGS (this work) O(n
1/2

ε )

Assumption 1. The component function fi (i ∈ [n]) is
L-smooth as follows:

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Ω . (3)

Assumption 2. The diameter of the feasible set Ω is D.

Assumption 3. Assume that the variance of the stochastic
gradient ∇fi(x) is bounded as follows:

1

n

n∑
i=1

‖∇fi(x)−∇F (x)‖2 ≤ σ2 , (4)

where σ > 0 .

Convergence Criterion. Following (Lacoste-Julien, 2016;
Reddi et al., 2016), the convergence criterion used for the
standard Frank-Wolfe method is the Frank-Wolfe gap which
is defined as follows:

G(x) = max
u∈Ω
〈u− x,−∇F (x)〉 . (5)

For the conditional gradient sliding method which incorpo-
rates the Nesterov’s acceleration technique, following (Qu
et al., 2017; Lan & Zhou, 2016), we employ the following
gradient mapping as the convergence criterion:

G(x,∇F (x), γ) =
1

γ
(x− ψ(x,∇F (x), γ)) , (6)

where ψ(x,∇F (x), γ) denotes a prox-mapping function
which is defined as follows:

ψ(x,∇F (x), γ) = arg min
y∈Ω
〈∇F (x),y〉+

1

2γ
‖y − x‖2 ,

(7)

where γ > 0 is a hyper-parameter.

Oracle Model. Here, we use the following oracle models
to compare the iteration complexity of different algorithms.

• Function Query Oracle (FQO): FQO samples a com-
ponent function and returns its function value fi(x).

• Incremental First-Order Oracle (IFO): IFO samples a
component function and returns its gradient∇fi(x).

• Linear Oracle (LO): LO solves a linear programming
problem and returns arg maxu∈Ω〈u,v〉.

3. Faster Zeroth-Order Method for
Constrained Non-Convex Problems

In this section, we will present the faster zeroth-order Frank-
Wolfe (FZFW) method and the faster zeroth-order condi-
tional gradient sliding (FZCGS) method.

3.1. Zeroth-Order Gradient Estimator

When the gradient of a function is not available, we can
utilize the difference of the function value with respect to
two random points to estimate it. Specifically, the widely
used methods are the two-point Gaussian random gradient
estimator (Nesterov & Spokoiny, 2017) and the coordinate-
wise gradient estimator (Lian et al., 2016). In this paper,
we only consider the coordinate-wise gradient estimator
since existing literature (Liu et al., 2018) shows that it has
better convergence performance than the two-point Gaussian
random gradient estimator. Specifically, the coordinate-wise
gradient estimator is defined as follows:

∇̂fi(x) =

d∑
j=1

fi(x + µjej)− fi(x− µjej)
2µj

ej , (8)

where µj > 0 is the smoothing parameter, and ej ∈ Rd
denotes the basis vector where only the j-th element is 1
and all the others are 0. This estimator for the gradient
can be used for the Frank-Wolfe method when the standard
gradient is not available.

3.2. Faster Zeroth-Order Frank-Wolfe Method

In (Balasubramanian & Ghadimi, 2018), a zeroth-order
stochastic conditional gradient (ZSCG) method is proposed
and the number of function queriesO( dε4 ) under the stochas-
tic setting is provided. However, the zeroth-order method
is supposed to share the same order of iteration complexity
with its first-order counterpart if ignoring the term about
the dimension of the model parameter (Liu et al., 2018).
Currently, the first-order stochastic Frank-Wolfe method
for non-convex contrained problems has been improved to
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Algorithm 1 Faster Zeroth-Order Frank-Wolfe Method
(FZFW)
Input: x0, q > 0, µ > 0, K > 0, n

1: for k = 0, · · · ,K − 1 do
2: if mod(k, q) = 0 then
3: Sample S1 without replacement to compute v̂k =

∇̂fS1
(xk)

4: else
5: Sample S2 with replacement to compute v̂k =

1
|S2|

∑
i∈S2

[∇̂fi(xk)− ∇̂fi(xk−1) + v̂k−1]

6: end if
7: uk = arg maxu∈Ω〈u,−v̂k〉
8: dk = uk − xk
9: xk+1 = xk + γkdk

10: end for
Output: Randomly choose xα from {xk} and return it

O(n
1/2

ε2 ) (Shen et al., 2019). Thus, the iteration complexity
of ZSCG is suboptimal. In this subsection, we will propose
a new algorithm to improve it. The pseudo code of our pro-
posed faster zeroth-order Frank-Wolfe (FZFW) method is
summarized in Algorithm 1. In detail, to obtain the gradient
required in the linear oracle, we estimate the gradient at
every q iterations as follows:

∇̂fS1
(xk) =

d∑
j=1

fS1(xk + µjej)− fS1(xk − µjej)
2µj

ej ,

(9)
and estimate the gradient at other iterations as follows:

v̂k =
1

|S2|
∑
i∈S2

[∇̂fi(xk)− ∇̂fi(xk−1) + v̂k−1] , (10)

where S1 and S2 denote the randomly selected samples.
Compared with ZSCG (Balasubramanian & Ghadimi, 2018),
our proposed FZFW has two improvement. On one hand,
in (Balasubramanian & Ghadimi, 2018), the gradient is esti-
mated by the averaged Gaussian random gradient estimator
as follows:

v̂k =
1

|S|
∑
j∈S

fj(xk + vuj)− fj(xk)

v
uj , (11)

where uj ∼ N(0, I) is a Gaussian random vector. (Bal-
asubramanian & Ghadimi, 2018) shows that when using
Eq. (11) to estimate v̂k in each iteration, the number of
function queries is in the order of O(d/ε2). On the con-
trary, the coordinate-wise gradient estimator in Eq. (9) only
needs O(d) function queries. Thus, our method using the
coordinate-wise gradient estimator is better than ZSCG. On
the other hand, compared with ZSCG, the proposed FZFW
employs the variance reduction technique (Fang et al., 2018;
Nguyen et al., 2017; Wang et al., 2018) to estimate the gra-
dient, which is shown in Eq. (10). This estimator can reduce

the variance introduced by the randomly selected compo-
nent functions. Thus, based on these two points, our method
is supposed to converge faster than ZSCG. In particular, we
established the convergence of Algorithm 1 as follows.
Theorem 1. Under Assumption 1, if the parameters are
chosen as S1 = n, q = |S2| =

√
n, γk = γ = 1

D
√
K

, and
µ = 1√

dK
, then Algorithm 1 satisfies:

E[G(xα)] ≤
D
(
F (x0)− F (x∗) + 11L

)
√
K

. (12)

Here, we present the proof sketch due to the space limitation.
The detailed proof can be found in the appendix.

