A. Proof of Lemma 1

In order to prove Lemma 1, we first establish the following lemma as a step stone.
Lemma 3. Under (a1), (a2), (20a) and (20b) with $\mathcal{F}_{n}=\left\{\hat{f}_{n} \mid \hat{f}_{n}(\mathbf{x})=\boldsymbol{\theta}^{\top} \mathbf{z}_{n}(\mathbf{x}), \forall \boldsymbol{\theta} \in \mathbb{R}^{2 D}\right\}$, let $\hat{f}_{R F, n}($.$) denote the$ sequence of estimates generated by our MKL algorithm with a preselected kernel κ_{n}. The following bound holds true with probability 1 :

$$
\begin{equation*}
\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right) \leq \frac{\left\|\boldsymbol{\theta}_{n}^{*}\right\|^{2}}{2 \eta q_{n}^{\text {min }}}+\frac{\eta L^{2} T}{2} \tag{25}
\end{equation*}
$$

where η is the learning rate, L is the Lipschitz constant in (a2), $q_{n}^{\min }=\min _{\forall t \in\{1, \ldots, T\}} q_{n, t}$, and $\boldsymbol{\theta}_{n}^{*}$ is the corresponding parameter vector supporting the best estimator $\hat{f}_{t, n}^{*}(\mathbf{x})=\left(\boldsymbol{\theta}_{n}^{*}\right)^{\top} \mathbf{z}_{n}(\mathbf{x})$.

Proof. Note that OMKL-GF updates the $\boldsymbol{\theta}_{n, t}$ only if the n-th kernel is in the chosen subset. Therefore, based on (12), for any fixed $\boldsymbol{\theta}$, we find

$$
\begin{align*}
\left\|\boldsymbol{\theta}_{n, t+1}-\boldsymbol{\theta}\right\|^{2}= & \left\|\boldsymbol{\theta}_{n, t}-\eta \nabla \mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right) \mathcal{I}\left(n \in \mathcal{S}_{t}\right)-\boldsymbol{\theta}\right\|^{2} \\
= & \left\|\boldsymbol{\theta}_{n, t}-\boldsymbol{\theta}\right\|^{2}-2 \eta \nabla^{\top} \mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right) \mathcal{I}\left(n \in \mathcal{S}_{t}\right)\left(\boldsymbol{\theta}_{n, t}-\boldsymbol{\theta}\right) \\
& +\left\|\eta \nabla \mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right) \mathcal{I}\left(n \in \mathcal{S}_{t}\right)\right\|^{2} . \tag{26}
\end{align*}
$$

Furthermore, based on the convexity of loss function under (a1), it can be written that

$$
\begin{equation*}
\mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\mathcal{L}\left(\boldsymbol{\theta}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right) \leq \nabla^{\top} \mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)\left(\boldsymbol{\theta}_{n, t}-\boldsymbol{\theta}\right) \tag{27}
\end{equation*}
$$

Combining (26) with (27), we arrive at

$$
\begin{align*}
& \left(\mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\mathcal{L}\left(\boldsymbol{\theta}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)\right) \mathcal{I}\left(n \in \mathcal{S}_{t}\right) \\
& \quad \leq \frac{\left\|\boldsymbol{\theta}_{n, t}-\boldsymbol{\theta}\right\|^{2}-\left\|\boldsymbol{\theta}_{n, t+1}-\boldsymbol{\theta}\right\|^{2}}{2 \eta}+\frac{\eta}{2}\left\|\nabla \mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right) \mathcal{I}\left(n \in \mathcal{S}_{t}\right)\right\|^{2} . \tag{28}
\end{align*}
$$

Taking the expectation of left hand side of (28) with respect to $\mathcal{I}\left(n \in \mathcal{S}_{t}\right)$, we obtain

$$
\begin{align*}
& \mathbb{E}\left[\left(\mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\mathcal{L}\left(\boldsymbol{\theta}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)\right) \mathcal{I}\left(n \in \mathcal{S}_{t}\right)\right] \\
& \left.\quad=\left(\mathcal{L} \boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\mathcal{L}\left(\boldsymbol{\theta}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)\right) \times 1 \times q_{n, t}+\left(\mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\mathcal{L}\left(\boldsymbol{\theta}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)\right) \times 0 \times\left(1-q_{n, t}\right) \\
& \quad=q_{n, t}\left(\mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\mathcal{L}\left(\boldsymbol{\theta}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)\right) \tag{29}
\end{align*}
$$

where $q_{n, t}$ is the probability that the n-th kernel is in the chosen subset of kernels. Moreover, for the expectation of right hand side of (28), we have

$$
\begin{align*}
& \mathbb{E}\left[\frac{\left\|\boldsymbol{\theta}_{n, t}-\boldsymbol{\theta}\right\|^{2}-\left\|\boldsymbol{\theta}_{n, t+1}-\boldsymbol{\theta}\right\|^{2}}{2 \eta}+\frac{\eta}{2}\left\|\nabla \mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right) \mathcal{I}\left(n \in \mathcal{S}_{t}\right)\right\|^{2}\right] \\
= & \frac{\left\|\boldsymbol{\theta}_{n, t}-\boldsymbol{\theta}\right\|^{2}-\left\|\boldsymbol{\theta}_{n, t+1}-\boldsymbol{\theta}\right\|^{2}}{2 \eta}+\frac{\eta q_{n, t}}{2}\left\|\nabla \mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)\right\|^{2} . \tag{30}
\end{align*}
$$

