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1 Definitions and notations

In this section we recall the models introduced in the main body of the article, and introduce the
notations used throughout the Supplementary Material.

1.1 The dataset

In this work we study a series of regression and classification tasks for a dataset {xµ, yµ}nµ=1 with
labels yµ ∈ R sampled identically from a generalised linear model:

yµ ∼ P 0
y

(
yµ
∣∣∣cµ · θ0

√
d

)
, (1.1)

where the output-channel P 0
y (·) is defined as:

P 0
y

(
yµ
∣∣∣cµ · θ0

√
d

)
=

∫
dξµP (ξµ) δ

(
yµ − f0

(
cµ · θ0

√
d

; ξµ
))

(1.2)

for some noise ξµ and for data points xµ ∈ Rp given by:

xµ = σ

(
1√
d

d∑
ρ=1

cµρfρ

)
. (1.3)

The vectors cµ ∈ Rd is assumed to be identically drawn fromN (0, Id), and θ0 ∈ Rd from a separable
distribution Pθ. The family of vectors fρ ∈ Rp and the scalar function σ : R→ R can be arbitrary.

Although our results are valid for the general model introduced above, the two examples we will be
exploring in this work are the noisy linear channel (for regression tasks) and the deterministic sign
channel (for classification tasks):

yµ =
cµ · θ0

√
d

+
√

∆ ξµ ⇔ P 0
y

(
y
∣∣∣cµ · θ0

√
d

)
=

n∏
µ=1

N
(
yµ;

cµ · θ0

√
d

,∆

)
(1.4)

yµ = sign
(
cµ · θ0

√
d

)
⇔ P 0

y

(
y
∣∣∣cµ · θ0

√
d

)
=

n∏
µ=1

δ

(
yµ − sign

(
cµ · θ0

√
d

))
(1.5)

where ξµ ∼ N (0, 1) and ∆ > 0.

This dataset can be regarded from two different perspectives.

Hidden manifold model: The dataset {xµ, yµ}µ=1,··· ,n is precisely the hidden manifold model
introduced in [1] to study the dynamics of online learning in a synthetic but structured dataset. From
this perspective, although xµ lives in a p dimensional space, it is parametrised by a latent d < p-
dimensional subspace spanned by the basis {fρ}ρ=1,··· ,d which is "hidden" by the application of a
scalar nonlinear function σ acting component-wise. The labels yµ are then drawn from a generalised
linear rule defined on the latent d-dimensional space.

Random features model: The dataset {xµ, yµ}µ=1,··· ,n is tightly related to the Random Features
model studied in [2] as a random approximation for kernel ridge regression. In this perspective,
cµ ∈ Rd is regarded as a collection of d-dimensional data points which are projected by a random
feature matrix F = (fρ)

p
ρ=1 ∈ Rd×p into a higher dimensional space, followed by a non-linearity σ.

In the limit of infinite number of features d, p→∞ with fixed ratio d/p, performing ridge regression
of xµ is equivalent to kernel ridge regression with a limiting kernel depending on the distribution of
the feature matrix F and on the non-linearity σ.

1.2 The task

In this work, we study the problem of learning the rule from eq. (1.1) from the dataset
{(xµ, yµ)}µ=1,··· ,n introduced above with a generalised linear model:

ŷµ = f̂ (xµ · ŵ) (1.6)
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where the weightsw ∈ Rp are learned by minimising a loss function with a ridge regularisation term:

ŵ = min
w

[
n∑
µ=1

`(yµ,xµ ·w) +
λ

2
||w||22

]
. (1.7)

for λ > 0.

It is worth stressing that our results hold for general `, f̂ and f0 - including non-convex loss functions.
However, for the purpose of the applications explored in this manuscript, we will be mostly interested
in the cases f̂(x) = f0(x) = x for regression and f̂(x) = f0(x) = sign(x) for classification, and
we will focus on the following two loss functions:

`(yµ,xµ ·w) =

{
1
2 (yµ − xµ ·w)2, square loss
log
(
1 + e−y

µ(xµ·w)
)
, logistic loss

(1.8)

Note that these loss functions are strictly convex. Therefore, for these losses, the regularised
optimisation problem in (1.7) has a unique solution.

Given a new pair (xnew, ynew) drawn independently from the same distribution as {(xµ, yµ)}nµ=1, we
define the success of our fit through the generalisation error, defined as:

εg =
1

4k
Exnew,ynew (ynew − ŷnew)

2 (1.9)

where ŷnew = f̂(xnew · ŵ), and for convenience we choose k = 0 for the regression tasks and k = 1
for the classification task, such that the generalisation error in this case counts misclassification. Note
that for a classification problem, the generalisation error is just one minus the classification error.

Similarly, we define the training loss on the dataset {xµ, yµ}nµ=1 as:

εt =
1

n
E{xµ,yµ}

[
n∑
µ=1

` (yµ,xµ · ŵ) +
λ

2
‖ŵ‖22

]
. (1.10)

Finally, all the results of this manuscript are derived in the high-dimensional limit, also known as
thermodynamic limit in the physics literature, in which we take p, d, n→∞ while keeping the ratios
α = n/p, γ = d/p fixed.
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2 Replicated gaussian equivalences

In this section we introduce the replicated Gaussian equivalence (rGE), a central result we will need
for our replica calculation of the generalisation error in Sec. 2.1 of the main body. The rGET is
a stronger version of the Gaussian equivalence theorem (GET) that was introduced and proved in
[1]. Previously, particular cases of the GET were derived in the context of random matrix theory
[3, 4, 5, 6]. The gaussian equivalence has also been stated and used in [7, 8].

2.1 Gaussian equivalence theorem

Let F ∈ Rd×p be a fixed matrix, wa ∈ Rp, 1 ≤ a ≤ r be a family of vectors, θ0 ∈ Rd be a fixed
vector and σ : R→ R be a scalar function acting component-wise on vectors.

Let c ∈ Rd be a Gaussian vector N (0, Id). The GET is a statement about the (joint) statistics of the
following r + 1 random variables

λa =
1
√
p
wa · σ(u) ∈ R, ν =

1√
d
c · θ0 ∈ R. (2.1)

in the asymptotic limit where d, p → ∞ with fixed p/d and fixed r. For simplicity, assume that
σ(x) = −σ(−x) is an odd function. Further, suppose that in the previously introduced limit the
following two balance conditions hold:

Condition 1:

1√
d

d∑
ρ=1

FiρFjρ = O(1), (2.2)

for any ρ.