Proof. At first, in terms of the smoothness of the loss func-
tion, we can prove the following inequality:

E[F (xk+1)] ≤ E[F (xk)]− γE[G(xk)]

+
1

2L
E[‖v̂k −∇F (xk)‖2] + Lγ2D2 .

(13)

Then, in terms of Lemma 4, 5, we have

E[F (xk+1)] ≤ E[F (xk)]− γE[G(xk)]

+
3Lγ2

|S2|

k−1∑
t=(nk−1)q

E‖dt‖2 +
6Ldµ2(k − (nk − 1)q)

|S2|

+
3I(|S1| < n)(2L2µ2d+ σ2)

L|S1|
+ Ldµ2 + Lγ2D2 .

(14)
Furthermore, telescoping the above inequality over k from
(nk − 1)q to k where k ≤ nkq − 1, we have

E[F (xk+1)] ≤ E[F (x(nk−1)q)]− γ
k∑

j=(nk−1)q

E[G(xj)]

+
3Lγ2(k − (nk − 1)q + 1)

|S2|

k∑
i=(nk−1)q

E‖di‖2

+

k∑
j=(nk−1)q

(3I(|S1| < n)(2L2µ2d+ σ2)

L|S1|
+ Ldµ2

+ Lγ2D2
)

+
6Ldµ2(k − (nk − 1)q)(k − (nk − 1)q + 1)

|S2|
.

(15)
Based on the definition of xα, we have

E[G(xα)] ≤ F (x0)− F (x∗)

Kγ
+

3γLqD2

|S2|
+

6Ldµ2q

|S2|γ

+
3I(|S1| < n)(2L2µ2d+ σ2)

L|S1|γ
+
Ldµ2

γ
+ LγD2 .

(16)
By setting |S1| = n, we have I(|S1| < n) = 0. In addition,
if we set µ = 1√

dK
, γ = 1

D
√
K

, and q = |S2| =
√
n, we

can get the desired result.



Can Stochastic Zeroth-Order Frank-Wolfe Method Converge Faster for Non-Convex Problems?

Corollary 1. With the same setting as Theorem 1, the amor-
tized function queries oracle is O(n

1/2d
ε2 ) and the linear

oracle is O( 1
ε2 ).

Proof. Since q = |S2| =
√
n, then the total number of

estimating the gradient in every q iterations is n + q ×
|S2| = 2n. In addition, at each estimation, the coordinate-
wise gradient estimator evaluates the function value for d
times. Thus, the amortized function queries of each iteration
is 2nd/q = 2n1/2d. Then, the total FQO of FZFW is
O(n

1/2d
ε2 ). As for LO, it is easy to obtain O( 1

ε2 ).

Remark 1. In (Balasubramanian & Ghadimi, 2018), ZSCG
requires the number of function queries in each iteration
as much as O( dε2 ), while our method only needs O(n1/2d).
Thus, our method improves its convergence rate significantly.
On the other hand, our result can approximately match the
first-order counterpart (Shen et al., 2019).

3.3. Faster Zeroth-Order Conditional Gradient Sliding
Method

In this subsection, we will present the faster zeroth-order
conditional gradient sliding (FZCGS) method. Specifically,
the acceleration technique is widely used in the first-order
optimization method. Especially, (Qu et al., 2017) pro-
posed the accelerated conditional sliding method NCGS-
VR which incorporates the idea of the acceleration method
to the non-convex Frank-Wolfe method. Inspired by that,
we propose the accelerated stochastic zeroth-order stochas-
tic Frank-Wolfe method to further accelerate FZFW. The
pseudo code is summarized in Algorithm 2. In detail, to
estimate the gradient, we employ the same method as Al-
gorithm 1. The difference between Algorithm 1 and Al-
gorithm 2 lies in the updating of xk. Here, Algorithm 2
employs the conditional gradient sliding algorithm (Lan &
Zhou, 2016; Qu et al., 2017) which is defined in Algorithm 3.
If we define φ(y;x,∇F (x), γ) = miny∈Ω〈∇F (x),y〉 +
1

2γ ‖y−x‖2, step 2 in Algorithm 3 is equivalent to optimize
maxx∈Ω〈φ′(ut;u,g, γ),ut − x〉. In fact, it is the Wolfe
gap. As shown in Algorithm 3, it terminates when the Wolfe
gap is smaller than the predefined tolerance η. More de-
tails about the conditional gradient sliding algorithm can be
found in (Lan & Zhou, 2016; Qu et al., 2017).
Theorem 2. Under Assumption 1, if the parameters are
chosen as |S1| = n, q = |S2| =

√
n, µ = 1√

dK
, γk = γ =

1
3L , and ηk = η = 1

K , then Algorithm 2 has the following
convergence rate:

E[‖G(xα,∇F (xα), γ)‖2]

≤

(
3(F (x0)− F (x∗) + 1) + 7L

)
6L

K
.

(17)

Similarly, we present the proof sketch of this algorithm.
More details can be found in the appendix.

Proof. Firstly, we prove the following inequality:

E[F (xk+1)] ≤ E[F (xk)] +
γ

2
E[‖∇F (xk)− v̂k‖2]

+ (
L

2
− 1

2γ
)E[‖xk+1 − xk‖2]

+ (L− 1

2γ
)E[‖x̃k+1 − xk‖2] + η .

(18)

Secondly, with Lemma 4 and 5, we have

E[F (xk+1)] ≤ E[F (xk)] +
3L2γ

|S2|

k∑
t=(nk−1)q+1

E‖dt−1‖2

+
6L2µ2d(k − (nk − 1)q)γ

|S2|
+ L2dµ2γ

+
3I(|S1| < n)(2L2µ2d+ σ2)γ

|S1|
+ (

L

2
− 1

2γ
)D2

+ (L− 1

2γ
)E[‖x̃k+1 − xk‖2] + η .

(19)
Thirdly, telescoping it over k from (nk − 1)q to k where
k ≤ nkq − 1, we have

E[F (xk+1)] ≤ E[F (x(nk−1)q)]

+

k∑
j=(nk−1)q

(
(L− 1

2γ
)E[‖x̃j+1 − xj‖2]

+
3γL2D2(k − (nk − 1)q + 1)

|S2|
+ L2dµ2γ

+
3I(|S1| < n)(2L2µ2d+ σ2)γ

|S1|
+ (

L

2
− 1

2γ
)D2 + η

)
+

6L2dµ2(k − (nk − 1)q)(k − (nk − 1)q + 1)γ

|S2|
.