From (28), (29) and (30), we can conclude that

$$
\begin{equation*}
\mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\mathcal{L}\left(\boldsymbol{\theta}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right) \leq \frac{\left\|\boldsymbol{\theta}_{n, t}-\boldsymbol{\theta}\right\|^{2}-\left\|\boldsymbol{\theta}_{n, t+1}-\boldsymbol{\theta}\right\|^{2}}{2 \eta q_{n, t}}+\frac{\eta}{2}\left\|\nabla \mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)\right\|^{2} . \tag{31}
\end{equation*}
$$

Summing (31) over $t=1, \ldots, T$, we obtain

$$
\begin{equation*}
\sum_{t=1}^{T}\left(\mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\mathcal{L}\left(\boldsymbol{\theta}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)\right) \leq \sum_{t=1}^{T} \frac{\left\|\boldsymbol{\theta}_{n, t}-\boldsymbol{\theta}\right\|^{2}-\left\|\boldsymbol{\theta}_{n, t+1}-\boldsymbol{\theta}\right\|^{2}}{2 \eta q_{n, t}}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\nabla \mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)\right\|^{2} . \tag{32}
\end{equation*}
$$

Let $q_{n}^{\text {min }}=\min _{\forall t \in\{1, \ldots, T\}} q_{n, t}$. Based on (a2), the right hand side of (32) can be bounded by

$$
\begin{align*}
\sum_{t=1}^{T} \frac{\left\|\boldsymbol{\theta}_{n, t}-\boldsymbol{\theta}\right\|^{2}-\left\|\boldsymbol{\theta}_{n, t+1}-\boldsymbol{\theta}\right\|^{2}}{2 \eta q_{n, t}}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\nabla \mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)\right\|^{2} & \leq \sum_{t=1}^{T} \frac{\left\|\boldsymbol{\theta}_{n, t}-\boldsymbol{\theta}\right\|^{2}-\left\|\boldsymbol{\theta}_{n, t+1}-\boldsymbol{\theta}\right\|^{2}}{2 \eta q_{n}^{\min }}+\frac{\eta}{2} \sum_{t=1}^{T} L^{2} \\
& =\frac{\left\|\boldsymbol{\theta}_{n, 1}-\boldsymbol{\theta}\right\|^{2}-\left\|\boldsymbol{\theta}_{n, T+1}-\boldsymbol{\theta}\right\|^{2}}{2 \eta q_{n}^{\min }}+\frac{\eta L^{2} T}{2} \tag{33}
\end{align*}
$$

where L is the Lipschitz constant. Using the facts that $\boldsymbol{\theta}_{n, 1}=\mathbf{0}$ and non-negativity of $\left\|\boldsymbol{\theta}_{n, T+1}-\boldsymbol{\theta}\right\|^{2}$, from (32) and (33) we can conclude that

$$
\begin{equation*}
\sum_{t=1}^{T} \mathcal{L}\left(\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\sum_{t=1}^{T} \mathcal{L}\left(\boldsymbol{\theta}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right), y_{t}\right) \leq \frac{\|\boldsymbol{\theta}\|^{2}}{2 \eta q_{n}^{\min }}+\frac{\eta L^{2} T}{2} \tag{34}
\end{equation*}
$$

By choosing $\boldsymbol{\theta}=\boldsymbol{\theta}_{n}^{*}$ such that $\hat{f}_{t, n}^{*}(\mathbf{x})=\left(\boldsymbol{\theta}_{n}^{*}\right)^{\top} \mathbf{z}_{n}(\mathbf{x})$, we arrive at

$$
\begin{equation*}
\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right) \leq \frac{\left\|\boldsymbol{\theta}_{n}^{*}\right\|^{2}}{2 \eta q_{n}^{\min }}+\frac{\eta L^{2} T}{2} \tag{35}
\end{equation*}
$$

where $\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right)=\boldsymbol{\theta}_{n, t}^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right)$.
Lemma 4. Under (a1) and (a2), the following holds

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}\left[\mathcal{L}\left(\hat{f}_{t}\left(\mathbf{x}_{t}\right), y_{t}\right)\right]-\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \leq \frac{2^{b}}{\eta} \ln N+\eta_{e} J T+\frac{\eta}{2^{b+1}} \sum_{t=1}^{T} \sum_{n=1}^{N} \frac{1}{q_{n, t}} \tag{36}
\end{equation*}
$$

where η is the learning rate, η_{e} is the exploration rate, $b=\left\lfloor\log _{2}(J)\right\rfloor, q_{n, t}=\sum_{j=1}^{J} p_{j, t}\left(1-\left(1-p_{t, j}^{\left(\kappa_{n}\right)}\right)^{M}\right)$ and N denotes the number of kernels.

