
Generalization and Representational Limits of Graph Neural Networks

A. Supplementary material
We now provide detailed proofs for all our propositions
and lemmas.

Proof of Proposition 1

Proof. We show that CPNGNN, using some consistent port
ordering, can distinguish some non-isomorphic graphs that
LU-GNNs cannot.

B1

D1 C1

B2

D2 C2

1
1

2
1

2 2

1
2

2
2

1 1

B1 C1 D1 B2

C2D2

G

2 1 2 2 1 1

2

2
2 1

1

1

G

We construct a pair of graphs G and G such that G
consists of two triangles that differ in port-ordering but
are otherwise identical, while G (indicated by underlined
symbols) consists of a single even-length cycle. The
construction ensures that each node labeled with X ∈
{B1, C1, D1, B2, C2} in G has the same identical view
(i.e., indistinguishable node features, and neighborhood) as
the corresponding node labeled X in G. However, D2

and D2 have distinguishable neighborhoods due to differ-
ent port-numbers: e.g., D2 is connected to B2 at port 2,
whereas D2 is connected to B1 at port 1. Likewise, D2

is connected to C2 at port 1, in contrast to D2 that is con-
nected to C2 at port 2. However, LU-GNN does not in-
corporate any spatial information such as ports, and fails to
tell one graph from the other.

Note that since ∠B1C1D1 differs from ∠B1C1D1,
DimeNet can also distinguish between the two graphs.

Proof of Proposition 2

Proof. We now illustrate the importance of choosing a
good consistent port numbering. Specifically, we construct
a pair of graphs, and two different consistent port number-
ings p and q such that CPNGNN can distinguish the graphs
with p but not q.

B1

D1 C1

B2

D2 C2

1
1

2
1

2 2

1
1

2
1

2 2

B1 C1 D1 B2

C2D2

G

2 1 2 2 1 1

2

1
2 2

1

1

G

We modify the consistent port numbering from the con-
struction of Proposition 1. We consider the same pair of

graphs as in the proof of Proposition 1. However, in-
stead of having different numberings for the two compo-
nents (i.e., triangles) of G, we now carry over the ordering
from one component to the other. The two components
become identical with this modification. For any node
labeled X1 or X2, and any neighbor labeled Y 1 or Y 2,
X,Y ∈ {B,C,D}, we can now simply assign the same
respective local ports as the nodes labeled X1 and Y1 (or,
equivalently, X2 and Y2). It is easy to verify that the two
graphs become port-locally isomorphic under the new or-
dering, and thus cannot be separated with any permutation-
invariant readout (using Proposition 3).

Proof of Proposition 3

Proof. We begin with the following definition.

Definition 3. Two nodes in a graph are locally indistin-
guishable if they have identical feature vectors and identi-
cal port-ordered neighborhoods.

In other words, for locally indistinguishable nodes u and v,
not only are their neighbors identical but also the respective
ports that connect u and v to their identical neighbors are
identical.

If the surjection f : V1 → V2 in Definition 2 is also injec-
tive, then we can simply take h = f . Therefore, we focus
on the case when f is not injective. We will show that f
can be used to inform h. Since f is not injective, there ex-
ist v1, v

′
1 ∈ V1 such that v1 6= v′1 but f(v1) = f(v′1) = v2

for some v2 ∈ V2. Then, by condition (a) in Definition 2,
we immediately get that the feature vector

xv1 = xf(v1) = xf(v′1) = xv′1 . (6)

Moreover, by other conditions, there is a consistent port bi-
jection from neighborhood of v1 to that of v2, and likewise
another bijection from neighborhood of v′1 to that of v2.
Therefore, there is a consistent port bijection from neigh-
borhood of v1 to that of v′1. Together with (6) and our as-
sumption that f(v1) = f(v′1) = v2, this implies that v1

and v′1 are locally indistinguishable. Note that there could
be more such nodes that are indistinguishable from v1 (or
v′1), e.g., when all such nodes map to v2 as well.