(20)
Then, we have the following inequality:

γ2(
1

2γ
− L)E[‖G(xα,∇F (xα), γ)‖2]

≤ F (x0)− F (x∗) + 1

K
+

3γqL2D2

|S2|
+

6L2dµ2γq

|S2|

+
3I(|S1| < n)(2L2µ2d+ σ2)γ

|S1|

+ L2dµ2γ + (
L

2
− 1

2γ
)D2 .

(21)
By setting |S1| = n, then I(|S1| < n) = 0. Besides,
if we set q = |S2| =

√
n, µ = 1√

dK
, and γ = 1

3L , we

have 3γqL2D2

|S2| + (L2 −
1

2γ )D2 = 0, then we complete the
proof.

Corollary 2. With the same setting as Theorem 2, the amor-
tized function queries oracle is O(n

1/2d
ε ) and the linear

oracle is O( 1
ε2 ).
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Proof. Similar with the proof of Corollary 1, by setting
q = |S2| =

√
n and |S1| = n, we have the amortized gra-

dient calling as O(n
1/2

ε ). Thus, the total FQO is O(n
1/2d
ε ).

Similarly, the LO is O( 1
ε2 ).

Remark 2. Compared with FZFW in Algorithm 1, FZCGS
has better FQO since it employs the conditional gradient
sliding algorithm to accelerate the convergence speed.

Remark 3. Compared with the first-order NCSG-VR (Qu
et al., 2017) whose IFO is O(n

2/3

ε ), the iteration complexity
of our proposed FZCGS is even better than this first-order
counterpart if we ignore the multiplicative parameter d.
Thus, we argue that the iteration complexity of NCSG-VR
is suboptimal. In the next section, we will propose a new
algorithm to improve the first-order counterpart.

Algorithm 2 Faster Zeroth-Order Conditional Gradient
Method (FZCGS)
Input: x0, q > 0, µ > 0, K > 0, η > 0, γ > 0, n

1: for k = 0, · · · ,K − 1 do
2: if mod(k, q) = 0 then
3: Sample S1 without replacement to compute v̂k =

∇̂fS1(xk)
4: else
5: Sample S2 with replacement to compute v̂k =

1
|S2|

∑
i∈S2

[∇̂fi(xk)− ∇̂fi(xk−1) + v̂k−1]

6: end if
7: xk+1 = condg(v̂k,xk, γk, ηk)
8: end for

Output: Randomly choose xα from {xk} and return it

Algorithm 3 u+ = condg(g,u, γ, η) (Qu et al., 2017)
1: u1 = u, t = 1
2: vt be an optimal solution for

Vg,u,γ(ut) = max
x∈Ω
〈g +

1

γ
(ut − u),ut − x〉

3: If Vg,u,γ(ut) ≤ η, return u+ = ut.
4: Set ut+1 = (1 − αt)ut + αtvt where αt =

min{1, 〈
1
γ (u−ut)−g,vt−ut〉

1
γ ‖vt−ut‖2

} .

5: Set t← t+ 1 and goto step 2.

3.4. Faster First-Order Conditional Gradient Sliding
Method

As discussed in the last subsection, we found that the it-
eration complexity of the existing first-order conditional
gradient sliding method is even worse than that of our pro-
posed FZCGS in Algorithm 2 if we ignore the multiplicative
parameter d. Thus, it is necessary to further improve the
existing first-order methods. To address this problem, we

propose a new faster conditional gradient sliding (FCGS)
method in Algorithm 4. Here, similar with Algorithm 2, we
also reduce the variance of the estimator for the full gradient
by utilizing Eq. (10). The only difference is that we use
the standard gradient rather than the zeroth-order gradient
estimator.

Algorithm 4 Faster First-Order Conditional Gradient Slid-
ing Method (FCGS)
Input: x0, q > 0, K > 0, η > 0, γ > 0, n

1: for k = 0, · · · ,K − 1 do
2: if mod(k, q) = 0 then
3: Compute the full gradient vk = ∇F (xk)
4: else
5: Sample S2 to compute vk =

1
|S2|

∑
i∈S2

[∇fi(xk)−∇fi(xk−1) + vk−1]

6: end if
7: xk+1 = condg(vk,xk, γk, ηk)
8: end for
9: Randomly choose xα from {xk} and return it

Theorem 3. Under Assumption 1, if the parameters are
chosen as q = |S2| =

√
n, γk = γ = 1

3L , ηk = η , then
Algorithm 4 has the following convergence rate:

E[‖G(xα,∇F (xα), γ)‖2] ≤ 18L(F (x0)− F (x∗) + 1)

K
.

(22)

The proof sketch about Theorem 3 is shown as follows.

Proof. Similar with the proof of Theorem 2, we first have
the following inequality:

E[F (xk+1)] ≤ E[F (xk)] +
γ

2
E[‖∇F (xk)− v̂k‖2]

+ (
L

2
− 1

2γ
)E[‖xk+1 − xk‖2]

+ (L− 1

2γ
)E[‖x̃k+1 − xk‖2] + η .

(23)

According to Lemma 4 and 5, we have

E[F (xk+1)] ≤ E[F (xk)] + (L− 1

2γ
)E[‖x̃k+1 − xk‖2]

+
γ

2

k∑
i=(nk−1)q

L2E[‖di‖2]

|S2|
+ (

L

2
− 1

2γ
)D2 + η .

(24)
Then, telescoping it over k from (nk − 1)q to k where
k ≤ nkq − 1, we have

E[F (xk+1)] ≤ E[F (x(nk−1)q)]

+

k∑
j=(nk−1)q

(
(L− 1

2γ
)E[‖x̃j+1 − xj‖2]

+
γqL2D2

2|S2|
+ (

L

2
− 1

2γ
)D2 + η

)
.

(25)
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Afterwards, we have the following inequality:

γ2(
1

2γ
− L)E[‖G(xα,∇F (xα), γ)‖2]

≤ F (x0)− F (x∗) + 1

K
+
γqL2D2

2|S2|
+ (

L

2
− 1

2γ
)D2 .

(26)
Furthermore, by setting q = |S2| =

√
n and γ = 1

3L , then
γL2D2

2 + (L2 −
1

2γ )D2 < 0, we can get the desired result.

Corollary 3. With the same setting as Theorem 3, the amor-
tized IFO is O(n

1/2

ε ) and the linear oracle is O( 1
ε2 ).

Proof. Since q = |S2| =
√
n, then the total number of

IFO in every q iterations is n + q × |S2| = 2n. Thus, the
amortized IFO of each iteration is 2n/q = 2n1/2. Then, the
total IFO of FCGS is n1/2

ε . In addition, it is easy to obtain
O( 1

ε2 ) for LO.