Proof. Let $W_{t}=\sum_{n=1}^{N} w_{n, t}$. For any t we find

$$
\begin{equation*}
\frac{W_{t+1}}{W_{t}}=\sum_{j=1}^{J} p_{j, t} \frac{W_{t+1}}{W_{t}}=\sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{w_{n, t+1}}{W_{t}}=\sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{w_{n, t}}{W_{t}} \exp \left(-\frac{\eta}{2^{b}} \ell_{n, t}\right) \tag{37}
\end{equation*}
$$

Based on (17), we have

$$
\begin{equation*}
\frac{w_{n, t}}{W_{t}}=\frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}}, \forall j \in\{1, \ldots, J\} \tag{38}
\end{equation*}
$$

Combining (37) with (38) obtains

$$
\begin{equation*}
\frac{W_{t+1}}{W_{t}}=\sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}} \exp \left(-\frac{\eta}{2^{b}} \ell_{n, t}\right) \tag{39}
\end{equation*}
$$

Using the inequality $e^{-x} \leq 1-x+\frac{1}{2} x^{2}, \forall x \geq 0$, (39) leads to

$$
\begin{equation*}
\frac{W_{t+1}}{W_{t}} \leq \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}}\left(1-\frac{\eta}{2^{b}} \ell_{n, t}+\frac{1}{2}\left(\frac{\eta}{2^{b}} \ell_{n, t}\right)^{2}\right) \tag{40}
\end{equation*}
$$

Taking logarithm from both sides of inequality (40), and use the fact that $1+x \leq e^{x}$, we have

$$
\begin{equation*}
\ln \frac{W_{t+1}}{W_{t}} \leq \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}}\left(-\frac{\eta}{2^{b}} \ell_{n, t}+\frac{1}{2}\left(\frac{\eta}{2^{b}} \ell_{n, t}\right)^{2}\right) \tag{41}
\end{equation*}
$$

Summing (41) over t from 1 to T results in

$$
\begin{equation*}
\ln \frac{W_{T+1}}{W_{1}} \leq \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}}\left(-\frac{\eta}{2^{b}} \ell_{n, t}+\frac{1}{2}\left(\frac{\eta}{2^{b}} \ell_{n, t}\right)^{2}\right) \tag{42}
\end{equation*}
$$

Furthermore, recall the updating rule of $w_{n, T+1}$ in (13), for any n we have

$$
\begin{equation*}
\ln \frac{W_{T+1}}{W_{1}} \geq \ln \frac{w_{n, T+1}}{W_{1}}=-\ln N-\sum_{t=1}^{T} \frac{\eta}{2^{b}} \ell_{n, t} \tag{43}
\end{equation*}
$$

Combining (42) with (43) results in

$$
\begin{align*}
& \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{p_{t, j}^{\left(\kappa_{n}\right)}}{1-\eta_{e}^{j}}\left(\frac{\eta}{2^{b}} \ell_{n, t}\right)-\sum_{t=1}^{T} \frac{\eta}{2^{b}} \ell_{n, t} \\
\leq & \ln N+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}}\left(\frac{\eta}{2^{b}} \ell_{n, t}\right)+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}}\left(\frac{1}{2}\left(\frac{\eta}{2^{b}} \ell_{n, t}\right)^{2}\right) . \tag{44}
\end{align*}
$$

Multiplying both sides by $\left(1-\eta_{e}^{J}\right) \frac{2^{b}}{\eta}$, we arrive at

$$
\begin{align*}
& \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} p_{t, j}^{\left(\kappa_{n}\right)} \frac{1-\eta_{e}^{J}}{1-\eta_{e}^{j}} \ell_{n, t}-\sum_{t=1}^{T}\left(1-\eta_{e}^{J}\right) \ell_{n, t} \\
\leq & \left(1-\eta_{e}^{J}\right) \frac{2^{b}}{\eta} \ln N+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\eta_{e}^{j}\left(1-\eta_{e}^{J}\right)}{N\left(1-\eta_{e}^{j}\right)} \ell_{n, t}+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\left(1-\eta_{e}^{J}\right)\left(p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}\right)}{1-\eta_{e}^{j}}\left(\frac{\eta}{2^{b+1}} \ell_{n, t}^{2}\right) . \tag{45}
\end{align*}
$$

Also, using the fact that $0<\eta_{e} \leq 1$ we can conclude that $1-\eta_{e}^{J}<1$ and for all $j \geq 1, \eta_{e}^{j} \leq \eta_{e}$, the RHS of (45) can be upper bounded by

$$
\begin{align*}
& \left(1-\eta_{e}^{J}\right) \frac{2^{b}}{\eta} \ln N+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\eta_{e}^{j}\left(1-\eta_{e}^{J}\right)}{N\left(1-\eta_{e}^{j}\right)} \ell_{n, t}+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\left(1-\eta_{e}^{J}\right)\left(p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}\right)}{1-\eta_{e}^{j}}\left(\frac{\eta}{2^{b+1}} \ell_{n, t}^{2}\right) \\
& \leq \frac{2^{b}}{\eta} \ln N+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\eta_{e}\left(1-\eta_{e}^{J}\right)}{N\left(1-\eta_{e}\right)} \ell_{n, t}+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}}\left(\frac{\eta}{2^{b+1}} \ell_{n, t}^{2}\right) . \tag{46}
\end{align*}
$$