Without loss of generality, let E1(v1) ⊆ V1 denote the
equivalence class of all nodes, including v1, that are
indistinguishable from v1 in graph G1. Similarly, let
E2(v2) ⊆ V2 be the class of nodes indistinguishable from
v2 in G2. Consider `1 = |E1(v1)| and `2 = |E2(v2)|. We
claim that `1 = `2. Suppose not. Then if `1 < `2, we
can have h map each node in E1(v1) to a separate node
in E2(v2), and use the same mapping as f on the other
nodes in V1. Doing so does not decrease the co-domain of

Generalization and Representational Limits of Graph Neural Networks

V2, and h remains surjective. We are therefore left with
`2 − `1 > 0 nodes from E2(v2). Therefore, these nodes
must have at least one preimage in the set V1 − E1(v1)
since f (and thus h) is a surjection by assumption (a)
in Definition 1. This is clearly a contradiction since any
such preimage must have either a different feature vector,
or a non-isomorphic port-consistent neighborhood. By a
symmetric argument, using the surjection of map from
V2 to V1, we conclude that `1 = `2. Note that h did not
tinker with the nodes that were outside the class E1(v1).
Recycling the procedure for other nodes in V1 − E1(v1)
that might map under f to a common image in V2, we note
that h ends up being injective. Since h remains surjective
throughout the procedure, we conclude that h is a bijection.

We now prove by induction that the corresponding nodes
in port-locally isomorphic graphs have identical embed-
dings for any CPNGNN. Consider any such GNN with
L + 1 layers parameterized by the sequence θ1:L+1 ,
(θ1, . . . , θL, θL+1). Since there exists a bijection h such
that any node v1 ∈ G1 has an identical local view (i.e.,
node features, and port-numbered neighbors) as v2 =
h(v1) ∈ G1, the updated embeddings for v1 and v2 are
identical after the first layer. Assume that these embed-
dings remain identical after update from each layer ` ∈
{2, 3, . . . , L}. Since v1 and v2 have identical local views
and have identical embedding from the Lth layer, the up-
dates for these nodes by the (L + 1)th layer are identical.
Therefore, v1 and v2 have identical embeddings. Since h
is a bijection, for every v ∈ V1 there is a corresponding
h(v) ∈ V2 with the same embedding, and thus both G1 and
G2 produce the same output with any permutation readout
function. Our choice of θ1:L+1 was arbitrary, so the result
follows.

Proof of Proposition 4

Proof. We now show that there exist consistent port order-
ings such that CPNGNNs with permutation-invariant read-
out cannot decide several important graph properties: girth,
circumference, diameter, radius, conjoint cycle, total num-
ber of cycles, and k-clique. The same result also holds for
LU-GNNs where nodes do not have access to any consis-
tent port numbering.

We first construct a pair of graphs that have cycles of differ-
ent length but produce the same output embedding via the
readout function. Specifically, we show that CPNGNNs
cannot decide a graph having cycles of length n from a cy-
cle of length 2n. We construct a counterexample for n = 4.
Our first graph consists of two cycles of length 4 (each de-
noted by S4), while the other graph is a cycle of length
8 (denoted by S8). We associate identical feature vectors

with nodes that have the same color, or equivalently, that
are marked with the same symbol ignoring the subscripts
and the underline. For example, A1, A2, A1, and A2 are
all assigned the same feature vector. Moreover, we assign
identical edge feature vectors to edges that have the same
pair of symbols at the nodes.

A1 B1

C1D1

A2 B2

C2D2

A1 B1 C1 D1

D2 C2 B2 A2

1 1

2
2

11
2
2

1 1

2
2

11
2
2

1 1 2 2 1 1

1 1 2 2 1 1
2
2

2
2S4 S4 S8

Thus, we note that a bijection exists between the two graphs
with node X in the first graph corresponding to X in
the second graph such that both the nodes have identical
features and indistinguishable port-ordered neighborhoods.
Since, the two graphs have different girth, circumference,
diameter, radius, and total number of cycles, it follows from
Proposition 3 that CPNGNN cannot decide these proper-
ties. Note that the graph with two S4 cycles is discon-
nected, and hence its radius (and diameter) is∞.

A1

B1

C1

D1

A2

B2

C2

D2

1
1

1
1

2
2

2
21

1
1

1

2
2

2
2

3 3 3 3

A1

B1C1D1

1
1

11 22
2

2

G1 G1

A2

D2C2B2

1
1

11 22
2

2
3

3

3

3G2

We craft a separate construction for the remaining proper-
ties, namely, k-clique and conjoint cycle. The main idea
is to replicate the effect of the common edge in the con-
joint cycle via two identical components of another graph
(that does not have any conjoint cycle) such that the com-
ponents are cleverly aligned to reproduce the local port-
ordered neighborhoods and thus present the same view to
each node (see the adjoining figure). Specifically, each con-
joint cycle is denoted by G1, and the other graph that does
not have any conjoint cycles byG2. The graphs, being port-
locally isomorphic, are indistinguishable by CPNGNN.