4. Experiments
4.1. Experimental Settings

In our experiment, we focus on the non-convex maximum
correntropy criterion induced regression (MCCR) (Feng
et al., 2015) model as follows:

min
|x‖1≤s

F (x) =
1

n

n∑
i=1

σ2
(

1− exp
{
− (bi − xTai)

2

σ2

})
(27)

where σ and s are hyper-parameters. As for the experiment
for zeroth-order methods, we view the loss function as a
black-box function, which means that only function value
is available. As for the experiment for first-order methods,
both function value and gradient are available.

To investigate the performance of optimization algorithms
for Eq. (27), we synthesize two datasets. In detail, for the
data matrix A = {ai}ni=1 ∈ Rd×n, each data point ai ∈ Rd
is generated independently from a Gaussian distribution
N(0,Σ). Then, we construct the response vector by b =
Ax∗ + z where x∗ is a sparse vector with sparsity as s∗,
and z is the random noise. Specifically, we use a uniform
distribution U [−1, 1] to generate the non-zero entries of x∗.
In addition, we employ a X 2-distribution whose degrees
of freedom is 2 to generate the noise z. Following these
settings, we construct two datasets. Specifically, the first
synthetic data (Syn-1) is configured with n = 10, 000, d =
100, s∗ = 20, and Σ being an identity matrix. The second
synthetic data (Syn-2) is configured with n = 25, 000, d =
200, s∗ = 50, and the off-diagonal entries of the covariance
matrix Σ are set to 0.1 and the diagonal entries are set to 1.

To evaluate the performance of our proposed algorithms,
we compare them with different baseline methods. Specifi-
cally, for the zeroth-order method, the baseline method in-
cludes zeroth-order stochastic conditional gradient method
(ZSCG) (Balasubramanian & Ghadimi, 2018). Since the
FQO of another stochastic zeroth-order method (Sahu et al.,
2019) is O(d4/3/ε4), which is even worse than that of
ZSCG, we only compare our method with ZSCG. For the
first-order method, the baseline methods include stochastic
Frank-Wolfe (SFW) method (Reddi et al., 2016), stochas-
tic variance-reduced Frank-Wolfe (SVFW) method (Reddi
et al., 2016), variance reduction non-convex conditional gra-
dient sliding (NCGS-VR) method (Qu et al., 2017). All
parameters of these methods are set following the original
paper. As for our methods, the parameters are also set in
terms of our theoretical analysis.

0 50 100 150 200 250 300 350 400

#Iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

O
b

je
c
ti
v
e

 v
a

lu
e

ZSCG

FZFW

FZCGS

(a) Syn-1

0 200 400 600 800 1000

#Iterations

0

5

10

15

20

25

30

35

40

O
b

je
c
ti
v
e

 v
a

lu
e

ZSCG

FZFW

FZCGS

(b) Syn-2

Figure 1. The objective value with respect to the number of itera-
tions obtained by zeroth-order methods.

4.2. Experimental Results

Zeroth-Order Method The convergence result of the
zeroth-order method is reported in Figure 1(a) and 1(b).
Here, we show the objective function value with respect
to the number of iterations. It can be found that our pro-
posed methods outperform the baseline method significantly.
Specifically, FZFW converges faster than ZSCG. The reason
is two fold. On one hand, FZFW employs the coordinate-
wise gradient estimator while ZSCG uses the averaged Gaus-
sian random gradient estimator. On the other hand, FZFW
utilizes a variance reduced gradient estimator while ZSCG
not. As a result, our proposed FZFW can converge faster
than ZSCG. Furthermore, the proposed FZCSG can outper-
form FZFW. The reason is that FZCSG incorporates the
acceleration technique.

First-Order Method In Figure 2(a) and 2(b), we demon-
strate the convergence result of different first-order Frank-
Wolfe methods. Specifically, we report the objective func-
tion value with respect to the number of function queries.
It is easy to find that the proposed FCGS is the fastest one
among these methods, which means that FCGS has better
IFO.
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Figure 2. The objective value with respect to the number of func-
tion queries obtained by first-order methods

4.3. Additional Experiments

Low-Rank Matrix Completion In this experiment, we use
the low-rank matrix completion task, which is defined in
Eq. (2), to verify the performance of our proposed stochastic
zeroth-order methods. The dataset used in this experiment
is MovieLens100k1. It is a movie rating matrix. There
are 1,682 users and 943 movies. The task is to predict the
missing value in the given rating matrix, which can be used
for movie recommendation. In this experiment, the trace
norm constraint R is set to 7,000.

In Figure 3, we demonstrate the loss function value regard-
ing the number of iterations. It can be seen that our proposed
zeroth-order methods converges much faster than ZSCG.
Meanwhile, for our proposed two zeroth-order methods,
FZCGS converges faster than FZFW. These results confirm
the correctness of our theoretical results and the effective-
ness of our proposed algorithms.

0 20 40 60 80 100

#Iterations

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

O
b

je
c
ti
v
e

 v
a

lu
e

ZSCG

FZFW

FZCGS

Figure 3. The objective value with respect to the number of it-
erations obtained by zeroth-order methods for low-rank matrix
completion.

Generation of Adversarial Examples In this experiment,
we verify the performance of our proposed zeroth-order
methods on the task of adversarial attack on black-box

1https://grouplens.org/datasets/
movielens/

DNNs. In particular, given a black-box DNN f : Rd → Rc
and a dataset {(xi, yi) : xi ∈ Rd, yi ∈ {0, 1, · · · , c}}ni=1,
the task is to find the adversarial perturbation δ ∈ Rd for
sample xi such that the DNN model makes the incorrect
prediction ŷi 6= yi. To this end, we optimize the following
problem:

min
‖δ‖∞≤s

1

n

n∑
i=1

max{fyi(xi + δ)−max
j 6=yi

fj(xi + δ), 0}

(28)
where f(x) = [f1(x), f1(x), · · · , fc(x)] denotes the output
of the last layer before conducting the softmax operation.

Following (Liu et al., 2018; Ji et al., 2019), we use the same
pretrained DNN2 for MNIST dataset as the black-box model.
The hyperparameter s is set to 0.1. The convergence result
of different zeroth-order methods is shown in Figure 4. It
can be seen that our proposed FZFW converges faster than
ZSCG, confirming the correctness of our theoretical result.
In addition, our proposed FZCGS method outperforms the
non-accelerated FZFW, which also confirms the correctness
of our theoretical results.

Figure 4. The objective value with respect to the number of itera-
tions obtained by zeroth-order methods for generation of adversar-
ial examples.