Since $1-\eta_{e}^{J}=\left(1-\eta_{e}\right)\left(1+\ldots+\eta_{e}^{J-1}\right)$ and $\eta_{e} \leq 1$, the following bound holds for the second term on the RHS of (46)

$$
\begin{align*}
\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\eta_{e}\left(1-\eta_{e}^{J}\right)}{N\left(1-\eta_{e}\right)} \ell_{n, t} & =\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\eta_{e}\left(1+\ldots+\eta_{e}^{J-1}\right)}{N} \ell_{n, t} \\
& \leq \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\eta_{e} J}{N} \ell_{n, t} \tag{47}
\end{align*}
$$

Meanwhile, as $\eta_{e}^{J} \leq \eta_{e}^{j}$ for all $j, 1 \leq j \leq J$, the LHS of (45) can be bounded by

$$
\begin{equation*}
\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} p_{t, j}^{\left(\kappa_{n}\right)} \frac{1-\eta_{e}^{J}}{1-\eta_{e}^{j}} \ell_{n, t}-\sum_{t=1}^{T}\left(1-\eta_{e}^{J}\right) \ell_{n, t} \geq \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} p_{t, j}^{\left(\kappa_{n}\right)} \ell_{n, t}-\sum_{t=1}^{T} \ell_{n, t} \tag{48}
\end{equation*}
$$

Combining (45), (46), (47) and (48), we can conclude that

$$
\begin{align*}
& \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} p_{t, j}^{\left(\kappa_{n}\right)} \ell_{n, t}-\sum_{t=1}^{T} \ell_{n, t} \\
\leq & \frac{2^{b}}{\eta} \ln N+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\eta_{e} J}{N} \ell_{n, t}+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}}\left(\frac{\eta}{2^{b+1}} \ell_{n, t}^{2}\right) . \tag{49}
\end{align*}
$$

Recall the probability of observing the loss of n-th kernel at time t given in (18), the expected first and second moments of $\ell_{n, t}$ in (14) given the losses incurred up to time instant $t-1$, i.e., $\left\{\mathcal{L}\left(\hat{f}_{\tau}\left(\mathbf{x}_{\tau}\right), y_{\tau}\right)\right\}_{\tau=1}^{t-1}$ can be written as

$$
\begin{align*}
& \mathbb{E}\left[\ell_{n, t}\right]=\sum_{j=1}^{J} p_{j, t}\left(1-\left(1-p_{t, j}^{\left(\kappa_{n}\right)}\right)^{M}\right) \frac{\mathcal{L}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right)}{q_{n, t}}=\mathcal{L}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \tag{50a}\\
& \mathbb{E}\left[\ell_{n, t}^{2}\right]=\sum_{j=1}^{J} p_{j, t}\left(1-\left(1-p_{t, j}^{\left(\kappa_{n}\right)}\right)^{M}\right) \frac{\mathcal{L}^{2}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right)}{q_{n, t}^{2}}=\frac{\mathcal{L}^{2}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right)}{q_{n, t}} \leq \frac{1}{q_{n, t}} \tag{50b}
\end{align*}
$$

Based on (50b), the third term in the right hand side of (49) can be bounded as follows

$$
\begin{equation*}
\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}}\left(\frac{\eta}{2^{b+1}} \ell_{n, t}^{2}\right) \leq \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}}\left(\frac{\eta}{2^{b+1} q_{n, t}}\right) \tag{51}
\end{equation*}
$$

Taking the expected value of (49) at each time $t \operatorname{given}\left\{\mathcal{L}\left(\hat{f}_{\tau}\left(\mathbf{x}_{\tau}\right), y_{\tau}\right)\right\}_{\tau=1}^{t-1}$ and combining with (50a) and (51) we have

$$
\begin{align*}
& \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} p_{t, j}^{\left(\kappa_{n}\right)} \mathcal{L}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \\
\leq & \frac{2^{b}}{\eta} \ln N+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\eta_{e} J}{N} \mathcal{L}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right)+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}}\left(\frac{\eta}{2^{b+1} q_{n, t}}\right) \tag{52}
\end{align*}
$$

Since $\frac{w_{n, t}}{W_{t}}=\frac{p_{t, j}^{\left(\kappa_{n}\right)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}} \leq 1$, replace $\frac{p_{t, j}^{(\kappa n)}-\frac{\eta_{e}^{j}}{N}}{1-\eta_{e}^{j}} \leq 1$ by 1 , the inequality in (52) still holds

$$
\begin{align*}
& \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} p_{t, j}^{\left(\kappa_{n}\right)} \mathcal{L}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \\
\leq & \frac{2^{b}}{\eta} \ln N+\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\eta_{e} J}{N} \mathcal{L}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right)+\frac{\eta}{2^{b+1}} \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{1}{q_{n, t}} . \tag{53}
\end{align*}
$$

