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Abstract

Deep generative models rely on their inductive
bias to facilitate generalization, especially for
problems with high dimensional data, like im-
ages. However, empirical studies have shown that
variational autoencoders (VAE) and generative
adversarial networks (GAN) lack the generaliza-
tion ability that occurs naturally in human percep-
tion. For example, humans can visualize a woman
smiling after only seeing a smiling man. On the
contrary, the standard conditional VAE (cVAE)
is unable to generate unseen attribute combina-
tions. To this end, we extend cVAE by introducing
a multilinear latent conditioning framework that
captures the multiplicative interactions between
the attributes. We implement two variants of our
model and demonstrate their efficacy on MNIST,
Fashion-MNIST and CelebA. Altogether, we de-
sign a novel conditioning framework that can be
used with any architecture to synthesize unseen
attribute combinations.

1. Introduction
Deep generative models have been widely utilized to push
the boundaries of the state-of-the-art in various tasks includ-
ing image (Miyato et al., 2018), audio (Andreux & Mallat,
2018), as well as text synthesis (Radford et al., 2018). Their
success would not be possible without the development of
complex and expressive models (Miyato et al., 2018; Karras
et al., 2019; Du & Mordatch, 2019) as well as the collection
of rich and thoroughly annotated datasets (Liu et al., 2015;
Deng et al., 2009). However, due to the high data complex-
ity of these tasks (Arora & Zhang, 2017), generative models
have to rely on a set of assumptions, i.e., their inductive
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Figure 1. Schematic of the conditional VAE (top) and the proposed
framework (bottom). The baseline (conditional VAE) lacks the
structure in the latent space and cannot generate images of attribute
combinations that are absent from the training set (e.g., orange 2).
On the contrary, the proposed method capitalizes on the multilin-
ear latent conditioning to synthesize images of unseen attribute
combinations.

bias. These assumptions are based on the distribution of the
training set, as well as the model itself, and are crucial for
generalization. However, the training set is not always an
accurate description of the real world. Hence, the generated
distribution is constrained by the distribution of the training
data.

The empirical study conducted in (Zhao et al., 2018) is
the first to investigate the inductive bias of deep genera-
tive models. The study focuses on the unsupervised setting
and demonstrates the inability of variational autoencoders
(VAEs) (Kingma & Welling, 2014; Rezende et al., 2014)
and generative adversarial networks (GANs) (Goodfellow
et al., 2014) to generate images of unseen attribute combina-
tions. For example, consider the task of generating an image
of a smiling woman without seeing one in the training set.
We posit that in order to further advance the state-of-the-art,
generative models should be able to generalize to unseen
attribute combinations. In this work, we focus on the super-
vised setting and investigate the conditional generation of
attribute combinations that are absent from the training set.
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To this end, using the VAE as the main building block,
we propose a multilinear conditioning framework that is
tailored to the task. The VAE is a generative model that
learns the distribution of the data by introducing a latent
variable z. A common assumption is that z belongs to a
simple prior distribution, for instance, a standard normal.
Instead of considering a single prior distribution for all latent
representations, we propose to learn a different Gaussian
for each class. By learning the mean of each distribution as
a multilinear function of the labels, our framework is able
to account for their multiplicative interactions. In order to
learn the higher order tensors in the presence of missing
classes (i.e., attribute combinations), we utilize two tensor
decompositions, namely the CP and Tucker, and train the
model end-to-end.

We evaluate the efficacy of our method through a series of
extensive experiments on benchmarks based on standard
datasets. These benchmarks are designed to evaluate both
the ability to generate images of unseen attribute combi-
nations, as well as model the correlation between labels.
Furthermore, we explore the limits of our model and pro-
pose two extensions. Concretely:

• In Section 4, our extension to the VAE and its two
variant using the Tucker and CP decompositions are
proposed. Contrary to the standard conditional VAE,
the proposed framework is able to generate unseen
classes. We further exhibit how our model achieves this
by modeling the multiplicative interactions between
the labels.

• We demonstrate the ability of our models to general-
ize on unseen attribute combinations in Section 5. In
particular, we create 3 evaluation benchmarks based
on the MNIST, FashionMNIST and CelebA datasets.
For each benchmark, we use 2 sets of labels and re-
move one label combination from the training set. We
evaluate the generated images both qualitatively and
quantitatively. The models are also evaluated on at-
tribute transfer on CelebA.