5. Conclusion
In this paper, we improved the convergence rate of stochastic
zeroth-order Frank-Wolfe method. Specifically, we pro-
posed two algorithms for the zeroth-order Frank-Wolfe
methods. Both of them improve the function queries or-
acle significantly over existing methods. In addition, we
also improved the accelerated stochastic zeroth-order Frank-
Wolfe method to a better IFO. Experimental results have
confirmed the effectiveness of our proposed methods.

2https://github.com/IBM/
ZOSVRG-BlackBox-Adv

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://github.com/IBM/ZOSVRG-BlackBox-Adv
https://github.com/IBM/ZOSVRG-BlackBox-Adv
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6. Supplemental Materials
6.1. Proof of Theorem 1

Proof. At first, we define
ũk = arg max

u∈Ω
〈u,−∇F (xk)〉 . (29)

Then, by denoting ∆ = ∇F (xk)− v̂k, we have

〈∇F (xk),uk − xk〉
= 〈∇F (xk), ũk − xk〉+ 〈∇F (xk),uk − ũk〉
= 〈∇F (xk), ũk − xk〉+ 〈∇F (xk)−∆,uk − ũk〉+ 〈∆,uk − ũk〉

≤ 〈∇F (xk), ũk − xk〉+
Lγ

2
‖uk − ũk‖2 +

1

2Lγ
‖∆‖2 ,

(30)

where the last step follows Young’s inequality and the fact 〈∇F (xk)−∆,uk − ũk〉 = 〈v̂k,uk − ũk〉 ≤ 0 which is due to
the optimality condition of step 7 in Algorithm 1. Then, we have

F (xk+1)

≤ F (xk) + 〈∇F (xk), γ(uk − xk)〉+
L

2
‖γ(uk − xk)‖2

≤ F (xk) + γ〈∇F (xk), ũk − xk〉+
Lγ2

2
[‖uk − ũk‖2 + ‖uk − xk‖2] +

1

2L
‖v̂k −∇F (xk)‖2

≤ F (xk)− γG(xk) +
1

2L
‖v̂k −∇F (xk)‖2 + Lγ2D2 ,

(31)

where the first inequality is due to the smoothness of the function, the second inequality follows from Eq. (30), and the last
step is due to the diameter of the feasible set is D. For any (nk − 1)q ≤ k ≤ nkq − 1 where nk ≥ 1, taking expectation for
the above inequality, we have

E[F (xk+1)]

≤ E[F (xk)]− γE[G(xk)] +
1

2L
E[‖v̂k −∇F (xk)‖2] + Lγ2D2

≤ E[F (xk)]− γE[G(xk)] +
1

L
E[‖v̂k −∇F̂ (xk)‖2] +

1

L
E[‖∇F̂ (xk)−∇F (xk)‖2] + Lγ2D2

≤ E[F (xk)]− γE[G(xk)] +
3Lγ2

|S2|

k−1∑
t=(nk−1)q

E‖dt‖2 +
6Ldµ2(k − (nk − 1)q)

|S2|
+

3I(|S1| < n)(2L2µ2d+ σ2)

L|S1|

+ Ldµ2 + Lγ2D2 ,

(32)

where dt = xt − xt−1, the third inequality follows from Lemma 3 and Lemma 5. Telescoping it over k from (nk − 1)q to
k where k ≤ nkq − 1, we have

E[F (xk+1)]

≤ E[F (x(nk−1)q)]− γ
k∑

j=(nk−1)q

E[G(xj)] +
3Lγ2

|S2|

k∑
j=(nk−1)q

j−1∑
i=(nk−1)q

E‖di‖2 +

k∑
j=(nk−1)q

(6Ldµ2(k − (nk − 1)q)

|S2|

+
3I(|S1| < n)(2L2µ2d+ σ2)

L|S1|
+ Ldµ2 + Lγ2D2

)
≤ E[F (x(nk−1)q)]− γ

k∑
j=(nk−1)q

E[G(xj)] +
3Lγ2(k − (nk − 1)q + 1)

|S2|

k∑
i=(nk−1)q

E‖di‖2

+

k∑
j=(nk−1)q

(3I(|S1| < n)(2L2µ2d+ σ2)

L|S1|
+ Ldµ2 + Lγ2D2

)
+

6Ldµ2(k − (nk − 1)q)(k − (nk − 1)q + 1)

|S2|
,

(33)
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where the second inequality comes from extending j to k due to the non-negativity. Then,

E[F (xk+1)]− E[F (x(nk−1)q)]

≤ −
k∑

i=(nk−1)q

(
γE[G(xi)]−

3γ2LD2(k − (nk − 1)q + 1)

|S2|
− 3I(|S1| < n)(2L2µ2d+ σ2)

L|S1|
− Ldµ2 − Lγ2D2

)
+

6Ldµ2(k − (nk − 1)q)(k − (nk − 1)q + 1)

|S2|
.

(34)

Specifically, when k = nkq − 1, from the above inequality, we have

E[F (xnkq)]− E[F (x(nk−1)q)]

≤ −
nkq−1∑

i=(nk−1)q

γE[G(xi)] +
3γ2LD2q2 + 6Ldµ2q2

|S2|
+

3I(|S1| < n)(2L2µ2d+ σ2)q

L|S1|
+ Ldµ2q + Lγ2D2q .

(35)

Then, we have

E[F (xK)]− E[F (x0)]

= E[F (xq)]− E[F (x0)] + E[F (x2q)]− E[F (xq)] + · · ·+ E[F (xK)]− E[F (x(nk−1)q)]

≤
(
−
q−1∑
i=0

γE[G(xi)] +
3γ2LD2q2 + 6Ldµ2q2

|S2|
+

3I(|S1| < n)(2L2µ2d+ σ2)q

L|S1|
+ Ldµ2q + Lγ2D2q

)
+ · · ·+

(
−

K−1∑
i=(nK−1)q

(γE[G(xi)]− Ldµ2 − Lγ2D2 − 3γ2LD2(K − (nK − 1)q)

|S2|

− 3I(|S1| < n)(2L2µ2d+ σ2)

L|S1|
) +

6Ldµ2(K − (nK − 1)q)(K − (nK − 1)q)

|S2|

)
≤ −γ

K−1∑
i=0

E[G(xi)] +
3γ2LD2Kq

|S2|
+

6Ldµ2Kq

|S2|
+

3I(|S1| < n)(2L2µ2d+ σ2)K

L|S1|
+ Ldµ2K + Lγ2D2K .