Also, using the fact that $\sum_{j=1}^{L} p_{j, t}=1$, for the third term in the right hand side of (53) we have

$$
\begin{equation*}
\frac{\eta}{2^{b+1}} \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{1}{q_{n, t}}=\frac{\eta}{2^{b+1}} \sum_{t=1}^{T} \sum_{n=1}^{N} \frac{1}{q_{n, t}} \tag{54}
\end{equation*}
$$

Furthermore, based on that $\mathcal{L}\left(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \leq 1$ in (a2), the following inequality holds

$$
\begin{equation*}
\sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\eta_{e} J}{N} \mathcal{L}\left(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \leq \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} \frac{\eta_{e} J}{N}=\eta_{e} J T \tag{55}
\end{equation*}
$$

From (53), (54) and (55), we can conclude that

$$
\begin{align*}
& \sum_{t=1}^{T} \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} p_{t, j}^{\left(\kappa_{n}\right)} \mathcal{L}\left(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right)-\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \\
\leq & \frac{2^{b}}{\eta} \ln N+\eta_{e} J T+\frac{\eta}{2^{b+1}} \sum_{t=1}^{T} \sum_{n=1}^{N} \frac{1}{q_{n, t}} . \tag{56}
\end{align*}
$$

According to the procedure of generating the graph G_{t} which is presented in Algorithm 1, for each selective node $v_{j}^{(c)} \mathrm{a}$ subset of kernels is chosen using PMF $p_{t, j}^{(\kappa)}$ in M independent trials. In fact, a subset of kernels is assigned to each node
$v_{j}^{(c)}$ in M independent trials and in each trial one kernel is assigned and its associated entry in the sub-adjacency matrix A becomes 1 . Now, let b_{n} represents the frequency that n-th kernel is chosen in M independent trials. Thus, $\left\{b_{n}\right\}_{n=1}^{N}$ can be viewed as the solution to the following linear equation

$$
\begin{equation*}
b_{1}+\ldots+b_{N}=M, \text { s.t. } b_{n} \geq 0, b_{n} \in \mathbb{N} \tag{57}
\end{equation*}
$$

where \mathbb{N} denotes the set of natural numbers. There are $\left(\begin{array}{c}N+M-1\end{array}\right)$ different solutions for (57). Let, $\left\{b_{n, k}\right\}_{n=1}^{N}$ denotes k-th set of solution for (57). Based on Jensen's inequality, for the expected value of $\mathcal{L}\left(\hat{f}_{t}\left(\mathbf{x}_{t}\right), y_{t}\right)$ we have

$$
\begin{align*}
\mathbb{E}\left[\mathcal{L}\left(\hat{f}_{t}\left(\mathbf{x}_{t}\right), y_{t}\right)\right] & =\sum_{j=1}^{J} p_{j, t} \sum_{k=1}^{\binom{N+M-1}{N}}\left(\prod_{n=1}^{N}\left(p_{t, j}^{\left(\kappa_{n}\right)}\right)^{b_{n, k}}\right) \mathcal{L}\left(\sum_{n \in \mathcal{S}_{t}} \bar{w}_{n, t} \hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \\
& \leq \sum_{j=1}^{J} p_{j, t} \sum_{k=1}^{\binom{N+M-1}{N}}\left(\prod_{n=1}^{N}\left(p_{t, j}^{\left(\kappa_{n}\right)}\right)^{b_{n, k}}\right) \sum_{n \in \mathcal{S}_{t}} \bar{w}_{n, t} \mathcal{L}\left(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right) . \tag{58}
\end{align*}
$$

Also, considering (58) and the fact that $\bar{w}_{n, t} \leq 1$, we can conclude that

$$
\begin{align*}
\mathbb{E}\left[\mathcal{L}\left(\hat{f}_{t}\left(\mathbf{x}_{t}\right), y_{t}\right)\right] & \leq \sum_{j=1}^{J} p_{j, t} \sum_{k=1}^{\binom{N+M-1}{N}}\left(\prod_{n=1}^{N}\left(p_{t, j}^{\left(\kappa_{n}\right)}\right)^{b_{n, k}}\right) \sum_{n \in \mathcal{S}_{t}} \bar{w}_{n, t} \mathcal{L}\left(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \\
& \leq \sum_{j=1}^{J} p_{j, t} \sum_{k=1}^{\binom{N+M-1}{N}}\left(\prod_{n=1}^{N}\left(p_{t, j}^{\left(\kappa_{n}\right)}\right)^{b_{n, k}}\right) \sum_{n \in \mathcal{S}_{t}} \mathcal{L}\left(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right) . \tag{59}
\end{align*}
$$

Note that the number of ways to solve (57) when n-th kernel is chosen for at least one time equals to the number of ways to solve the following problem

$$
\begin{equation*}
\tilde{b}_{1, n}+\ldots+\tilde{b}_{N, n}=M-1, \text { s.t. } \tilde{b}_{m, n} \geq 0, \tilde{b}_{m, n} \in \mathbb{N} \tag{60}
\end{equation*}
$$