Condition 2:

Sa1,...,akρ1,...,ρq =
1
√
p

p∑
i=1

wa1i w
a2
i · · ·w

ak
i Fiρ1Fiρ2 · · ·Fiρq = O(1), (2.3)

for any integers k ≥ 0, q > 0, for any choice of indices ρ1, ρ2, · · · , ρq ∈ {1, · · · , d} all distinct from
each other, and for any choice of indices a1, a2, · · · , ak ∈ {1, · · · , r}. Under the aforementioned
conditions, the following theorem holds:
Theorem 1. In the limit d, p→∞ with fixed p/d, the random variables {λa, ν} are jointly normal,
with zero mean and covariances:

E
[
λaλb

]
=
κ2
?

p
wa ·wb +

κ2
1

d
sa · sb, E

[
ν2
]

=
1

d
||θ0||2

E [λaν] =
κ1

d
sa · θ0 (2.4)

where:

sa =
1
√
p

Fwa ∈ Rd, a = 1, · · · , r (2.5)

and

κ0 = Ez [σ(z)] , κ1 = Ez [zσ(z)] , κ2
? = Ez

[
σ(z)2

]
− κ2

0 − κ2
1 (2.6)

where z ∼ N (0, 1).

2.2 Replicated Gaussian equivalence

Note that the GET holds for a fixed family {wa}ra=1 and matrix F ∈ Rd×p satisfying the balance
condition from eq. (2.3). In the replica setting, we will need to apply the GET under an average over
r samples (refered here as replicas) of the Gibbs distribution µβ , introduced in eq. 14 on the main.
We therefore shall require the assumption that the balance condition eq. (2.3) holds for any sample
of µβ . We refer to this stronger version of the GET as the replicated Gaussian equivalence (rGE).
Although proving this result is out of the scope of the present work, we check its self-consistency
extensively with numerical simulations.
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3 Replica analysis

In this section we give a full derivation of the result in Sec. 2.1 in the main manuscript for the
generalisation error of the problem defined in Sec. 1. Our derivation follows from a Gibbs formulation
of the optimisation problem in eq. (1.7) followed by a replica analysis inspired by the toolbox of the
statistical physics of disordered systems.

3.1 Gibbs formulation of problem

Given the dataset {xµ, yµ}nµ=1 defined in Section 1.1, we define the following Gibbs measure over
Rp:

µβ(w|{xµ, yµ}) =
1

Zβ
e
−β
[
n∑
µ=1

`(yµ,xµ·w)+λ
2 ||w||

2
2

]
=

1

Zβ

n∏
µ=1

e−β`(y
µ,xµ·w)

︸ ︷︷ ︸
≡Py(y|w·xµ)

p∏
i=1

e−
βλ
2 w

2
i

︸ ︷︷ ︸
≡Pw(w)

(3.1)

for β > 0. When β →∞, the Gibbs measure peaks at the solution of the optimisation problem in
eq. (1.7) - which, in the particular case of a strictly convex loss, is unique. Note that in the second
equality we defined the factorised distributions Py and Pw, showing that µβ can be interpreted as a
posterior distribution ofw given the dataset {xµ, yµ}, with Py and Pw being the likelihood and prior
distributions respectively.

An exact calculation of µβ is intractable for large values of n, p and d. However, the interest in µβ is
that in the limit n, p, d→∞ with d/p and n/p fixed, the free energy density associated to the Gibbs
measure:

fβ = − lim
p→∞

1

p
E{xµ,yµ} logZβ (3.2)

can be computed exactly using the replica method, and at β →∞ give us the optimal overlaps:

qw =
1

p
E||ŵ||2 qx =

1

d
E||Fŵ||2 mx =

1

d
E
[
θ0 · Fŵ

]
(3.3)

that - as we will see - fully characterise the generalisation error defined in eq. (1.9).

3.2 Replica computation of the free energy density

The replica calculation of fβ is based on a large deviation principle for the free energy density. Let

fβ({xµ, yµ}) = −1

p
logZβ (3.4)

be the free energy density for one given sample of the problem, i.e. a fixed dataset {xµ, yµ}nµ=1. We
assume that the distribution P (f) of the free energy density, seen as a random variable over different
samples of the problem, satisfies a large deviation principle, in the sense that, in the thermodynamic
limit:

P (f) ' epΦ(f) , (3.5)

with Φ a concave function reaching its maximum at the free energy density f = fβ , with Φ(fβ) = 0.
This hypothesis includes the notion of self-averageness which states that the free-energy density is
the same for almost all samples in the thermodynamic limit.

The value of fβ can be computed by computing the replicated partition function

E{xµ,yµ}Zrβ =

∫
df ep[Φ(f)−rf ] , (3.6)

and taking the limit

fβ = lim
r→0+

d
dr

lim
p→∞

[
−1

p

(
E{xµ,yµ}Zrβ

)]
(3.7)
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Although this procedure is not fully rigorous, experience from the statistical physics of disordered
systems shows that it gives exact results, and in fact the resulting expression can be verified to match
the numerical simulations.

Using the replica method we need to evaluate:

E{xµ,yµ}Zrβ =

∫
dθ0 Pθ(θ

0)

∫ r∏
a=1

dw Pw (wa)×

×
n∏
µ=1

∫
dyµ Ecµ

[
P 0
y

(
yµ
∣∣cµ · θ0

√
d

) r∏
a=1

Py

(
yµ|wa · σ

(
1√
d

F>cµ
))]

︸ ︷︷ ︸
(I)

(3.8)

where Pw and Py have been defined in (3.1). In order to compute this quantity, we introduce, for
each point µ in the database, the r + 1 variables

νµ =
1√
d
cµ · θ0 , (3.9)

λaµ = wa · σ
(

1√
d

F>cµ
)
. (3.10)

Choosing cµ at random induces a joint distribution P (νµ, λ
a
µ). In the thermodynamic limit p, d→∞

with fixed p/n, and for matrices F satisfying the balance condition in eq. (2.3), the replicated
Gaussian equivalence introduced in Section 2.2 tells us that, for a given µ, the r + 1 variables
{νµ, λaµ}ra=1 are Gaussian random values with zero mean and covariance given by:

Σab =

(
ρ Ma

Ma Qab

)
∈ R(r+1)×(r+1) (3.11)

The elements of the covariance matrix Ma and Qab are the rescaled version of the so-called overlap
parameters:

ρ =
1

d
||θ0||2, ma

s =
1

d
sa · θ0, qabs =

1

d
sa · sb, qabw =

1

p
wa ·wb, (3.12)

where sa = 1√
pFwa. They are thus given by:

Ma = κ1m
a
s , Qab = κ2

?q
ab
w + κ2

1q
ab
s . (3.13)

where κ1 = Ez [zσ(z)] and κ2
? = Ez

[
σ(z)2

]
− κ2

1 as in eq. (2.6). With this notation, the asymptotic
joint probability is simply written as:

P (νµ, {λaµ}ra=1) =
1√

det (2πΣ)
e
− 1

2

r∑
a,b=0

zaµ(Σ−1)
ab
zbµ

(3.14)

with z0
µ = νµ and zaµ = λaµ for a = 1, · · · , r. The average over the replicated partition function (3.8)

therefore reads:

E{xµ,yµ}Zrβ =

∫
dθ0 Pθ(θ

0)

∫ r∏
a=1

dw Pw (wa)

n∏
µ=1

∫
dyµ×

×
∫

dνµ P 0
y (yµ|νµ)

∫ r∏
a=1

dλaµ P (νµ, {λaµ})
r∏
a=1

Py
(
yµ|{λaµ}

)
. (3.15)

Rewriting as a saddle-point problem

Note that after taking the average over x, the integrals involved in the replicated partition function
only couple through the overlap parameters. It is therefore useful to introduce the following Dirac
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δ-functions to unconstrain them, introducing the decomposition:

1 = d−(r+1)2
∫

dρ δ
(
dρ− ||θ0||2

) ∫ r∏
a=1

dma
s δ
(
dma

s − sa · θ0
)
×

×
∫ ∏

1≤a≤b≤r

dqabs δ
(
dqabs − sa · sb

) ∫ ∏
1≤a≤b≤r

dqabw δ
(
pqabw −wa ·wb

)
= d−(r+1)2

∫
dρdρ̂
2π

e−iρ̂(dρ−||θ
0||2)

∫ r∏
a=1

dma
sdm̂a

s

2π
e
−i

r∑
a=1

m̂as(dm
a
s−s

a·θ0)
×

×
∫ ∏

1≤a≤b≤r

dqabs dq̂abs
2π

e
−i

∑
1≤a≤b≤r

q̂abs (dqabs −s
a·sb) ∫ ∏

1≤a≤b≤r

dqabw q̂
ab
w

2π
e
−i

∑
1≤a≤b≤r

q̂abw (pqabw −w
a·wb)

.

(3.16)

Introducing the above in eq. (3.15) and exchanging the integration order allows to factorise the
integrals over the d, p, n dimensions and rewrite:

E{xµ,yµ}Zrβ =

∫
dρdρ̂
2π

∫ r∏
a=1

dma
sdm̂a

s

2π

∫ ∏
1≤a≤b≤r

dqabs dq̂abs
2π

dqabw dq̂abw
2π

epΦ
(r)

(3.17)

where the integrals over the variables ma
s , qabs and qabw run over R, while those over m̂a

s , q̂abs and q̂abw
run over iR. The function Φ(r), a function of all the overlap parameters, is given by:

Φ(r) = −γρρ̂− γ
r∑
a=1

ma
sm̂

a
s −

∑
1≤a≤b≤r

(
γqabs q̂

ab
s + qw q̂w

)
+ αΨ(r)

y

(
ρ,ma

s , q
ab
s , q

ab
w

)
+ Ψ(r)

w

(
ρ̂, m̂a

s , q̂
ab
s , q̂

ab
w

)
(3.18)

where we recall that α = n/p, γ = d/p, and we have introduced:

Ψ(r)
y = log

∫
dy
∫

dν P 0
y (y|ν)

∫ r∏
a=1

[dλaPy (y|λa)]P (ν, {λa})

Ψ(r)
w =

1

p
log

∫
dθ0Pθ(θ

0)e−ρ̂||θ
0||2
∫ r∏

a=1

dwa Pw(wa)e

∑
1≤a≤b≤r

[q̂abw w
a·wb+q̂abs s

a·sb]−
r∑
a=1

m̂ass
a·θ0

(3.19)

Note that sa = 1√
pFwa is a function of wa, and must be kept under the wa integral. In the

thermodynamic limit where p→∞ with n/p and d/p fixed, the integral in eq. (3.17) concentrates
around the values of the overlap parameters that extremize Φ(r), and therefore

f = − lim
r→0+

1

r
extr

{ρ,ρ̂,mas ,m̂
a
s}

{qabs ,q̂abs ,qabw ,q̂abw }

Φ(r). (3.20)

Replica symmetric Ansatz

In order to proceed with the r → 0+ limit, we restrict the extremization above to the following replica
symmetric Ansatz:

ma
s = ms m̂a = m̂s for a = 1, · · · , r

qaas/w = rs/w q̂aas/w = −1

2
r̂s/w for a = 1, · · · , r

qabs/w = qs/w q̂abs/w = q̂s/w for 1 ≤ a < b ≤ r (3.21)

Note that, in the particular case of a convex loss function with λ > 0, the replica symmetric Ansatz is
justified: the problem only admitting one solution, it a fortiori coincides with the replica symmetric
one. For non-convex losses, solutions that are not replica symmetric (also known as replica symmetry
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breaking) are possible, and the energy landscape of the free energy needs to be carefully analysed.
In the practical applications explored in this manuscript, we focus on convex losses with ridge
regularisation, and therefore the replica symmetric assumption is fully justified.

Before proceeding with the limit in eq. (3.20), we need to verify that the above Ansatz is well defined
- in other words, that we have not introduced a spurious order one term in Φ that would diverge. This
means we need to check that lim

r→0+
Φ = 0.