(36)

Consequently, we have

E[G(xα)] ≤ F (x0)− F (x∗)

Kγ
+

3γLD2q

|S2|
+

6Ldµ2q

|S2|γ
+

3I(|S1| < n)(2L2µ2d+ σ2)

L|S1|γ
+
Ldµ2

γ
+ LγD2 . (37)

By setting |S1| = n, we have I(|S1| < n) = 0. In addition, if we set µ = 1√
dK

, γ = 1√
KD2

, and q = |S2| =
√
n, we have

E[G(xα)] ≤
D
(
F (x0)− F (x∗) + 11L

)
√
K

. (38)

6.2. Proof of Theorem 2

Before proving Theorem 2, we first introduce an important lemma as follows.

Lemma 1. (Qu et al., 2017) Assume y = condg(g,x, γ, η), then the following inequality holds:

F (y) ≤ F (z) + 〈y − z,∇F (x)− g〉+ (
L

2
− 1

2γ
)‖y − x‖2

+ (
L

2
+

1

2γ
)‖z− x‖2 − 1

2γ
‖y − z‖2 + η,∀z ∈ Rd.

(39)
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The proof can be found in (Qu et al., 2017). Now, we are ready to prove Theorem 2.

Proof. At first, we denote x̃k+1 = ψ(xk,∇F (xk), γ), then in terms of Lemma 1 by setting y = x̃k+1 and z = x = xk,
we have

F (x̃k+1)

≤ F (xk) + (
L

2
− 1

2γ
)‖x̃k+1 − xk‖2 −

1

2γ
‖x̃k+1 − xk‖2

= F (xk) + (
L

2
− 1

γ
)‖x̃k+1 − xk‖2 .

(40)

Also, since xk+1 = condg(v̂k,xk, γ, η), in terms of Lemma 1 by setting y = xk+1, z = x̃k+1, and x = xk, we have

F (xk+1)

≤ F (x̃k+1)− 〈xk+1 − x̃k+1,∇F (xk)− v̂k〉+ (
L

2
− 1

2γ
)‖xk+1 − xk‖2 + (

L

2
+

1

2γ
)‖x̃k+1 − xk‖2

− 1

2γ
‖xk+1 − x̃k+1‖2 + η

≤ F (x̃k+1) +
1

2γ
‖xk+1 − x̃k+1‖2 +

γ

2
‖∇F (xk)− v̂k‖2 + (

L

2
− 1

2γ
)‖xk+1 − xk‖2 + (

L

2
+

1

2γ
)‖x̃k+1 − xk‖2

− 1

2γ
‖xk+1 − x̃k+1‖2 + η

≤ F (x̃k+1) +
γ

2
‖∇F (xk)− v̂k‖2 + (

L

2
− 1

2γ
)‖xk+1 − xk‖2 + (

L

2
+

1

2γ
)‖x̃k+1 − xk‖2 + η .

(41)
By summing the above two inequalities together and taking expectation, we obtain

E[F (xk+1)]

≤ E[F (xk)] +
γ

2
E[‖∇F (xk)− v̂k‖2] + (

L

2
− 1

2γ
)E[‖xk+1 − xk‖2] + (L− 1

2γ
)E[‖x̃k+1 − xk‖2] + η

≤ E[F (xk)] + γE[‖∇̂F (xk)− v̂k‖2] + γE[‖∇̂F (xk)−∇F (xk)‖2] + (
L

2
− 1

2γ
)E[‖xk+1 − xk‖2]

+ (L− 1

2γ
)E[‖x̃k+1 − xk‖2] + η

≤ E[F (xk)] +
3L2γ

|S2|

k∑
t=(nk−1)q+1

E‖dt−1‖2 +
6L2µ2d(k − (nk − 1)q)γ

|S2|
+

3I(|S1| < n)(2L2µ2d+ σ2)γ

|S1|

+ γdµ2L2 + (
L

2
− 1

2γ
)D2 + (L− 1

2γ
)E[‖x̃k+1 − xk‖2] + η,

(42)

where the third inequality follows from Lemma 3 and Lemma 5. Telescoping it over k from (nk − 1)q to k where
k ≤ nkq − 1, we have

E[F (xk+1)]− E[F (x(nk−1)q)]

≤ (L− 1

2γ
)

k∑
j=(nk−1)q

E[‖x̃j+1 − xj‖2] +
3L2γ

|S2|

k∑
j=(nk−1)q

j−1∑
i=(nk−1)q

E[‖di‖2]

+

k∑
j=(nk−1)q

(6L2µ2d(k − (nk − 1)q)γ

|S2|
+

3I(|S1| < n)(2L2µ2d+ σ2)γ

|S1|
+ L2dµ2γ + (

L

2
− 1

2γ
)D2 + η

)

≤
k∑

j=(nk−1)q

(
(L− 1

2γ
)E[‖x̃j+1 − xj‖2] +

3γL2D2(k − (nk − 1)q + 1)

|S2|
+

3I(|S1| < n)(2L2µ2d+ σ2)γ

|S1|

+ L2dµ2γ + (
L

2
− 1

2γ
)D2 + η

)
+

6L2dµ2(k − (nk − 1)q)(k − (nk − 1)q + 1)γ

|S2|
.

(43)
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Then, similar with the proof of Theorem 1, we have

E[F (xK)]− E[F (x0)]

= E[F (xq)]− E[F (x0)] + E[F (x2q)]− E[F (xq)] + · · ·+ E[F (xK)]− E[F (x(nk−1)q)]

≤
K−1∑
j=0

(L− 1

2γ
)E[‖x̃j+1 − xj‖2] +

3γqL2D2K

|S2|
+

6L2dµ2γqK

|S2|

+
3I(|S1| < n)(2L2µ2d+ σ2)γK

|S1|
+ L2dµ2γK + (

L

2
− 1

2γ
)D2K + ηK .

(44)

By setting γ < 1
2L and η = 1

K , we have

K−1∑
j=0

(
1

2γ
− L)E[‖x̃j+1 − xj‖2]

≤ F (x0)− F (x∗) +
3γqL2D2K

|S2|
+

6L2dµ2γqK

|S2|
+

3I(|S1| < n)(2L2µ2d+ σ2)γK

|S1|
+ L2dµ2γK

+ (
L

2
− 1

2γ
)D2K + 1 .

(45)

By definition, we have ‖x̃j+1 − xj‖2 = γ2‖G(xj ,∇F (xj), γ)‖2, then

γ2(
1

2γ
− L)

K−1∑
j=0

E[‖G(xj ,∇F (xj), γ)‖2]

≤ F (x0)− F (x∗) +
3γqL2D2K

|S2|
+

6L2dµ2γqK

|S2|
+

3I(|S1| < n)(2L2µ2d+ σ2)γK

|S1|
+ L2dµ2γK

+ (
L

2
− 1

2γ
)D2K + 1 .