There are $\binom{N+M-2}{N}$ different solutions for (60). Let $\left\{\tilde{b}_{m, n}^{(k)}\right\}_{n=1}^{N}$ denotes k-th set of solution for (60). Therefore, based on this, from (59) we can conclude the following equality

$$
\begin{align*}
& \sum_{j=1}^{J} p_{j, t} \sum_{k=1}^{\binom{N+M-1}{N}}\left(\prod_{n=1}^{N}\left(p_{t, j}^{\left(\kappa_{n}\right)}\right)^{b_{n, k}}\right) \sum_{n \in \mathcal{S}_{t}} \mathcal{L}\left(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \\
= & \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} p_{t, j}^{\left(\kappa_{n}\right)} \sum_{k=1}^{\binom{N+M-2}{N-2}}\left(\prod_{m=1}^{N}\left(p_{t, j}^{\left(\kappa_{m}\right)}\right)^{\tilde{b}_{m, n}^{(k)}}\right) \mathcal{L}\left(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \tag{61}
\end{align*}
$$

where $\sum_{k=1}^{\binom{N+M-2}{N}}\left(\prod_{m=1}^{N}\left(p_{t, j}^{\left(\kappa_{m}\right)}\right)^{\tilde{b}_{m, n}(k)}\right)$ is the total probability of all $\binom{N+M-2}{N}$ possible solutions of (60). Therefore, $\sum_{k=1}^{\left({ }_{N}^{N+M-2}\right)}\left(\prod_{m=1}^{N}\left(p_{t, j}^{\left(\kappa_{m}\right)}\right)^{\tilde{b}_{m, n}^{(k)}}\right)=1$. Substituting (61) into (58), we obtain

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{L}\left(\hat{f}_{t}\left(\mathbf{x}_{t}\right), y_{t}\right)\right] \leq \sum_{j=1}^{J} p_{j, t} \sum_{n=1}^{N} p_{t, j}^{\left(\kappa_{n}\right)} \mathcal{L}\left(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right), y_{t}\right) \tag{62}
\end{equation*}
$$

Combining (56) with (62) leads to

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}\left[\mathcal{L}\left(\hat{f}_{t}\left(\mathbf{x}_{t}\right), y_{t}\right)\right]-\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{n, t}\left(\mathbf{x}_{t}\right), y_{t}\right) \leq \frac{2^{b}}{\eta} \ln N+\eta_{e} J T+\frac{\eta}{2^{b+1}} \sum_{t=1}^{T} \sum_{n=1}^{N} \frac{1}{q_{n, t}} \tag{63}
\end{equation*}
$$

which concludes to proof of Lemma 4.

From (25) in Lemma 3 and (36) in Lemma 4, we conclude that

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}\left[\mathcal{L}\left(\hat{f}_{t}\left(\mathbf{x}_{t}\right), y_{t}\right)\right]-\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right) \leq \frac{2^{b}}{\eta} \ln N+\frac{\left\|\boldsymbol{\theta}_{n}^{*}\right\|^{2}}{2 \eta q_{n}^{\min }}+\frac{\eta L^{2} T}{2}+\eta_{e} J T+\frac{\eta}{2^{b+1}} \sum_{t=1}^{T} \sum_{n=1}^{N} \frac{1}{q_{n, t}} \tag{64}
\end{equation*}
$$

Furthermore, based on (18) we can write

$$
\begin{equation*}
q_{n, t}=\sum_{j=1}^{J} p_{j, t}\left(1-\left(1-p_{t, j}^{\left(\kappa_{n}\right)}\right)^{M}\right)=\sum_{j=1}^{J} p_{j, t} p_{t, j}^{\left(\kappa_{n}\right)}\left(1+\ldots+\left(1-p_{t, j}^{\left(\kappa_{n}\right)}\right)^{M-1}\right) \geq \sum_{j=1}^{J} p_{j, t} p_{t, j}^{\left(\kappa_{n}\right)} \tag{65}
\end{equation*}
$$

From (65) and the facts that $p_{j, t}>\frac{\eta_{e}}{J}$ and $p_{t, j}^{\left(\kappa_{n}\right)}>\frac{\eta_{e}^{j}}{N}$, the following inequality can be concluded

$$
\begin{equation*}
q_{n, t} \geq \sum_{j=1}^{J} p_{j, t} p_{t, j}^{\left(\kappa_{n}\right)}>p_{1, t} p_{t, 1}^{\left(\kappa_{n}\right)}>\frac{\eta_{e}^{2}}{N J} \tag{66}
\end{equation*}
$$

Therefore, we find $q_{n}^{\min }>\frac{\eta_{e}^{2}}{N J}$. Combining (64) and (66) we can conclude that

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}\left[\mathcal{L}\left(\hat{f}_{t}\left(\mathbf{x}_{t}\right), y_{t}\right)\right]-\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)<\frac{2^{b}}{\eta} \ln N+\frac{\left\|\boldsymbol{\theta}_{n}^{*}\right\|^{2} N J}{2 \eta \eta_{e}^{2}}+\frac{\eta L^{2} T}{2}+\eta_{e} J T+\frac{\eta N^{2} J T}{2^{b+1} \eta_{e}^{2}} \tag{67}
\end{equation*}
$$

Hence, Lemma 1 is proved.