For the k-clique, we simply connectA1 toC1,A2 toC2,A1

toC1, andA2 toC2 via a new port 3 at each of these nodes.
Doing so ensures that the new graphs are port-locally iso-
morphic as well. Adding these edges, we note that, unlike
G2, each conjoint cycle G1 yields a 4-clique.

Proof of Proposition 5

Proof. We now demonstrate the representational limits of
DimeNets. Specifically, we show two graphs that differ
in several graph properties such as girth, circumference,
diameter, radius, or total number of cycles. However, these
graphs cannot be distinguished by DimeNets.

Generalization and Representational Limits of Graph Neural Networks

Note that DimeNet will be able to discriminate S8 from
the graph with cycles S4 (recall our construction in Propo-
sition 4), since, e.g., ∠B1C1D1 in S4 is different from
∠B1C1D1 in S8. In order to design a failure case for
DimeNet, we need to construct a pair of non-isomorphic
graphs that have not only identical local pairwise distances
but also angles, so that their output embedding is same.

D1

A1

C1

B1

D2

A2

C2

B2

D2

A1

C2

B1

A2B2

D1C1

G3 G3 G4

Our idea is to overlay the cycles S4 and S8 on a cube (see
G3 and G4 - the graphs consist of only edges in bold). Do-
ing so does not have any bearing on the graph properties.
Since we orient the edges of these cycles along the sides
of the cube, the local distances are identical. Moreover,
by having A1B1C1D1 and A2B2C2D2 as opposite faces
of the cube, we ensure that each angle in G4 is a right an-
gle, exactly as in G3. Thus, for each X ∈ {A,B,C,D},
nodes X1, X2, X1, and X2 have identical feature vec-
tors and identical local spatial information. Thus, the em-
beddings for X1, X2, X1, and X2 are identical, and any
permutation-invariant readout results in identical output
embeddings for the two graphs.

Proof of Proposition 6

Proof. We now show that the complexity of the GNN may
be bounded by the complexity of the computation trees.
In other words, the worst case generalization bound over a
set of graphs corresponds to having each graph be a single
computation tree. Formally,

R̂G , Eσ sup
Θ

m∑
j=1

σjf(Gj ; Θ)

= Eσ sup
Θ

m∑
j=1

σjET∼w′(Gj)fc(T ; Θ)

≤ EσEt1,..tm sup
Θ

m∑
j=1

σjfc(tj ; Θ)

= Et1,..tm Eσ sup
Θ

m∑
j=1

σjfc(tj ; Θ)︸ ︷︷ ︸
R̂T

,

where we invoked Jensen’s inequality to swap the expec-
tation with supremum for our inequality (the operation is
permissible since sup is a convex function).

Proof of Lemma 2

Proof. Our objective here is to bound the effect of change
in weights from (W1,W2) to (W ′1,W

′
2) on the embedding

of the root node of our fixed tree (that has depth L).
Since non-linear activation and permutation-invariant
aggregation are both Lipschitz-continuous functions, and
the feature vector at the root xL and the weights have
bounded norm, the embedding at the root of the tree adapts
to the embeddings from the subtrees.

Specifically, we note that the l2-norm of difference of em-
bedding vectors produced by (W1,W2) and (W ′1,W

′
2) is

∆L , ||TL(W1,W2)− TL(W ′1,W
′
2)||2

=

∣∣∣∣∣∣∣∣φ(W1xL +W2 ρ
(∑
j∈C(xL)

g(TL−1,j(W1,W2)
)

︸ ︷︷ ︸
, R(W1,W2,xL)

))

− φ
(
W ′1xL +W ′2ρ

(∑
j∈C(xL)

g(TL−1,j(W
′
1,W

′
2)
)))∣∣∣∣∣∣∣∣

2

≤ Cφ
∣∣∣∣(W1 −W ′1)xL

∣∣∣∣
2

(7)

+ Cφ||W2R(W1,W2, xL)−W ′2R(W ′1,W
′
2, xL)||2 .