(46)

Furthermore, by the definition of xα, we have

γ2(
1

2γ
− L)E[‖G(xα,∇F (xα), γ)‖2]

≤ F (x0)− F (x∗) + 1

K
+

3γqL2D2

|S2|
+

6L2dµ2γq

|S2|
+

3I(|S1| < n)(2L2µ2d+ σ2)γ

|S1|
+ L2dµ2γ

+ (
L

2
− 1

2γ
)D2 .

(47)

By setting |S1| = n, then I(|S1| < n) = 0. Besides, if we set q = |S2| =
√
n, µ = 1√

dK
, and γ = 1

3L , we have
3γqL2D2

|S2| + (L2 −
1

2γ )D2 = 0, then

E[‖G(xα,∇F (xα), γ)‖2] ≤

(
3(F (x0)− F (x∗) + 1) + 7L

)
6L

K
.

(48)

6.3. Proof of Theorem 3

Before proving Theorem 3, we first introduce the following lemma to bound the variance of the stochastic gradient.

Lemma 2. (Wang et al., 2018) If Assumption 1 holds, for all (nk − 1)q + 1 ≤ k ≤ nkq − 1 where nk ≥ 1 is an integer, we
have

E[‖vk −∇F (xk)‖2] ≤
k∑

i=(nk−1)q+1

L2

|S2|
E[‖xi − xi−1‖2] + E[‖v(nk−1)q −∇F (x(nk−1)q)‖2] . (49)
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The proof is simple and can be found in (Wang et al., 2018). In step 3 of Algorithm 4, we compute the full gradient at every
q iterations. Thus, we have E‖v(nk−1)q −∇F (x(nk−1)q)‖2 = 0. Now, we are ready to prove Theorem 3.

Proof. Denote x̃k+1 = ψ(xk,∇F (xk), γ), then similar with the proof of Theorem 2, we have

E[F (xk+1)]

≤ E[F (xk)] +
γ

2
E[‖∇F (xk)− vk‖2] + (

L

2
− 1

2γ
)E[‖xk+1 − xk‖2] + (L− 1

2γ
)E[‖x̃k+1 − xk‖2] + η

≤ E[F (xk)] +
γ

2

k∑
i=(nk−1)q

L2

|S2|
E[‖xi+1 − xi‖2] + (

L

2
− 1

2γ
)E[‖xk+1 − xk‖2] + (L− 1

2γ
)E[‖x̃k+1 − xk‖2] + η

≤ E[F (xk)] + (L− 1

2γ
)E[‖x̃k+1 − xk‖2] +

γ

2

k∑
i=(nk−1)q

L2E[‖di‖2]

|S2|
+ (

L

2
− 1

2γ
)D2 + η .

(50)
Telescoping it over k from (nk − 1)q to k where k ≤ nkq − 1, we have

E[F (xk+1)]− E[F (x(nk−1)q)]

≤ (L− 1

2γ
)

k∑
j=(nk−1)q

E[‖x̃j+1 − xj‖2] +
γ

2

k∑
j=(nk−1)q

k∑
i=(nk−1)q

L2E[‖di‖2]

|S2|
+

k∑
j=(nk−1)q

(
(
L

2
− 1

2γ
)D2 + η

)

≤
k∑

j=(nk−1)q

(
(L− 1

2γ
)E[‖x̃j+1 − xj‖2] +

γqL2D2

2|S2|
+ (

L

2
− 1

2γ
)D2 + η

)
.

(51)

Then, it is easy to obtain

E[F (xK)]− E[F (x0)]

= E[F (xq)]− E[F (x0)] + E[F (x2q)]− E[F (xq)] + · · ·+ E[F (xK+1)]− E[F (x(nk−1)q)]

≤
q−1∑
j=0

(
(L− 1

2γ
)E[‖x̃j+1 − xj‖2] +

γqL2D2

2|S2|
+ (

L

2
− 1

2γ
)D2 + η

)
+ · · ·+

K−1∑
j=(nK−1)q

(
(L− 1

2γ
)E[‖x̃j+1 − xj‖2]

+
γ(K − (nK − 1)q)L2D2

2|S2|
+ (

L

2
− 1

2γ
)D2 + η

)
=
K−1∑
j=0

(L− 1

2γ
)E[‖x̃j+1 − xj‖2] +

γqL2D2K

2|S2|
+ (

L

2
− 1

2γ
)D2K + ηK .

(52)
By setting γ < 1

2L and η = 1
K , we have

K−1∑
j=0

(
1

2γ
− L)E[‖x̃j+1 − xj‖2] ≤ F (x0)− F (x∗) +

γqL2D2K

2|S2|
+ (

L

2
− 1

2γ
)D2K + 1 . (53)

By definition, we have ‖x̃j+1 − xj‖2 = γ2‖G(xj ,∇F (xj), γ)‖2, then

γ2(
1

2γ
− L)

K−1∑
j=0

E[‖G(xj ,∇F (xj), γ)‖2] ≤ F (x0)− F (x∗) +
γqL2D2K

2|S2|
+ (

L

2
− 1

2γ
)D2K + 1 . (54)

Furthermore, by the definition of xα, we have

γ2(
1

2γ
− L)E[‖G(xα,∇F (xα), γ)‖2] ≤ F (x0)− F (x∗) + 1

K
+
γqL2D2

2|S2|
+ (

L

2
− 1

2γ
)D2 . (55)
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By setting q = |S2| =
√
n, we have

γ2(
1

2γ
− L)E[‖G(xα,∇F (xα), γ)‖2] ≤ F (x0)− F (x∗) + 1

K
+
γL2D2

2
+ (

L

2
− 1

2γ
)D2 . (56)

Additionally, if we set γ = 1
3L , then γL2D2

2 + (L2 −
1

2γ )D2 < 0. Thus, we have

E[‖G(xα,∇F (xα), γ)‖2] ≤ 18L(F (x0)− F (x∗) + 1)

K
. (57)

6.4. Important Lemmas

Here, we introduce Lemma 3 to give some properties about the coordinate-wise gradient estimator.

Lemma 3. (Liu et al., 2018; Ji et al., 2019) Under Assumption 1, define an auxiliary function fµj = Eu∼U [−µj ,µj ]f(x+uej)
where u is sampled in terms of the uniform distribution U [−µj , µj ]. Then we have:

• The function fµj is smooth with parameter L, and

∇̂f(x) =

d∑
j=1

∂fµj (x)

∂xj
ej . (58)

• If all coordinates employ the same µj = µ, then

‖∇̂f(x)−∇f(x)‖2 ≤ L2µ2d . (59)

The following two lemmas are consistent with (Ji et al., 2019). Here, we mimic their proofs for our convergence analysis.