B. Proof of Theorem 2

To prove Theorem 2, the following lemma is exploited (Shen et al., 2019)
Lemma 5. For the optimal function estimator (19) in \mathcal{H}_{n} expressed as $f_{n}^{*}(\mathbf{x}):=\sum_{t=1}^{T} \alpha_{n, t}^{*} \kappa_{n}\left(\mathbf{x}, \mathbf{x}_{t}\right)$ and its RF-based approximant $\hat{f}_{t, n}^{*}\left(\mathbf{x}, \mathbf{x}_{t}\right)=\sum_{t=1}^{T} \alpha_{n, t}^{*} \mathbf{z}_{n}^{\top}(\mathbf{x}) \mathbf{z}_{n}\left(\mathbf{x}_{t}\right)$, the following bound holds with probability at least $1-2^{8}\left(\frac{\sigma_{n}}{\epsilon}\right)^{2} \exp \left(-\frac{D \epsilon^{2}}{4 d+8}\right)$

$$
\begin{equation*}
\left|\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)-\sum_{t=1}^{T} \mathcal{L}\left(f_{n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)\right| \leq \epsilon L T C \tag{68}
\end{equation*}
$$

where the equality happens if we have $C:=\max _{n} \sum_{t=1}^{T}\left|\alpha_{n, t}^{*}\right|$.
Proof. For a given shift invariant kernel κ_{n}, the maximum point-wise error of the random feature kernel approximant is uniformly bounded with probability at least $1-2^{8}\left(\frac{\sigma_{n}}{\epsilon}\right)^{2} \exp \left(-\frac{D \epsilon^{2}}{4 d+8}\right)$, by (Rahimi \& Recht, 2007)

$$
\begin{equation*}
\sup _{\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathcal{X}}\left|\mathbf{z}_{n}\left(\mathbf{x}_{i}\right)^{\top} \mathbf{z}_{n}\left(\mathbf{x}_{j}\right)-\kappa_{n}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right|<\epsilon \tag{69}
\end{equation*}
$$

Furthermore, using the triangle inequality we can conclude that

$$
\begin{equation*}
\left|\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)-\sum_{t=1}^{T} \mathcal{L}\left(f_{n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)\right| \leq \sum_{t=1}^{T}\left|\mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)-\mathcal{L}\left(f_{n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)\right| \tag{70}
\end{equation*}
$$

Considering the Lipschitz continuity of the loss function we can obtain the following inequality

$$
\begin{equation*}
\sum_{t=1}^{T}\left|\mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)-\mathcal{L}\left(f_{n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)\right| \leq \sum_{t=1}^{T} L\left|\sum_{\tau=1}^{T} \alpha_{n, \tau}^{*} \mathbf{z}_{n}^{\top}\left(\mathbf{x}_{\tau}\right) \mathbf{z}_{n}\left(\mathbf{x}_{t}\right)-\sum_{\tau=1}^{T} \alpha_{n, \tau}^{*} \kappa_{n}\left(\mathbf{x}_{\tau}, \mathbf{x}_{t}\right)\right| \tag{71}
\end{equation*}
$$

Using the Cauchy-Schwartz inequality, we obtain

$$
\begin{equation*}
\sum_{t=1}^{T} L\left|\sum_{\tau=1}^{T} \alpha_{n, \tau}^{*} \mathbf{z}_{n}^{\top}\left(\mathbf{x}_{\tau}\right) \mathbf{z}_{n}\left(\mathbf{x}_{t}\right)-\sum_{\tau=1}^{T} \alpha_{n, \tau}^{*} \kappa_{n}\left(\mathbf{x}_{\tau}, \mathbf{x}_{t}\right)\right| \leq \sum_{t=1}^{T} L \sum_{\tau=1}^{T}\left|\alpha_{n, \tau}^{*}\right|\left|\mathbf{z}_{n}^{\top}\left(\mathbf{x}_{\tau}\right) \mathbf{z}_{n}\left(\mathbf{x}_{t}\right)-\kappa_{n}\left(\mathbf{x}_{\tau}, \mathbf{x}_{t}\right)\right| \tag{72}
\end{equation*}
$$

Hence, from (70), (71) and (72) we can conclude the following inequality

$$
\begin{equation*}
\left|\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)-\sum_{t=1}^{T} \mathcal{L}\left(f_{n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)\right| \leq \sum_{t=1}^{T} L \sum_{\tau=1}^{T}\left|\alpha_{n, \tau}^{*}\right|\left|\mathbf{z}_{n}^{\top}\left(\mathbf{x}_{\tau}\right) \mathbf{z}_{n}\left(\mathbf{x}_{t}\right)-\kappa_{n}\left(\mathbf{x}_{\tau}, \mathbf{x}_{t}\right)\right| \tag{73}
\end{equation*}
$$