• We showcase the importance of modeling inter-label
interactions in Section 6. To this end, we introduce
two benchmarks based on MNIST and CelebA. We
show experimentally that only our multilinear latent
conditioning framework is able to recover the miss-
ing attribute combinations in the presence of highly
correlated labels.

• In Section 7 we explore the proposed model. First, we
study how the model performance scales with the num-
ber of missing attribute combinations. Furthermore,
we extend the framework to handle multiple labelled
attributes, as well as unlabelled attributes.

2. Related work
The variational autoencoder is a widely adopted class of
generative models. In the seminal work of Kingma &
Welling (2014), VAE learns a generative model of the form
ppx, zq “ ppx|zqqqppzq, where ppzq is the prior distribution
of the latent variable. A common choice for the prior dis-
tribution is a standard normal distribution, however this as-
sumption can be relaxed. More expressive priors have been
proposed to model the multimodal nature of the data, e.g.,
mixture of priors (Tomczak & Welling, 2017; Dilokthanakul
et al., 2016; Grønbech et al., 2018; Jiang et al., 2016; Van
Den Oord et al., 2017), normalizing flows (Rezende & Mo-
hamed, 2015) and autoregressive models (Chen et al., 2016).
The VAE framework was originally proposed for the un-
supervised setting but several successful supervised and
semi-supervised variations have been proposed thereafter
(Van den Oord et al., 2016; Razavi et al., 2019; Siddharth
et al., 2017).

In order to incorporate label information into the model,
a common practice is concatenating the labels to the la-
tent representation (Sohn et al., 2015). However, doing so
fails to uncover the underlying structure of the latent space.
Klys et al. (2018) introduce a low-dimensional subspace
that captures the class-specific latent structure and use it to
perform attribute transfer. Similarly, our model learns the
class specific structure of the latent space by considering
the multiplicative interactions between the labels.

The multilinear structure of different modes of variation has
been previously studied in the unsupervised setting. Tang
et al. (2013) extend the Factor Analyzers method to also
model multiplicative interactions between the latent factors.
Wang et al. (2017) introduce an unsupervised tensor decom-
position that learns the underlying multilinear structure of
the data. In this work, we focus on the supervised setting
and propose to model the interactions between the labeled
modes of variation.

Lastly, in order to synthesize images of a specified attribute
combination, the proposed model implicitly disentangles
the labelled information. Disentanglement of factors of vari-
ation is an active research topic in the unsupervised setting
(Higgins et al., 2016; Kim & Mnih, 2018; Chen et al., 2018;
Burgess et al., 2018; Ridgeway & Mozer, 2018; Siddharth
et al., 2017). Locatello et al. (2019) proved that unsuper-
vised learning of disentangled representations is not possible
without inductive biases. Furthermore, recent work (Khe-
makhem et al., 2020) highlights the lack of identifiability
without auxiliary information, such as labels. In this work,
we focus on the supervised setting and aim to recover the
unobserved attribute combinations, a task that is not a direct
byproduct of disentanglement.

Concurrently with this work, (Bozkurt et al., 2019) evaluate
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whether VAEs can reconstruct data of unseen classes. This
work differentiates itself by focusing on the generation of
samples of unobserved attribute combinations.

3. Background
3.1. Notation

Tensors are symbolized by calligraphic letters, e.g., X ,
while matrices (vectors) are denoted by uppercase (low-
ercase) boldface letters e.g.,X , (x).

Products: The Hadamard product ofA P RIˆN andB P

RIˆN is defined as A ˚B and is equal to Api,jqBpi,jq for
the pi, jq element.

The Kronecker product product of matricesA P RIˆM and
B P RJˆN is denoted by A b B and yields a matrix of
dimensions pIJq ˆ pMNq that is defined as:

AbB “

»

—

—

—

–

a11B a12B . . . a1JB
a21B a22B . . . a2JB

...
...

. . .
...

aI1B aI2B . . . aIJB

fi

ffi

ffi

ffi

fl

. (1)

The Khatri-Rao (column-wise Kronecker) product of matri-
ces A P RIˆN and B P RJˆN is denoted by AdB and
yields a matrix of dimensions pIJq ˆN that is defined as:

AdB “
“

a1 b b1 a2 b b2 ¨ ¨ ¨ aN b bN
‰

. (2)

In the case of vectors, the Khatri-Rao and Kronecker prod-
ucts are equivalent.