Lemma 4. (Ji et al., 2019) For any nk ≥ 0 such that nkq < K, we have

E[‖v̂nkq − ∇̂F (xnkq)‖2] ≤ 3I(|S1| < n)(2L2µ2d+ σ2)

|S1|
, (60)

where I(|S1| < n) = 1 if |S1| < n and 0 otherwise.

Proof.
E[‖v̂nkq − ∇̂F (xnkq)‖2]

= E[‖ 1

|S1|

|S1|∑
i=1

(∇̂fi(xnkq)− ∇̂F (xnkq))‖2]

≤ I(|S1| < n)

|S1|n

n∑
i=1

E[‖fi(xnkq)− ∇̂F (xnkq)‖2]

≤ 3I(|S1| < n)

|S1|n

n∑
i=1

(
E[‖∇̂fi(xnkq)−∇fi(xnkq)‖2]

+ E[‖∇fi(xnkq)−∇F (xnkq)‖2] + E[‖∇F (xnkq)− ∇̂F (xnkq)‖2]
)

≤ 3I(|S1| < n)(2L2µ2d+ σ2)

|S1|
,

(61)

where the first inequality follows from the fact
∑n
i=1(∇̂fi(xnkq) − ∇̂F (xnkq)) = 0 and E[ 1

|S1|
∑|S1|
i=1(∇̂fi(xnkq) −

∇̂F (xnkq))] = 1
n

∑n
i=1(∇̂fi(xnkq)− ∇̂F (xnkq)) as well as Lemma A.1 in (Lei et al., 2017). The last inequality follows

from Lemma 3 and Assumption 3.
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Lemma 5. (Ji et al., 2019) For any k such that (nk − 1)q ≤ k ≤ nkq − 1 where nk ≥ 1, we have

E[‖v̂k − ∇̂F (xk)‖] ≤ 3L2

|S2|

k−1∑
t=(nk−1)q

E[‖xt − xt−1‖2] +
6L2µ2d(k − (nk − 1)q)

|S2|
+

3I(|S1| < n)(2L2µ2d+ σ2)

|S1|
.

(62)

Proof. At first, for k ≥ (nk − 1)q + 1 where nk ≥ 1, we expand v̂k − ∇̂F (xk) as follows:

v̂k − ∇̂F (xk) = v̂(nk−1)q − ∇̂F (x(nk−1)q) +

k∑
t=(nk−1)q+1

(v̂t − v̂t−1 − (∇̂F (xt)− ∇̂F (xt−1))) . (63)

In addition,

v̂k =
1

|S2|

|S2|∑
i=1

∇̂fi(xk)− 1

|S2|

|S2|∑
i=1

∇̂fi(xk−1) + v̂k−1 . (64)

Then, take expectation with respect to index i, we have

E[v̂t − v̂t−1 − (∇̂F (xt)− ∇̂F (xt−1))] = 0 . (65)

As a result, v̂t − ∇̂f(xt) is a martingale. Therefore, following (Fang et al., 2018), we have

E[‖v̂k − ∇̂F (xk)‖2]

= E[‖v̂(nk−1)q − ∇̂F (x(nk−1)q)‖2] +

k∑
t=(nk−1)q+1

E[‖v̂t − v̂t−1 − (∇̂F (xt)− ∇̂F (xt−1))‖2] .
(66)

Based on the above equality, we have

E[‖v̂k − ∇̂F (xk)‖2] = E[‖v̂k−1 − ∇̂F (xk−1)‖2] + E[‖v̂k − v̂k−1 − (∇̂F (xk)− ∇̂F (xk−1))‖2] . (67)

Now, we would like to bound the second term in Eq. (67) as follows.

E[‖v̂k − v̂k−1 − (∇̂F (xk)− ∇̂F (xk−1))‖2]

= E[‖ 1

|S2|

|S2|∑
i=1

(
∇̂fi(xk)− ∇̂fi(xk−1)− (∇̂F (xk)− ∇̂F (xk−1))

)
‖2]

=
1

|S2|2

|S2|∑
i=1

E[‖∇̂fi(xk)− ∇̂fi(xk−1)− (∇̂F (xk)− ∇̂F (xk−1))‖2]

=
1

|S2|2

|S2|∑
i=1

(
E[‖∇̂fi(xk)− ∇̂fi(xk−1)‖2 − ‖∇̂F (xk)− ∇̂F (xk−1)‖2]

)

≤ 1

|S2|2

|S2|∑
i=1

E[‖∇̂fi(xk)− ∇̂fi(xk−1)‖2]

≤ 3

|S2|2

|S2|∑
i=1

(
E[‖∇̂fi(xk)−∇fi(xk)‖2] + E[‖∇̂fi(xk−1)−∇fi(xk−1)‖2] + E[‖∇fi(xk)−∇fi(xk−1)‖2]

)

≤ 3

|S2|2

|S2|∑
i=1

(
E[‖∇̂fi(xk)−∇fi(xk)‖2] + E[‖∇̂fi(xk−1)−∇fi(xk−1)‖2] + L2E[‖xk − xk−1‖2]

)
≤ 6L2µ2d

|S2|
+

3L2

|S2|
E[‖xk − xk−1‖2] ,

(68)
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where the second equality follows from the fact that the component function is selected independently, the third equality is
due to E[‖x− Ex‖2] = E[‖x‖2]− ‖E[x]‖2, and the last inequality follows from Lemma 3.

As a result,

E[‖v̂k − ∇̂F (xk)‖2] ≤ E[‖v̂k−1 − ∇̂F (xk−1)‖2] +
6L2µ2d

|S2|
+

3L2

|S2|
E[‖xk − xk−1‖2] . (69)

Telescoping over k from (nk − 1)q + 1 to k, we have

E[‖v̂k − ∇̂f(xk)‖2]

≤ 6L2µ2d(k − (nk − 1)q)

|S2|
+

3L2

|S2|

k−1∑
t=(nk−1)q

E[‖xt − xt−1‖2] + E[‖v̂(nk−1)q − ∇̂f(x(nk−1)q)‖2]

≤ 6L2µ2d(k − (nk − 1)q)

|S2|
+

3L2

|S2|

k−1∑
t=(nk−1)q

E[‖xt − xt−1‖2] +
3I(|S1| < n)(2L2µ2d+ σ2)

|S1|
,

(70)

where the last inequality follows from Lemma 4. When k = (nk − 1)q, this inequality also holds, which completes the
proof.