First, with a bit of algebra one can check that, within our replica symmetric Ansatz:

lim
r→0+

Ψ(r)
y = 0. (3.22)

Therefore,

lim
r→0+

Φ(r) = −γρρ̂+ γ log

∫
R

dθ0 Pθ
(
θ0
)
eρ̂θ

02

(3.23)

where we have used the fact that Pθ is a factorised distribution to take the p → ∞ limit. In order
for this limit to be 0, we need that ρ̂ = 0, which also fixes ρ to be a constant given by the second
moment of θ0:

ρ = Eθ0
[
θ02
]

(3.24)

We now proceed with the limit in eq. (3.20). Let’s look first at Ψy . The non-trivial limit comes from
the fact that det Σ and Σ−1 are non-trivial functions of r. It is not hard to see, however, that Σ−1

itself has replica symmetric structure, with components given by:(
Σ−1

)00
= ρ̃ =

R+ (r − 1)Q

ρ(R+ (r − 1)Q)− rM2
,

(
Σ−1

)aa
= R̃ =

ρR+ (r − 2)ρ Q− (r − 1)M2

(R−Q)(ρ R+ (r − 1)ρ Q− r M2)(
Σ−1

)a0
= M̃ =

M

r M2 − ρ R− (r − 1)ρ Q
,
(
Σ−1

)ab
= Q̃ =

M2 − ρ Q
(R−Q)(ρ R+ (r − 1)ρ Q− r M2)

(3.25)

where M , Q and R are the rescaled overlap parameters in the replica symmetric Ansatz, that is:

M = κ1ms, Q = κ2
?qw + κ2

1qs, R = κ2
?rw + κ2

1rs. (3.26)

This allows us to write:

Ψ(r)
y = log

∫
dy
∫

dν P 0
y (y|ν) e−

ρ̃
2 ν

2

∫ r∏
a=1

dλaPy (y|λa) e
− Q̃2

n∑
a,b=1

λaλb− R̃−Q̃2
r∑
a=1

(λa)2−M̃ν
n∑
a=1

λa

− 1

2
log det (2πΣ) . (3.27)

In order to completely factor the integral above in the replica space, we use the Hubbard-Stratonovich
transformation:

e
− Q̃2

r∑
a,b=1

λaλb

= Eξe
√
−Q̃ξ

r∑
a=1

λa

(3.28)

for ξ ∼ N (0, 1), such that

Ψ(r)
y = Eξ log

∫
dy
∫

dν P 0
y (y|ν) e−

ρ̃
2 ν

2

[∫
dλPy (y|λ) e

− R̃−Q̃2 λ2+
(√
−Q̃ξ−M̃ν

)
λ
]r

− 1

2
log det (2πΣ) . (3.29)

Taking into account the r dependence of the inverse elements and of the determinant, we can take the
limit to get:

lim
r→0+

1

r
Ψ(r)
y = Eξ

∫
R

dy
∫

dν√
2πρ

P 0
y (y|ν) e−

1
2ρ ν

2

log

∫
dλ√
2π

Py (y|λ)e
− 1

2
λ2

R−Q+

(√
Q−M2/ρ
R−Q ξ+

M/ρ
R−Q ν

)
λ

− 1

2
log (R−Q)− 1

2

Q

R−Q
(3.30)
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Finally, making a change of variables and defining:

Z ·/0y (y;ω, V ) =

∫
dx√
2πV

e−
1

2V (x−ω)2P ·/0y (y|x) (3.31)

allows us to rewrite the limit of Ψy - which abusing notation we still denote Ψy - as:

Ψy = Eξ
[∫

R
dy Z0

y

(
y;

M√
Q
ξ, ρ − M2

Q

)
logZy

(
y;
√
Qξ,R−Q

)]
. (3.32)

One can follow a very similar approach for the limit of Ψw, although in this case the limit is much
simpler, since there is no r dependence on the hat variables. The limit can be written as:

Ψw = lim
p→∞

1

p
Eξ,η,θ0 log

∫
Rd

ds Ps(s; η)e−
V̂s
2 ||s||

2+(
√
q̂sξ1d+m̂sθ

0)
>
s (3.33)

for ξ, η ∼ N (0, 1), and we have defined:

Ps(s; η) =

∫
Rp

dw Pw(w)e−
V̂w
2 ||w||

2+
√
q̂wη1

>
p wδ

(
s− 1
√
p

Fw
)

(3.34)

and we have defined the shorthands V̂w = r̂w + q̂w and V̂s = r̂s + q̂s.

Summary of the replica symmetric free energy density

Summarising the calculation above, the replica symmetric free energy density reads:

f = extr
{
− γ

2
rsr̂s −

γ

2
qsq̂s + γmsm̂s −

1

2
rw r̂w −

1

2
qw q̂w

− αΨy(R,Q,M)−Ψw (r̂s, q̂s, m̂s, r̂w, q̂w)
}

(3.35)

with α = n
p , γ = d

p , and:

Q = κ2
1qs + κ2

?qw, R = κ2
1rs + κ2

?rw M = κ1ms. (3.36)

The so-called potentials (Ψy,Ψw) are given by:

Ψw = lim
p→∞

1

p
Eξ,η,θ0 log

∫
Rd

dsPs(s; η)e−
V̂s
2 ||s||

2+(
√
q̂sξ1d+m̂sθ

0)
>
s (3.37)

Ψy = Eξ
[∫

R
dy Z0

y

(
y;

M√
Q
ξ, ρ − M2

Q

)
logZy

(
y;
√
Qξ,R−Q

)]
. (3.38)

where:

Ps(s; η) =

∫
Rp

dw Pw(w)e−
V̂w
2 ||w||

2+
√
q̂wη1

>
p wδ

(
s− 1
√
p

Fw
)

Z ·/0y (y;ω, V ) =

∫
dx√
2πV

e−
1

2V (x−ω)2P ·/0y (y|x) (3.39)

3.3 Evaluating Ψw for ridge regularisation and Gaussian prior

Note that as long as the limit in Ψw is well defined, the eq. (3.35) holds for any Pθ and Pw.
However, as discussed in Sec. 1.1, we are interested in θ0 ∼ N (0, Id) and ridge regularisation so that
Pw = exp

(
−βλ2 ||w||

2
)

. In this case, we simply have:

P (s; η) =
e
p
2
η2 q̂w
βλ+V̂w

(βλ+ V̂w)p/2
N (s;µ,Σ) (3.40)

with:

µ =

√
q̂wη

βλ+ V̂w

F1p√
p
∈ Rd, Σ =

1

βλ+ V̂w

FF>

p
∈ Rd×d. (3.41)
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Therefore the argument of the logarithm in Ψw is just another Gaussian integral we can do explicitly:

Ese−
V̂s
2 ||s||

2+b>s =
e
p
2
η2 q̂w
βλ+V̂w(

βλ+ V̂w

)p/2 e−
1
2µ
>Σ−1µ+ 1

2V̂s
||b+Σ−1µ||2√

det
(

Id + V̂sΣ
) e

− 1
2V̂s

(b+Σ−1µ)
>

(Id+V̂sΣ)
−1

(b+Σ−1µ)

(3.42)

where we have defined the shorthand b =
(√
q̂sξ1d + m̂sθ

0
)
∈ Rd. Inserting back in eq. (3.37) and

taking the log,

Ψw = lim
p→∞

Eθ0,ξ,η
[

1

2

η2q̂w

βλ+ V̂w
− 1

2
log
(
βλ+ V̂w

)
− 1

2p
tr log

(
Id + V̂sΣ

)
− 1

2p
µ>Σ−1µ

+
1

2pV̂s
||b+ Σ−1µ||2 − 1

2pV̂s

(
b+ Σ−1µ

)> (
Id + V̂sΣ

)−1 (
b+ Σ−1µ

)]
(3.43)

The averages over η, ξ,θ0 simplify this expression considerably:

Eη
[
µ>Σ−1µ

]
=

1

p

q̂w

(βλ+ V̂w)2
(F1p)

>
Σ−1 (F1p) = d

q̂w

βλ+ V̂w

Eη,ξ,θ0 ||b+ Σ−1µ||2 = d(m̂2
s + q̂s) +

1

p
q̂w tr

(
FF>

)−1

Eη,ξ,θ0
(
b+ Σ−1µ

)> (
Id + V̂sΣ

)−1 (
b+ Σ−1µ

)
=

1

p
q̂w tr

[
FF>

(
Id + V̂sΣ

)−1
]

+ (m̂2
s + q̂s) tr

(
Id + V̂sΣ

)−1

(3.44)

Finally, we can combine the two terms:

tr
FF>

p
+ tr

[
FF>

p

(
Id + V̂sΣ

)−1
]

=
V̂s

βλ+ V̂w
tr
(

Id + V̂sΣ
)−1

, (3.45)

and write:

Ψw = −1

2
log
(
βλ+ V̂w

)
− 1

2
lim
p→∞

1

p
tr log

(
Id +

V̂s

βλ+ V̂w

FF>

p

)

+
m̂2
s + q̂s

2V̂s

γ − lim
p→∞

1

p
tr

(
Id +

V̂s

βλ+ V̂w

FF>

p

)−1


+
1

2

q̂w

βλ+ V̂w

1− γ + lim
p→∞

1

p
tr

(
Id +

V̂s

βλ+ V̂w

FF>

p

)−1
 (3.46)

Note that Ψ only depends on the spectral properties of the matrix 1
pFF> ∈ Rd×d, and more specifically

on its resolvent in the asymptotic limit. A case of particular interest is when FF> has a well defined
spectral measure µ on the p, d→∞ limit with γ = d/p fixed. In that case, we can write:

lim
p→∞

1

p
tr

(
Id +

V̂s

βλ+ V̂w

FF>

p

)−1

= γ
βλ+ V̂w

V̂s
gµ

(
−βλ+ V̂w

V̂s

)
(3.47)

(3.48)
where gµ is the Stieltjes transform of µ, defined by:

gµ(z) =

∫
dµ(t)

t− z
. (3.49)

Similarly, the logarithm term can be expressed as the logarithm potential of µ - although for the
purpose of evaluating the generalisation error we will only need the derivative of these terms, and
therefore only the Stieltjes transforms and its derivative.

In what follows, we will mostly focus on two kinds of projection matrices F:
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Gaussian projections: For F ∈ Rd×p a random matrix with i.i.d. Gaussian entries with zero mean
and variance 1, µ is given by the well-known Marchenko-Pastur law, and the corresponding Stieltjes
transform is given by:

gµ(z) =
1− z − γ −

√
(z − 1− γ)2 − 4γ

2zγ
, z < 0 (3.50)

Orthogonally invariant projection: For F = U>DV with U ∈ Rd×d and V ∈ Rp×p two orthogo-
nal matrices and D ∈ Rd×p a rectangular diagonal matrix of rank min(d, p) and diagonal entries dk,
the empirical spectral density µp is given by:

µd(λ) =
1

d

min(r,p)∑
k=1

δ(λ− λk) =

(
1−min

(
1,

1

γ

))
δ(λ) +

1

p

min(d,p)∑
k=1

δ(λ− d2
k) (3.51)

Therefore the choice of diagonal elements dk fully characterise the spectrum of FF>. In order for the
orthogonally invariant case to be comparable to the Gaussian case, we fix dk in such a way that the
projected vector Fw is of the same order in both cases, i.e.

d2
k =

{
γ for γ > 1

1 for γ ≤ 1
(3.52)

With this choice, the Stieltjes transform of µ reads:

gµ(z) =

{
−(1− 1

γ ) 1
z + 1

γ
1

γ−z for γ > 1
1

1−z for γ ≤ 1
(3.53)

3.4 Gaussian equivalent model

It is interesting to note that the average over the dataset {xµ, yµ}nµ=1 of the replicated partition
function Zrβ in eq. (3.15), obtained after the application of the GET, is identical to the replicated
partition function of the same task over the following dual dataset {x̃µ, yµ}nµ=1, where:

x̃µ = κ01p + κ1
1√
d

F>cµ + κ?z
µ (3.54)

where zµ ∼ N (0, Ip), and the labels yµ ∼ Py are the same. Indeed, calling Z̃rβ the replicated
partition function for this equivalent dataset, and considering κ0 we have:

E{x̃µ,yµ}Z̃rβ =

∫
dθ0 Pθ(θ

0)

∫ r∏
a=1

dw Pw (wa)×

×
n∏
µ=1

∫
dyµ Ecµ,zµ

[
P 0
y

(
yµ
∣∣cµ · θ0

√
d

) r∏
a=1

Py

(
yµ|wa ·

(
κ1√
d

F>cµ + κ?z
µ

))]
︸ ︷︷ ︸

(I)

.