Therefore, in order to find an upper bound for ∆L,
we will bound the two terms in the last inequality sep-
arately. We first bound the second term using the
sum of ||W2R(W1,W2, xL) − W ′2R(W1,W2, xL)||2 and
||W ′2R(W1,W2, xL)−W ′2R(W ′1,W

′
2, xL)||2. Note that

||W ′2R(W1,W2, xL)−W ′2R(W ′1,W
′
2, xL)||2

≤ ||W ′2||2 ||R(W1,W2, xL)−R(W ′1,W
′
2, xL)||2 .

(8)

Since g is Cg-Lipschitz, the branching factor of tree is d,
and ρ is Cρ-Lipschitz, therefore, R is dCgCρ-Lipschitz.
We will use this fact to bound (8). Specifically,

||R(W1,W2, xL)−R(W ′1,W
′
2, xL)||2

≤ Cρ

∣∣∣∣∣∣∣∣ ∑
j∈C(xL)

(
g(TL−1,j(W1,W2))

−g(TL−1,j(W
′
1,W

′
2))

)∣∣∣∣∣∣∣∣
2

≤ Cρ
∑

j∈C(xL)

∣∣∣∣∣∣∣∣(g(TL−1,j(W1,W2))

−g(TL−1,j(W
′
1,W

′
2))

)∣∣∣∣∣∣∣∣
2

≤ CρCg
∑

j∈C(xL)

∣∣∣∣∣∣∣∣TL−1,j(W1,W2)− TL−1,j(W
′
1,W

′
2)

∣∣∣∣∣∣∣∣
2

= CρCg
∑

j∈C(xL)

∆L−1,j .

Generalization and Representational Limits of Graph Neural Networks

Using this with ||W ′2||2 ≤ B2 in (8), we immediately get

||W ′2R(W1,W2, xL) − W ′2R(W ′1,W
′
2, xL)||2

≤ B2CρCg
∑

j∈C(xL)

∆L−1,j

≤ B2CρCgd max
j∈C(xL)

∆L−1,j .

In other words, we bound the effect on each subtree of the
root by the maximum effect across these subtrees. Com-
bining this with ||xL||2 ≤ Bx, we note from (7) that

∆L ≤ CφBx ||(W1 −W ′1)||2
+ CφB2CρCgd max

j∈C(xL)
∆L−1,j (9)

+ Cφ||(W2 −W ′2)R(W1,W2, xL)||2 .

Proof of Lemma 3

Proof. Note from (9) that in order for the change in em-
bedding of the root (due to a small change in weights) to be
small, we require that the last term in (9) is small. Toward
that goal we bound the norm of permutation-invariant
aggregation at the root node. Specifically, we note that

||R(W1,W2, xL)||2

=

∣∣∣∣∣∣∣∣ρ(∑
j∈C(xL)

g(TL−1,j(W1,W2)
))∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣ρ(∑
j∈C(xL)

g(TL−1,j(W1,W2)
))
− ρ(0)

∣∣∣∣∣∣∣∣
2

≤ Cρ

∣∣∣∣∣∣∣∣ ∑
j∈C(xL)

g(TL−1,j(W1,W2))

∣∣∣∣∣∣∣∣
2

≤ Cρ
∑

j∈C(xL)

∣∣∣∣∣∣∣∣g(TL−1,j(W1,W2))− g(0)

∣∣∣∣∣∣∣∣
2

≤ CρCg
∑

j∈C(xL)

∣∣∣∣∣∣∣∣TL−1,j(W1,W2)

∣∣∣∣∣∣∣∣
2

.

≤ CρCgd max
j∈C(xL)

∣∣∣∣∣∣∣∣TL−1,j(W1,W2)

∣∣∣∣∣∣∣∣
2

, (10)

where the norm of the embedding produced by children j
of the root using weights W1 and W2 is given by

∣∣∣∣∣∣∣∣TL−1,j(W1,W2)

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣φ(W1xL−1,j +W2R(W1,W2, xL−1,j))

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣φ(W1xL−1,j +W2R(W1,W2, xL−1,j))− φ(0)

∣∣∣∣∣∣∣∣
2

≤ Cφ

∣∣∣∣∣∣∣∣W1xL−1,j +W2R(W1,W2, xL−1,j)