3.2. Tensor operations and decompositions

Each element of a Kth order tensor X is addressed by
K indices, i.e., pX qi1,i2,...,iK

.
“ xi1,i2,...,iK . A Kth-

order real-valued tensor X is defined over the tensor space
RI1ˆI2ˆ¨¨¨ˆIK , where Ik P Z for k “ 1, 2, . . . ,K.

Tensor unfolding: The mode-k unfolding of a tensor X P

RI1ˆI2ˆ¨¨¨ˆIK maps X to a matrix Xpkq P RIkˆĪk with
Īk “

śK
t“1
t‰k

It such that the tensor element xi1,i2,...,iK
is mapped to the matrix element xit,j where j “ 1 `
řK

t“1
t‰k
pit ´ 1qJt with Jt “

śt´1
n“1
n‰k

In.

Vector product: The mode-k vector product of X
with a vector u P RIk , denoted by X ˆk u P

RI1ˆI2ˆ¨¨¨ˆIk´1ˆIk`1ˆ¨¨¨ˆIK , results in a tensor of order
K ´ 1:

pX ˆk uqi1,...,ik´1,ik`1,...,iK “

Ik
ÿ

ik“1

xi1,i2,...,iKuik . (3)

CP tensor decomposition: The CANDECOMP/PARAFAC
(CP) decomposition (Kolda & Bader, 2009; Sidiropoulos

et al., 2017) factorizes a tensor into a sum of component
rank-one tensors. The rank-R CP decomposition of a Kth-
order tensor X is written as:

X .
“ rrUr1s,Ur2s, . . . ,UrKsss “

R
ÿ

r“1

up1qr ˝up2qr ˝¨ ¨ ¨˝upKqr ,

(4)
where ˝ denotes for the vector outer product. The factor
matrices

 

Urks “ ru
pkq
1 ,u

pkq
2 , ¨ ¨ ¨ ,u

pkq
R s P RIkˆR

(K

k“1
collect the vectors from the rank-one components. By con-
sidering the mode-1 unfolding of X , the CP decomposition
of a third order tensor can be written in matrix form as
(Kolda & Bader, 2009):

Xp1q
.
“ Ur1spUr3s dUr2sq

T . (5)

Tucker tensor decomposition: The Tucker tensor decom-
position (Tucker, 1963) factorizes a tensor into a set of
matrices and a core tensor, as follows:

X .
“ rrG;Ur1s,Ur2s, . . . ,UrKsss

“ G ˆ1 Ur1s ˆ2 Ur2s ˆ3 ¨ ¨ ¨ ˆK UrKs, (6)

Similarly to CP , the Tucker decomposition of a third order
tensor can be written in matrix form as:

Xp1q
.
“ Ur1spUr3s bUr2sq

T . (7)

Tucker can be considered a generalization of SVD to higher
order tensors (De Lathauwer et al., 2000). The CP decom-
position is a special case of Tucker, where the core tensor is
superdiagonal.

4. Model
Consider the setting of a dataset of images x that are an-
notated with a set of N one-hot label vectors y “ tyi P
RDiuNi“1 and latent representations z P Rd. The conditional
VAE (cVAE) (Sohn et al., 2015) is trained by maximizing
the following objective:

LCV AE “Eqφpz|x,yq rlog pθpx|z,yqs

´ βDKL pqφpz|x,yq ‖ ppzqq ď log pθpx|yq,
(8)

where DKL is the Kullback Leibler divergence between the
approximate posterior qφ and the prior ppzq. The approx-
imate posterior is modeled by the encoder network, while
the prior is assumed to be standard normal.

In this work, we introduce Multilinear Conditioning VAE
(MLC-VAE), which is a generative model of the form
ppx,y, zq “ ppx|zqqqppy|zqppzq. We modify the objec-
tive of cVAE by introducing a label reconstruction term
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log pθy py|zq which is parametrized by a label decoder. The
new evidence lower bound (ELBO) is of the form:

LMLC´V AE “Eqφpz|x,yq
“

log pθxpx|zq ` log pθy py|zq
‰

´ βDKL pqφpz|x,yq ‖ ppzqq (9)

Instead of assuming a single prior distribution, we consider
that the latent representations of each class (i.e., combina-
tion of attribute labels y1, . . . ,yN ) are centered around a
different mean, that is, z „ N pµy1,...,yN , Iq. The class
means µy1,...,yN P Rd are learned as a multivariate function
Mpy1, . . . ,yN q of the label vectors. Thus, we are able to
obtain a latent representation for every attribute combina-
tion, even if it is not represented in the training set.