(3.55)
Rewriting (I):

(I) =

∫
dνµ P 0

y (yµ|νµ)

∫ r∏
a=1

dλaµ Py
(
yµ|λaµ

)
×

× Ecµ,zµ
[
δ

(
νµ −

1√
d
cµ · θ0

) r∏
a=1

δ

(
λaµ −

κ1√
d
wa · F>cµ + κ?w

a · zµ
)]

︸ ︷︷ ︸
≡P (ν,λ)

. (3.56)

It is easy to show that taking (κ0, κ1) to match those from eq. (2.6), the variables
(
νµ, {λaµ}

)
are

jointly Gaussian variables with correlation matrix given by Σ exactly as in eq. (3.11). This establishes
the equivalence

Z̃rβ = Zrβ (3.57)
from which follows the equivalence between the asymptotic generalisation and test error of these two
models.
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4 Saddle-point equations and the generalisation error

The upshot of the replica analysis is to exchange the p-dimensional minimisation problem forw ∈ Rp
in eq. (1.7) for a one-dimensional minimisation problem for the parameters {rs, qs,ms, rw, qw} and
their conjugate in eq. (3.35). In particular, note that by construction at the limit β →∞ the solution
{q?s ,m?

s, q
?
w} of eq. (3.35) corresponds to:

q?w =
1

p
||ŵ||2 q?s =

1

d
||Fŵ||2 m?

s =
1

d
(Fŵ) · θ0 (4.1)

where ŵ is the solution of the solution of eq. (1.7). As we will see, both the generalisation error
defined in eq. (1.9) and the training loss can be expressed entirely in terms of these overlap parameters.

4.1 Generalisation error as a function of the overlaps

Let {xnew, ynew} be a new sample independently drawn from the same distribution of our data
{xµ, yµ}nµ=1. The generalisation error can then be written as:

εg =
1

4k
Exnew,ynew

(
ynew − f̂

(
σ
(
F>cnew) · ŵ))2

=
1

4k

∫
dy
∫

dν P 0
y (y|ν)

∫
dλ (y − f̂(λ))2Ecnew

[
δ
(
ν − cnew · θ0

)
δ
(
λ− σ

(
F>cnew) · ŵ)] .

(4.2)

where for convenience, we normalise k = 0 for the regression task and k = 1 for the classification
task. Again, we apply the GET from Sec. 2 to write the joint distribution over {ν, λ}:

P (ν, λ) =
1√

det (2πΣ)
e−

1
2z
>Σ−1z, (4.3)

where z = (ν, λ)> ∈ R2 and Σ is given by

Σ =

(
ρ M?

M? Q?

)
, ρ =

1

d
||θ0||2 M? =

κ1

d
(Fŵ) · θ0, Q? =

κ2
1

d
||Fŵ||2 +

κ2
?

p
||ŵ||2.

(4.4)

Inserting in eq. (4.2) gives the desired representation of the generalisation error in terms of the optimal
overlap parameters:

εg =
1

4k

∫
dy
∫

dν P 0
y (y|ν)

∫
dλ P (ν, λ)(y − f̂(λ))2 (4.5)

For linear labels y = c · θ0 in the regression problem, we simply have:

εg = ρ+Q? − 2M? (4.6)

while for the corresponding classification problem with y = sign
(
c · θ0

)
:

εg =
1

π
cos−1

(
M?

√
Q?

)
(4.7)

which, as expected, only depend on the angle between Fŵ and θ0.

4.2 Training loss

Similarly to the generalisation error, the asymptotic of the training loss, defined for the training data
{xµ, yµ}nµ=1 as:

εt =
1

n
E{xµ,yµ}

[
n∑
µ=1

` (yµ,xµ · ŵ) +
λ

2
‖ŵ‖22

]
, (4.8)

can also be written only in terms of the overlap parameters. Indeed, it is closely related to the free
energy density defined in eq. (3.2). A close inspection on this definition tells us that:

lim
n→∞

εt = lim
β→∞

∂βfβ . (4.9)
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Taking the derivative of the free energy with respect to the parameter β and recalling that p = αn,
we can then get:

lim
n→∞

εt =
λ

2α
lim
p→∞

E{xµ,yµ}
[
‖ŵ‖22
p

]
− lim
β→∞

∂βΨy. (4.10)

For what concerns the contribution of the regulariser, we simply note that in the limit of p→∞, the
average concentrates around the overlap parameter q?w. Instead, for what concerns the contribution of
the loss function, we can start by explicitly taking the derivative with respect to β of Ψy in eq. (3.32),
i.e.:

∂βΨy = −Eξ

[∫
R

dy
Z0
y (y, ω?0)

Zy (y, ω?1)

∫
dx√
2πV ?1

e
− 1

2V ?1
(x−ω?1 )2−β`(y,x)

` (y, x)

]
, (4.11)

with Z ·/0y defined in eq. (3.31). At this point, as explained more in details in section 4.4, we can
notice that in the limit of β →∞, it holds:

lim
β→∞

∂βΨy = −Eξ
[∫

R
dy Z0

y (y, ω?0) ` (y, η (y, ω?1))

]
, (4.12)

with η (y, ω?1) given in eq. (4.21). Combining the two results together we then finally get:

lim
n→∞

εt →
λ

2α
q?w + Eξ

[∫
R

dy Z0
y (y, ω?0) ` (y, η (y, ω?1))

]
. (4.13)

4.3 Solving for the overlaps

As we showed above, both the generalisation error and the training loss are completely determined
by the β →∞ solution of the extremization problem in eq. (3.35). For strictly convex losses `, there
is a unique solution to this problem, that can be found by considering the derivatives of the replica
potential. This leads to a set of self-consistent saddle-point equations that can be solved iteratively:

r̂s = −2
ακ2

1

γ ∂rsΨy (R,Q,M)

q̂s = −2
ακ2

1

γ ∂qsΨy (R,Q,M)

m̂s = ακ1

γ ∂msΨy (R,Q,M)

r̂w = −2ακ2
?∂rwΨy (R,Q,M)

q̂w = −2ακ2
?∂qwΨy (R,Q,M)



rs = − 2
γ ∂r̂sΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

qs = − 2
γ ∂q̂sΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

ms = 1
γ ∂m̂sΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

rw = −2∂r̂wΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

qw = −2∂q̂wΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

(4.14)