∣∣∣∣∣∣∣∣
2

≤ Cφ

∣∣∣∣∣∣∣∣W1xL−1,j

∣∣∣∣∣∣∣∣
2

+ Cφ

∣∣∣∣∣∣∣∣W2R(W1,W2, xL−1,j)

∣∣∣∣∣∣∣∣
2

≤ CφB1Bx + CφB2

∣∣∣∣∣∣∣∣R(W1,W2, xL−1,j)

∣∣∣∣∣∣∣∣
2

. (11)

Also, since ||φ(x)||∞ ≤ b for all x ∈ Rr (by our assump-
tion), and ||φ(x)||2 ≤

√
r||φ(x)||∞, we obtain∣∣∣∣∣∣∣∣TL−1,j(W1,W2)

∣∣∣∣∣∣∣∣
2

≤ b
√
r . (12)

Combining (10) and (11), we get the recursive relationship

||R(W1,W2, xL)||2
≤ CρCgCφB1Bxd

+ CρCgCφB2d max
j∈C(xL)

∣∣∣∣∣∣∣∣R(W1,W2, xL−1,j)

∣∣∣∣∣∣∣∣
2

≤ CρCgCφB1Bxd

L−1∑
`=0

(CρCgCφB2d)`

= CρCgCφB1Bxd
(Cd)L − 1

Cd− 1
. (13)

On the other hand, combining (10) and (11), we get

||R(W1,W2, xL)||2 ≤ bdCρCg
√
r . (14)

Taken together, (13) and (14) yield ||R(W1,W2, xL)||2

≤ CρCgdmin

{
b
√
r, CφB1Bx

(Cd)L − 1

Cd− 1

}
. (15)

Proof of Lemma 4

Proof. Using the results from Lemma 2 and 3, we will
simplify the bound on ∆L, i.e., the change in embedding
due to a change in weights. We will then bound the change
in probability (that the tree label is 1) ΛL in terms of ∆L,
when we change not only the weights from (W1,W2) to
W ′1,W

′
2 but also the local classifier parameters from β

to β′ (where β and β′ are chosen from a bounded norm
family). We show these steps below.

Generalization and Representational Limits of Graph Neural Networks

Plugging the bound on R , ||R(W1,W2, xL)||2 from
Lemma 3 in Lemma 2, we get

∆L ≤ CφBx ||W1 −W ′1||2
+ Cd max

j∈C(xL)
∆L−1,j

+ Cφ||W2 −W ′2||2R .

Expanding the recursion, we note that

∆L ≤MBx ||W1 −W ′1||2 +MR||W2 −W ′2||2 , (16)

where

M = Cφ
(Cd)

L − 1

Cd− 1
. (17)

Since ||A||2 ≤ ||A||F for every matrix A, we have

∆L ≤MBx ||W1 −W ′1||F +MR||W2 −W ′2||F . (18)

Now since sigmoid is 1-Lipschitz, we have

ΛL = |ψ(β>TL(W1,W2))− ψ(β′
>
TL(W ′1,W

′
2))|

≤ |β>TL(W1,W2)− β′>TL(W1,W2)|
+ |β′>TL(W1,W2)− β′>TL(W ′1,W

′
2)|

≤ ||β − β′||2 ||TL(W1,W2)||2 +Bβ∆L

≤ ||β − β′||2 (CφB1Bx + CφB2R)︸ ︷︷ ︸
Z

+Bβ∆L

(19)

using (11) and (15).

Proof of Lemma 5

Proof. Building on results from Lemmas 2-4, we will now
show that the change in probability ΛL can be bounded by
ε, using a covering of size P , where P depends on ε. More-

over, we show that logP grows as O
(

log

(
1

ε

))
for suf-

ficiently small values of ε. That is, we can ensure ΛL is
small by using a small covering.

We begin by noting that we can find a covering

C
(
β,

ε

3Z`
, || · ||2

)
of size

N
(
β,

ε

3Z`
, || · ||2

)
≤
(

1 +
6ZBβ
ε

)r
.