A simple choice for M would be the linear combination of
each attribute. Concretely, in the case of the 2 attributes y1

and y2:

Mpy1,y2q “W
r1sy1 `W

r2sy2 (10)

However, this formulation completely ignores the non-linear
(e.g., multiplicative) interactions between the labels. To
account for the multiplicative interactions, we introduce a
higher order term that models the correlations between the
attributes:

Mpy1,y2q “W
r1sy1 `W

r2sy2 `W r12s
ˆ2 y1 ˆ3 y2

(11)
The first two terms in 11 are equal to the linear combination
of the attribute labels, with the matrices W r1s and W r2s

learning a mapping between each individual label and the
latent space. The third order tensor W r12s captures the
pairwise multiplicative interaction between y1 and y2 and
learns a latent representation for each attribute combination.
We investigate the effect of the higher order term in Section
6.

We can rewrite the higher order term in 11 by replacing the
tensor by its mode-1 unfolding as such:

Mpy1,y2q “W
r1sy1 `W

r2sy2 `W
r12s
p1q py2 d y1q

(12)

Since y1 P RD1 and y2 P RD2 are one-hot encoded vectors,
their Khatri-Rao product py2 d y1q yields a new one-hot
vector y P RD1D2 . Therefore, the productW r12s

p1q py2 d y1q

yields the column of the matrixW r12s
p1q that corresponds to

class (y1,y2). Hence, in the presence of absent attribute
combinations, it is not possible to learn the matrix using
stochastic gradient descent based optimizers. However, if
we let the tensor W r12s admit a low-rank decomposition, we
can overcome this issue as we show below. We explore the
CP and Tucker decompositions and propose two different
models, namely MLC-VAE-T and MLC-VAE-CP.

After applying the CP and Tucker decompositions on 12,
we obtain respectively:

MCP “W
r1sy1 `W

r2sy2 `Ur1spU
T
r3sy2 ˚U

T
r2sy1q

(13)

MT “W
r1sy1 `W

r2sy2 `Ur1sG
r12s
p1q pU

T
r3sy2 bU

T
r2sy1q

(14)

With this formulation, we can obtain µy1,y2 for every class
combination py1,y2q even when not all possible combina-
tions are seen during training. Thereafter, we can optimize
9 for z „ N pMpy1,y2q, Iq.

5. Experiments
To evaluate our model on multi-attribute conditional image
generation, we perform experiments on the MNIST (Le-
Cun et al., 1998), Fashion-MNIST (Xiao et al., 2017) and
CelebA (Liu et al., 2015) datasets. In all the experiments
the decoder networks are convolutional architectures based
on DCGAN (Radford et al., 2015). The encoders are con-
structed as the ’mirrored’ versions of the decoders. We
compare both proposed methods with the baseline cVAE
(Sohn et al., 2015) and VampPrior (Tomczak & Welling,
2017); we focus on generation of the unseen combinations
but also visualize samples from the seen classes. To evaluate
the models quantitatively, we train attribute classifiers. In
particular, we train a convolutional neural network with the
same architecture as the corresponding VAE encoder for all
attributes except for color. For the color attribute used in
MNIST and Fashion-MNIST, we train an MLP on the color
histograms of the images. The classification accuracy on the
test set was above 97% for all attribute classifiers, except
for smile, where the accuracy was 92%. The quantitative
results on the unseen attribute combinations are presented
in Table 1.

Overall, the results in Table 1 highlight the inability of the
baseline models to generate novel attribute combinations.
The accuracy of the classifiers on the unseen combinations
are mostly worse than random chance. This implies that,
contrary to our models, the baselines are not able to syn-
thesize recognizable digits, objects and faces of the target
attributes. This is verified qualitatively in Figure 2. On the
other hand, all models are able to generate the seen attribute
combinations (Figure 2). Quantitative results for the seen
attribute combinations can be found in the supplementary
material.