In the case of a F with well-defined spectral density µ, we can be more explicit and write:

Vs = 1
V̂s

(1− z gµ(−z))
qs =

m̂2
s+q̂s

V̂ 2
s

[
1− 2zgµ(−z) + z2g′µ(−z)

]
− q̂w

(βλ+V̂w)V̂s

[
−zgµ(−z) + z2g′µ(−z)

]
ms = m̂s

V̂s
(1− z gµ(−z))

Vw = γ

βλ+V̂w

[
1
γ − 1 + zgµ(−z)

]
qw = γ q̂w

(βλ+V̂w)2

[
1
γ − 1 + z2g′µ(−z)

]
− γ m̂2

s+q̂s

(βλ+V̂w)V̂s

[
−zgµ(−z) + z2g′µ(−z)

]
(4.15)

where:

Vs/w = rs/w − qr/w V̂s/w = r̂s/w + q̂r/w z =
βλ+ V̂w

V̂s
(4.16)
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We can also simplify slightly the derivatives of Ψy without loosing generality by applying Stein’s
lemma, yielding:

V̂s = −ακ
2
1

γ Eξ
[∫

R dy Z0
y

(
y; M√

Q
ξ, ρ− M2

Q

)
∂ωfy

(
y;
√
Qξ,R−Q

)]
q̂s =

ακ2
1

γ Eξ
[∫

R dy Z0
y

(
y; M√

Q
ξ, ρ− M2

Q

)
fy
(
y;
√
Qξ,R−Q

)2]
m̂s = ακ1

γ Eξ
[∫

R dy Z0
y

(
y; M√

Q
ξ, ρ− M2

Q

)
f0
y

(
y; M√

Q
ξ, ρ− M2

Q

)
fy
(
y;
√
Qξ,R−Q

)]
V̂w = −ακ2

?Eξ
[∫

R dy Z0
y

(
y; M√

Q
ξ, ρ− M2

Q

)
∂ωfy

(
y;
√
Qξ,R−Q

)]
q̂w = ακ2

?Eξ
[∫

R dy Z0
y

(
y; M√

Q
ξ, ρ− M2

Q

)
fy
(
y;
√
Qξ,R−Q

)2]
(4.17)

with f ·/0y (y;ω, V ) = ∂ω logZ ·/0y . For a given choice of spectral density µ (corresponding to a choice
of projection F), label rule P 0

y and loss function `, the auxiliary functions (Z0,Z) can be computed,
and from them the right-hand side of the update equations above. The equations can then be iterated
until the convergence to the fixed point minimising the free energy at fixed (α, γ, β). For convex
losses and β →∞, the fixed point of these equations gives the overlap corresponding to the estimator
solving eq. (1.7).

4.4 Taking β →∞ explicitly

Although the saddle-point equations above can be iterated explicitly for any β > 0, it is envisageable
to take the limit β →∞ explicitly, since β is an auxiliary parameter we introduced, and that was not
present in the original problem defined in eq. (1.7).

Since the overlap parameters depend on β only implicitly through Zy and its derivatives, we proceed
with the following ansatz for their β →∞ scaling:

V∞s/w = βVs/w q∞s/w = qs/w m∞s = ms

V̂∞s/w =
1

β
V̂s/w q̂∞s/w =

1

β2
q̂s/w m̂∞s = m̂s. (4.18)

This ansatz can be motivated as follows. Recall that:

Zy(y;ω, V ) =

∫
dx√
2πV

e
−β
[

(x−ω)2

2βV +`(x,y)

]
=

∫
dx√
2πV

e−βL(x). (4.19)

Therefore, letting V = µ2
1Vs + µ2

?Vw scale as V∞ = βV , at β →∞:

Zy(y;ω, V ) =
β→∞

e−βL(η) (4.20)

where:

η(y;ω, V ) = argmin
x∈R

[
(x− ω)2

2V∞
+ `(x, y)

]
. (4.21)

For convex losses ` with λ > 0, this one-dimensional minimisation problem has a unique solution
that can be easily evaluated. Intuitively, this ansatz translates the fact the variance of our estimator
goes to zero as a power law at β →∞, meaning the Gibbs measure concentrates around the solution
of the optimisation problem eq. (1.7). The other scalings in eq. (4.19) follow from analysing the
dependence of the saddle-point equations in V .
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The ansatz in eq. (4.18) allow us to take the β →∞ and rewrite the saddle-point equations as:

V̂∞s =
αµ2

1

γ Eξ
[∫

R dy Z0
y

(
1−∂ωη
V∞

)]
q̂∞s =

αµ2
1

γ Eξ
[∫

R dy Z0
y

(
η−ω
V∞

)2]
m̂∞s = αµ1

γ Eξ
[∫

R dy ∂ωZ0
y

(
η−ω
V∞

)]
V̂∞w = αµ2

?Eξ
[∫

R dy Z0
y

(
1−∂ωη
V∞

)]
q̂∞w = αµ2

?Eξ
[∫

R dy Z0
y

(
η−ω
V∞

)2]
(4.22)



V∞s = 1
V̂∞s

(1− z gµ(−z))

q∞s =
(m̂∞s )2+q̂∞s

(V̂∞s )
2

[
1− 2zgµ(−z) + z2g′µ(−z)

]
− q̂∞w

(λ+V̂w)V̂s

[
−zgµ(−z) + z2g′µ(−z)

]
m∞s =

m̂∞s
V̂∞s

(1− z gµ(−z))

V∞w = γ

λ+V̂∞w

[
1
γ − 1 + zgµ(−z)

]
q∞w = γ

q̂∞w
(λ+V̂∞w )2

[
1
γ − 1 + z2g′µ(−z)

]
− γ (m̂∞s )2+q̂∞s

(λ+V̂∞w )V̂∞s

[
−zgµ(−z) + z2g′µ(−z)

]
(4.23)

where Z0
y (y;ω, V ) is always evaluated at (ω, V ) =

(
M∞√
Q∞

ξ, ρ− M∞2

Q∞

)
, η(y;ω, V ) at (ω, V ) =(√

Q∞ξ, V∞
)

and z =
λ+V̂∞w
V̂∞s

.