Thus, for any specified ε, we can ensure that ΛL is at most

ε by finding matrix coverings C
(
W1,

ε

3MBxBβ
, || · ||F

)
and C

(
W2,

ε

3MRBβ
, || · ||F

)
. Using Lemma 8 from

(Chen et al., 2020a), we obtain the corresponding bounds
on their covering number. Specifically,

N
(
W1,

ε

3MBxBβ
, || · ||F

)
≤
(

1 +
6MBxBβB1

√
r

ε

)r2
,

N
(
W2,

ε

3MRBβ
, || · ||F

)
≤
(

1 +
6MRBβB2

√
r

ε

)r2
.

The product of all the covering numbers is bounded by

P =

(
1 +

6Bβ max{Z,M
√
rmax{BxB1, RB2}}
ε

)2r2+r

.

Therefore, the class B(L, d, r, β,B1, B2, Bx) that maps a
tree-structured input to the probability that the correspond-
ing tree label is 1 can be approximated to within ε by a
covering of size P . Moreover, when

ε < 6Bβ max{Z,M
√
rmax{BxB1, RB2}},

we obtain that logP is at most

3r2 log

(
12Bβ max{Z,M

√
rmax{BxB1, RB2}}
ε

)
.

Proof of Proposition 7

Proof. We are now ready to prove our generalization
bound. Specifically, we invoke a specific form of Dudley’s
entropy integral to bound the empirical Rademacher com-
plexity R̂T (Jγ) via our result on covering from Lemma
5, where recall that Jγ maps each tree-label pair (t, y) to
margin loss lossγ(−τ(fc(t; Θ), y)).

It is straightforward to show that p is 2-Lipschitz in its first

argument, and lossγ is
1

γ
-Lipschitz. Therefore, we can ap-

proximate the class I that maps (t, y) to τ(fc(t; Θ), y) by
finding an

ε

2
-cover of B. Now, note that I takes values in

the interval [−e, e], where

e = ||u||2 ||TL(W1,W2)||2 ≤ BβZ .

Using Lemma A.5. in (Bartlett et al., 2017), we obtain that

R̂T (I) ≤ inf
α>0

(
4α√
m

+
12

m

∫ 2e
√
m

α

√
logN (I, ε, || · ||)dε

)
where, using Lemma 5, we have∫ 2e

√
m

α

√
logN (I, ε, || · ||)dε

≤
∫ 2e

√
m

α

√
logN (B, ε

2
, dist(·, ·))dε

≤
∫ 2e

√
m

α

√
logU ≤ 2e

√
m
√

logU = 2BβZ
√
m logU

Generalization and Representational Limits of Graph Neural Networks

with dist being the combination of || · ||2 and || · ||F norms
used to obtain covering of size P in Lemma 5, and logU is

3r2 log

(
24Bβ max{Z,M

√
rmax{BxB1, RB2}}
α

)
.

Setting α =

√
1

m
, we immediately get

R̂T (I) ≤ 4

m
+

24BβZ√
m

√
3r2 logQ ,

where

Q = 24Bβ
√
mmax{Z,M

√
rmax{BxB1, RB2}} .

We finally bound the complexity of class R̂T (Jγ) by not-

ing that lossγ is
1

γ
-Lipschitz, and invoking Talagrand’s

lemma (Mohri et al., 2012):

R̂T (Jγ) ≤ R̂T (I)

γ
≤ 4

γm
+

24rBβZ

γ
√
m

√
3 logQ .

Proof of Proposition 8

Proof. We first convey some intuition. Suppose |X| < 8,
and we assign a distinct index z(x) ∈ {1, 2, . . . , 8} to each
message x ∈ X . Then, we can map each x to 10−z(x),
i.e., obtain a decimal expansion which may be viewed as
a one-hot vector representation of at most 10 digits. We
would reserve a separate block of 10 digits for each port.
This would allow us to disentangle the coupling between
messages and their corresponding ports. Specifically,
since the ports are all distinct, we can shift the digits in
expansion of x to the right by dividing by 10p, where p
is the port number of x. This allows us to represent each
(x, p) pair uniquely.

Formally, since X is countable, there exists a mapping
Z : X 7→ N from x ∈ X to natural numbers. Since X
has bounded cardinality, we know the existence of some
N ∈ N such that |X| < N for all X . Define k =
10dlog10Ne. We define function f in the proposition as
f(x) = k−Z(x). We also take function g in proposition
to be g(p) = 10−kN(p−1). That is, we express the function
h as h((x1, p1), . . . , (x|P |, p|P |)) =

∑|P |
i=1 g(pi)f(xi).

	Supplementary material