Implementation details: For the experiments on MNIST
and Fashion-MNIST the encoder and decoder networks have
4 layers, while the networks for CelebA have 5 layers. All
label decoders are affine transformations. We set β “ 1 for
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Figure 2. (top) Samples synthesized by the compared methods on the MNIST, Fashion-MNIST, CelebA. All methods can synthesize
samples from combinations that are present in the training set, however the compared methods fail on unseen combinations (marked with
red boxes). (bottom) Synthesized samples corresponding to combinations that are not seen during training (orange 2, orange bag and
woman with smile). Our method is able to synthesize diverse samples of these combinations.

all experiments, except for CelebA where we set β “ 10.
The input label for the cVAE and VampPrior baselines is a
one-hot vector where each class corresponds to an attribute
combination (e.g., (1, orange) or (Male, Smiling)). For fair
comparison we train all models for 50 epochs using the
Adam optimizer (Kingma & Ba, 2014) with a learning rate
of 0.0005. All models were implemented in Pytorch (Paszke
et al., 2017) and Tensorly (Kossaifi et al., 2019).

MNIST: The MNIST dataset consists of 60k training im-
ages and 10k test images of handwritten digits. The original
images are greyscale. Since the dataset is only annotated
with regards to one attribute (digit) we introduce a second
mode of variation and corresponding labels. That is, we
color each digit using 3 different colors, namely orange,
purple and green. We then remove from the training set the
images with labels (2, orange). The quantitative results for
the unseen combination are reported in Table 1, while the
qualitative in Figure 2. The proposed models are able to
synthesize the unseen attribute combination and, as seen in
the figure, they demonstrate considerable variation in the
synthesized styles of the unseen combination.

The latent space of the model is projected into two-
dimensions with T-SNE and visualized in Figure 3. The
model disentangles the digit and color information and cre-

Figure 3. T-SNE (Maaten & Hinton, 2008) on the latent space of
the proposed model during prediction time. Note that without
explicit constraints, the latent space is naturally clustered based on
the attribute labels.

ates class-specific clusters. As customary in image genera-
tion, linear interpolations (in the color attribute) are depicted
in Figure 5a.
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Fashion-MNIST: Similarly to MNIST, Fashion-MNIST
consists of 60k training and 10k test images. We perform
the same preprocessing as for MNIST and color each object
orange, purple and green. We remove the images with labels
(bag, orange) and present qualitative and quantitative results
in Figure 2 and Table 1. Although the baselines fail to
generate even the correct color (orange), we see that the
proposed models can synthesize the missing combination
successfully.

CelebA: The CelebA dataset contains over 200k facial im-
ages, annotated with 40 attributes. For our experiments, we
chose two of the most balanced attributes, namely "Male"
and "Smiling". Thereafter, we remove the images labeled
(not "Male", "Smiling"). The images were resized to 64x64.

The results in Table 1 and Figure 2 indicate that, contrary
to the baselines, the proposed models are able to gener-
ate diverse images of smiling women. To ensure that the
model generalizes on imbalanced sets of attributes we con-
duct an experiment with the same hyperparameters using
the ("Male", "Eyeglasses") attributes of the dataset. We
note that the attribute "Eyeglasses" appears on less than 7%
of the images. Further qualitative results on the ("Male",
"Eyeglasses") protocol are presented in Figure 4b. For this
experiment we remove the images with labels (not "Male",
"Eyeglasses"). Interpolations between attributes are pre-
sented in Figure 5b.

Besides image synthesis, we evaluate the models on attribute
transfer on CelebA. In this setting, given an input image
and a set of target attributes py1,y2q, we modify the input
image so that its attributes match y1 and y2. Specifically, we
encode an image and then decode it using different target

(a) Transfer of smile and gen-
der

(b) Synthesized samples for
the ("Male", "Eyeglasses")
protocol

Figure 4. (a) Transfer of attributes in CelebA. The faces in the
red rectangle are the original ones. For each row, we translate
the image in the red square into the 3 remaining classes. (b)
Synthesized samples for attributes gender and wearing glasses. The
first row contains generated samples from all the classes (missing
class in the red square). The bottom 3 rows contain generated
samples just from the unseen class (woman with eyeglasses).

attributes. To evaluate the attribute transfer, we use the
attribute classifiers as described above. Quantitative and
qualitative results on smile and gender transfer are presented
in Table 1 and Figure 4a.