4.5 Examples

In this section we exemplify our general result in two particular cases for which the integrals in the
right-hand side of eq. (4.22) can be analytically performed: the ridge regression task with linear labels
and a classification problem with square loss and ridge regularisation term. The former example
appears in Fig. 5 (left) and the later in Figs. 2 (blue curve), 6, 7 of the main.

Ridge regression with linear labels: Consider the task of doing ridge regression `(y, x) =
1
2 (y − x)

2, λ > 0 on the linear patterns y = 1√
d

Cθ0+
√

∆z, with z ∼ N (0, In) and θ? ∼ N (0, Id).
In this case, we have:

η(y;ω, V ) =
ω + yV

1 + V
(4.24)

and the saddle-point equations for the hat overlap read:

V̂∞s =
α

γ

κ2
1

1 + V∞
q̂0
s =

ακ2
1

γ

1 + ∆ +Q∞ − 2M∞

(1 + V∞)
2 m̂s =

α

γ

κ1

1 + V∞

V̂∞w =
ακ2

?

1 + V∞
q̂∞w = ακ2

?

1 + ∆ +Q∞ − 2M∞

(1 + V∞)
2 (4.25)

This particular example corresponds precisely to the setting studied in [8].

Classification with square loss and ridge regularisation: Consider a classification task with
square loss `(y, x) = 1

2 (y − x)
2 and labels generated as y = sign

(
1√
d

Cθ0
)

, with θ0 ∼ N (0, Id).
Then the saddle-point equations are simply:

V̂∞s =
α

γ

κ2
1

1 + V∞
q̂∞s =

α

γ
κ2

1

1 +Q∞ − 2
√

2M∞√
π

(1 + V∞)
2 m̂s =

α

γ

√
2

π

κ1

1 + V∞

V̂∞w =
ακ2

?

1 + V∞
q̂∞w = ακ2

?

1 +Q∞ − 2M∞√
π

(1 + V∞)
2 (4.26)
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5 Numerical Simulations

In this section, we provide more details on how the numerical simulations in the main manuscript
have been performed.

First, the dataset {xµ, yµ}nµ=1 is generated according to the procedure described in Section 1.1 of the
main, which we summarise here for convenience in algorithm 1:

Algorithm 1 Generating dataset {xµ, yµ}nµ=1

Input: Integer d, parameters α, γ ∈ R+, matrix F ∈ Rd×p, vector θ0 ∈ Rd non-linear functions
σ, f0 : R→ R.
Assign p← bd/γc, n← bαpc
Draw C ∈ Rn×d with entries cµρ ∼ N (0, 1) i.i.d.
Assign y ← f0

(
Cθ0

)
∈ Rn component-wise.

Assign X← σ (CF) ∈ Rn×p component-wise.
Return: X,y

In all the examples from the main, we have drawn θ0 ∼ N (0, Id). For the regression task in Fig. 5
we have taken f0(x) = x, while in the remaining classification tasks f0(x) = sign(x). For Gaussian
projections, the components of F are drawn from N (0, 1) i.i.d., and in for the random orthogonal
projections we draw two orthogonal matrices U ∈ Rd×d, V ∈ Rp×p from the Haar measure and
we let F = U>DV with D ∈ Rd×p a diagonal matrix with diagonal entries dk = max(

√
γ, 1),

k = 1, · · · ,min(n, p).

Given this dataset, the aim is to infer the configuration ŵ, minimising a given loss function with a
ridge regularisation term. In the following, we describe how to accomplish this task for both square
and logistic loss.

Square Loss: In this case, the goal is to solve the following optimisation problem:

ŵ = min
w

[
1

2

n∑
µ=1

(yµ − xµ ·w)
2

+
λ

2
||w||22

]
. (5.1)

which has a simple closed-form solution given in terms of the Moore-Penrose inverse:

ŵ =


(
X>X + λIp

)−1
X>y, if n > p

X>
(
XXT + λIn

)−1
y, if p > n

(5.2)

Logistic Loss: In this case, the goal is to solve the following optimisation problem:

ŵ = min
w

[
n∑
µ=1

log
(

1 + e−y
µ(xµ·w)

)
+
λ

2
||w||22

]
. (5.3)

To solve the above, we use the Gradient Descent (GD) on the regularised loss. In our simulations, we
took advantage of Scikit-learn 0.22.1, an out-of-the-box open source library for machine learning
tasks in Python [9, 10]. The library provides the class sklearn.linear_model.LogisticRegression,
which implements GD with logistic loss and a further `2-regularisation, if the parameter ’penalty’ is
set to ’l2’. GD stops either if the following condition is satisfied:

max{(∇w)i |i = 1, ..., p} 6 tol, (5.4)

with∇w being the gradient, or if a maximum number of iterations is reached. We set tol to 10−4 and
the maximum number of iterations to 104.

In both cases described above, the algorithm returns the estimator ŵ ∈ Rp, from which all the
quantities of interest can be evaluated. For instance, the generalisation error can be simply computed
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by drawing a new and independent sample {Xnew,ynew} using algorithm 1 with the same inputs
F, σ, f0 and θ0 and computing:

εg(n, p, d) =
1

4kn
||ynew − f̂ (Xnewŵ) ||22 (5.5)

with f̂(x) = x for the regression task and f̂(x) = sign(x) for the classification task.

The procedure outlined above is repeated nseeds times, for different and independent draws of the
random quantities F,θ0, and a simple mean is taken in order to obtain the ensemble average of the
different quantities. In most of the examples from the main, we found that nseeds = 30 was enough
to obtain a very good agreement with the analytical prediction from the replica analysis. The full
pipeline for computing the averaged generalisation error is exemplified in algorithm 2.

Algorithm 2 Averaged generalisation error.

Input: Integer d, parameters α, γ, λ ∈ R+, non-linear functions σ, f0, f̂ and integer nseeds.
Assign p← bd/γc, n← bαpc
Initialise Eg = 0.
for i = 1 to nseeds do

Draw F, θ0.
Assign X,y ← Alg. 1.
Compute ŵ from eq. (5.1) or (5.3) with X,y and λ.
Generate new dataset Xnew,ynew from Alg. 1.
Assign Eg ← Eg + 1

4kn
||ynew − f̂ (Xnewŵ) ||22

end for
Return: εg =

Eg
nseeds
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