Combining (69) with (73) and considering the fact that $C:=\max _{n} \sum_{t=1}^{T}\left|\alpha_{n, t}^{*}\right|$, yields the following inequality which holds with probability at least $1-2^{8}\left(\frac{\sigma_{n}}{\epsilon}\right)^{2} \exp \left(-\frac{D \epsilon^{2}}{4 d+8}\right)$,

$$
\begin{equation*}
\left|\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)-\sum_{t=1}^{T} \mathcal{L}\left(f_{n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)\right| \leq \sum_{t=1}^{T} L \epsilon \sum_{\tau=1}^{T}\left|\alpha_{n, \tau}^{*}\right| \leq \epsilon L T C \tag{74}
\end{equation*}
$$

In addition, under the kernel bound in (a3) and uniform convergence in (69) which implies $\sup _{\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathcal{X}} \mathbf{z}_{n}^{\top}\left(\mathbf{x}_{\tau}\right) \mathbf{z}_{n}\left(\mathbf{x}_{t}\right) \leq 1+\epsilon$ holds with probability at least $1-2^{8}\left(\frac{\sigma_{n}}{\epsilon}\right)^{2} \exp \left(-\frac{D \epsilon^{2}}{4 d+8}\right)$, it can be written that

$$
\begin{equation*}
\left\|\theta_{n}^{*}\right\|^{2} \leq\left\|\sum_{t=1}^{T} \alpha_{n, t}^{*} \mathbf{z}_{n}\left(\mathbf{x}_{t}\right)\right\|^{2} \leq\left|\sum_{t=1}^{T} \sum_{\tau=1}^{T} \alpha_{n, t}^{*} \alpha_{n, \tau}^{*} \mathbf{z}_{n}^{\top}\left(\mathbf{x}_{t}\right) \mathbf{z}_{n}\left(\mathbf{x}_{\tau}\right)\right| \leq(1+\epsilon) C^{2} \tag{75}
\end{equation*}
$$

Combining Lemma 1 with Lemma 5 and (75), it can be concluded that the following bound holds with probability at least $1-2^{8}\left(\frac{\sigma_{n}}{\epsilon}\right)^{2} \exp \left(-\frac{D \epsilon^{2}}{4 d+8}\right)$,

$$
\begin{align*}
& \sum_{t=1}^{T} \mathbb{E}\left[\mathcal{L}\left(\hat{f}_{t}\left(\mathbf{x}_{t}\right), y_{t}\right)\right]-\sum_{t=1}^{T} \mathcal{L}\left(f_{n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right) \\
= & \sum_{t=1}^{T} \mathbb{E}\left[\mathcal{L}\left(\hat{f}_{t}\left(\mathbf{x}_{t}\right), y_{t}\right)\right]-\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)+\sum_{t=1}^{T} \mathcal{L}\left(\hat{f}_{t, n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right)-\sum_{t=1}^{T} \mathcal{L}\left(f_{n}^{*}\left(\mathbf{x}_{t}\right), y_{t}\right) \\
< & \frac{2^{b}}{\eta} \ln N+\frac{N J(1+\epsilon) C^{2}}{2 \eta \eta_{e}^{2}}+\frac{\eta L^{2} T}{2}+\eta_{e} J T+\epsilon L T C+\frac{\eta N^{2} J T}{2^{b+1} \eta_{e}^{2}} \tag{76}
\end{align*}
$$

which completes the proof of Theorem 2.

C. Relationship between OMKL-GF and Raker

In this section, we compare our proposed OMKL-GF with Raker (Shen et al., 2019) presented in Algorithm 3.

```
Algorithm 3 Raker (Shen et al., 2019)
    Input:Kernels \(\kappa_{n}, n=1, \ldots, N\), step size \(\eta>0\), and the number of features \(D\).
    Initialize: \(\boldsymbol{\theta}_{n, 1}=\mathbf{0}, w_{n, 1}=1, n=1, \ldots, N\)
    for \(t=1, \ldots, T\) do
        Receive one datum \(\mathbf{x}_{t}\).
        Construct \(\mathbf{z}_{n}\left(\mathbf{x}_{t}\right)\) via (5) for \(n=1, \ldots, N\).
        Predict \(\hat{f}_{t}\left(\mathbf{x}_{t}\right)=\sum_{n=1}^{N} \frac{w_{n, t}}{\sum_{m=1}^{N} w_{m, t}} \hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right)\) with \(\hat{f}_{\mathrm{RF}, n}\left(\mathbf{x}_{t}\right)\) in (8).
        for \(n=1, \ldots, N\) do
            Obtain loss \(\mathcal{L}\left(\hat{f}_{R F, n}\left(\mathbf{x}_{t}\right), y_{t}\right)\).
            Update \(\boldsymbol{\theta}_{n, t+1}\) via (12).
            Update \(w_{n, t+1}\) via (13).
        end for
    end for
```

Note that both OMKL-GF and Raker utilizes random feature approximation to make the kernel-based learning task scalable. While Raker employs all kernels in the dictionary for function approximation at each time instance, our proposed OMKL-GF chooses a time-varying subset of kernels at each time instant by adaptively pruning irrelevant kernels. Experiments show that OMKL-GF can attain lower MSE and execution time in comparison with Raker by actively choosing a subset of kernels.