6. The effect of modeling label interactions
In this section we experiment with the choice of the function
M . In particular we investigate the importance of modeling
the label interactions. To this end, we introduce a simpler
version of the model that learns the mean as a linear combi-
nation of the labels as described in 10. We label this model
LC-VAE. Hereafter, we compare LC-VAE to MLC-VAE on
two custom benchmarks.

mixed-up MNIST: The first benchmark is created by intro-
ducing correlation between the labels of MNIST. We begin
by coloring the MNIST dataset red and blue, as discussed in
the previous experiments. Thereafter, we change the color
label of each image if the digit is odd. The images of even
digits kept their original color labels. The resulting dataset
presents clear interaction between the digit and color la-
bels. Similarly to the previous benchmarks, we remove the
combination (2, red) from the training set.

The models are trained as in Section 4. The correlations be-
tween the labels, i.e., the color cannot be generated without
explicit knowledge of the digit, is not captured by LC-VAE
as demonstrated on Figure 6. On the contrary, the proposed
models rely on the higher-order terms to capture such multi-
plicative interactions.

CelebA: We conduct a similar experiment on faces, where
such label correlations occur naturally. To do that, we se-
lect the "Smiling" and "Mouth Slightly Open" attributes of
CelebA. The interaction between the two labels is obvious,
as most smiles in CelebA are labelled as "Mouth Slightly
Open". We test the models on their ability to generate a
smile with the mouth closed by excluding the combination

(a) Interpolation 6 Ñ 6 Ñ 6

(b) Interpolation WNS Ñ WS and MNS Ñ MS

Figure 5. Linear interpolation results on (a) MNIST, (b) CelebA.
Specifically, in (a) the interpolation is on the color attribute while in
(b) the interpolation is across the gender and the smiling attribute.
Note that in (a) unseen colors emerge.
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Model MNIST FASHION CELEB-A CELEB-A Transfer
digit color object color gender smile gender smile

Random chance 10 33.3 10 33.3 50 50 50 50
cVAE 11.5 49 13.9 23 18 7.6 23.1 9

VampPrior 2.6 2.3 4 1.8 17.1 2.8 44.3 5.8
MLC-VAE-CP (Ours) 68.1 99.2 70.3 99.7 96.4 94 95 90.6

MLC-VAE-Tucker (Ours) 95.1 100 84.6 99.8 99.4 93.5 99.4 91.5

Table 1. Accuracy (%) of the attribute classifier for each model on the unseen attribute combinations of MNIST, FASHION, CELEB-A
generation and CELEB-A transfer benchmarks. The proposed models outperform the baselines by a wide margin in all cases. The
proposed model performs better overall when combined with the Tucker decomposition compared to CP. Random chance assumes a
uniform selection from each attribute. The accuracy of the classifier on seen combinations can be found in the supplementary material.

Figure 6. Results on the mixed-up MNIST. The top two rows are
synthesized from LC-VAE while the bottom two rows from MLC-
VAE. The first and third rows are the digits labelled red and the
second and fourth rows are digits labeled blue. We observe that
only the MLC-VAE is able to generate the missing 2-red (in the
red square).

("Smiling", not "Mouth Slightly Open") from the training
set.

Figure 7. Results on the ("Smiling", "Mouth Slightly Open") pro-
tocol of CelebA. The top two rows are synthesized from LC-VAE
while the bottom two rows from MLC-VAE. We observe that only
the latter is able to generate the missing combination (Smiling,
Closed mouth), while the former ends up generating faces with an
open mouth.

The visual results on Figure 7 depict the improvement from

capturing the higher-order interactions. LC-VAE clearly
generates the teeth, indicating that the mouth is open. On
the contrary, the MLC-VAE is able to recover the unseen
attribute combination.

7. Model exploration
For the purpose of model exploration, we investigate the
following extensions to our model:

• Firstly, we probe the limits of the proposed framework
in terms of seen attribute combinations. In other words,
we investigate how many attribute combinations must
be present in the training set, so that generation of all
combination is still possible.

• Secondly, we benchmark our model on a dataset with
3 attributes.

• Lastly, we extend the model to handle unlabelled at-
tributes.

7.1. Multiple missing combinations

In order to study how the performance of the proposed
model scales with the number of missing attribute combina-
tions, we ablate the model on the MNIST dataset. In partic-
ular, we create 5 different training sets, that are missing 3, 6,
9, 15 and 20 attribute combinations respectively. We train
5 models and report the average classification accuracy of
the generated unseen combinations. The result on Table 2
indicate that the model performs reasonably well even after
removing 9 attribute combinations from the training set.
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Accuracy Number of missing combinations
3/30 6/30 9/30 15/30 20/30

Digit 88.1 94.5 90 50.4 15.8
Color 93.3 82.7 88.4 87.2 81.2

Table 2. Effect of number of unseen combinations to the accuracy
(%). The number of unseen combinations is explored (w.r.t. the
total number of 30 combinations). The accuracy of the attribute
classifier on unseen attribute combinations is reported. Notice that
even when 9 combinations are unseen, there is no significant loss
in the attribute classification.

7.2. Multiple attributes

The presented model can extended to handle an arbitrary
number of attributes. The general form is as follows:

Mpy1,y2, . . . ,yN q “

N
ÿ

i“1

W risyi `
N
ÿ

j“2

j´1
ÿ

i“1

W rijs
ˆ2 yi ˆ3 yj`

N
ÿ

h“3

h´1
ÿ

j“2

j´1
ÿ

i“1

W rijhs
ˆ2 yi ˆ3 yj ˆ4 yh ` . . .

`W r1...Ns
ˆ2 y1 ˆ3 y2 ¨ ¨ ¨ ˆN yN (15)

In order to explore generation of more than two sets of
attributes, we utilize the Morpho-MNIST (Castro et al.,
2019) dataset. This dataset is an extension of MNIST that
is further transformed and annotated with regards to stroke
thickness, swelling and fractures. Our 3-attribute benchmark
consists of the thick and thin subsets of Morpho-MNIST,
colored according to our previous benchmarks.

Based on 15, the model for 3 attributes is:

Mpy1,y2,y3q “

W r1sy1 `W
r2sy2 `W

r3sy3`

W r12s
ˆ2 y1 ˆ3 y2 `W r13s

ˆ2 y1 ˆ3 y3`

W r23s
ˆ2 y2 ˆ3 y3 `W r123s

ˆ2 y1 ˆ3 y2 ˆ4 y3, (16)

where third order tensors W r12s,W r23s,W r13s capture all
possible pairwise interactions, while W r123s is a fourth or-
der tensor that captures the triplet-wise interaction between
all attributes. The synthetic results in Figure 8 indicate that
our model can effectively handle multiple attributes.

7.3. Unlabeled attributes

In this section, we extend the model to handle unlabelled
attributes. In particular, we assume prior knowledge of only
the number of classes of the unlabelled attribute (e.g., 2
different colors). In this setting, the data have labels corre-
sponding to one attribute but not the other. A second encoder

Figure 8. Samples synthesized on 3-attribute MNIST. The sam-
ples in the red boxes are combinations not seen during training
(there are 3 combinations not seen in total). Nevertheless, the
proposed method is able to synthesize images of all three unseen
combinations.

Figure 9. Results when color labels are not provided. Notice that
the proposed method can still separate the attributes and synthesize
the unseen combinations.

network is utilized to infer the unobserved attribute’s class
probabilities. We utilize the Gumbel-Softmax distribution
(Maddison et al., 2016; Jang et al., 2016) to perform the
reparametrization trick and train the model.

We experiment with two-color MNIST (green/orange), with-
out knowledge of the color label of each sample. Qualitative
results are presented in Figure 9. Even though the images do
not have color labels, the model is able to disentangle color
from digit and generate the unseen attribute combinations
(0-orange and 1-green).

8. Conclusion
In this work, we study the ability of conditional generative
models to synthesize images of unseen attribute combina-
tions. In particular, we focus on the setting where a number
of attribute combinations are absent from the training set.
Our goal is to learn a different conditional distribution for
each class (i.e., attribute combination). The mean of each
conditional distribution is learned through the proposed
multilinear conditioning framework. We demonstrate the
efficacy of our method on 3 different datasets and display
the importance of modeling the interactions between labels.
In the future, we want to explore further the multiplicative
interactions of an arbitrarily large number of attributes, in
the supervised and unsupervised setting, by using coupled
decompositions and introducing weight sharing.
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