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Abstract
We consider an agent that is assigned with a tem-
poral logic task in an environment whose semantic
representation is only partially known. We rep-
resent the semantics of the environment with a
set of state properties, called atomic propositions
over which, the agent holds a probabilistic belief
and updates it as new sensory measurements ar-
rive. The goal is to design a joint perception and
planning strategy for the agent that realizes the
task with high probability. We develop a planning
strategy that takes the semantic uncertainties into
account and by doing so provides probabilistic
guarantees on the task success. Furthermore, as
new data arrive, the belief over the atomic propo-
sitions evolves and, subsequently, the planning
strategy adapts accordingly. We evaluate the pro-
posed method on various finite-horizon tasks in
planar navigation settings where the empirical
results show that the proposed method provides
reliable task performance that also improves as
the knowledge about the environment enhances.

1. Introduction
An autonomous agent should simultaneously perceive its
surroundings and plan for a given task according to its cur-
rent knowledge. Machine learning algorithms have been
hugely successful in dealing with different perception tasks
such as semantic segmentation and object detection while
extensive studies of control problems have led to numerous
planning algorithms with provable theoretical guarantees.
On the other hand, algorithms for joint perception and plan-
ning with the effectiveness of machine learning and the
provable guarantees from control theory do not yet exist.
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Joint perception and planning pose two fundamental chal-
lenges. The first challenge is designing an interface that
not only enables the planning to use the perception out-
puts but also provides a way for the perception to ask for
information-gathering strategies. The second challenge is
the well-known trade-off of exploration versus exploitation,
i.e., to what extent the agent should search for new informa-
tion or to what extent it can rely on its current knowledge to
take actions.

We argue that a pivotal factor to overcome these challenges
is to associate the agent’s knowledge and the available in-
formation to the task progress. Building this association
requires compositional and structured reasoning over the
task. Examples of structured task descriptions and com-
positional reward functions are sub-goal sequences (Singh,
1992), linear temporal logic (Wen et al., 2015; Li et al., 2017;
Hahn et al., 2019), and reward machines (Icarte et al., 2018;
2019). Temporal logic specifications are interpretable by hu-
mans, can model a variety of tasks including non-Markovian
ones, have a structured representation as an automaton, and
are suitable for automated verification. Here, we focus on
a subclass of temporal logic specifications, namely syntac-
tically co-safe linear temporal logic (scLTL) (Kupferman
& Vardi, 2001) that is tailored for specifying finite-horizon
tasks.

In this paper, we study a problem of joint perception and
planning under uncertainty. In particular, we consider an
agent that interacts with an environment captured by a
Markov decision process (MDP) (Puterman, 2014) and aims
to successfully perform a task expressed by an scLTL speci-
fication. Our main contribution is to employ the structured
form of a temporal logic specification to develop a task-
oriented perception and planning. A temporal logic speci-
fication formally describes a task by imposing constraints
on the task-related attributes of the states, called atomic
propositions, that the agent visits. For instance, the tempo-
ral logic representation of a reach-avoid task is “avoid the
blocked states until reaching to the target state,” where the
set of atomic propositions is {blocked,target}. We model
the semantic knowledge of the agent about the environment,
called belief, through distributions over the atomic proposi-
tions. As new perception outputs arrive, the agent updates
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its belief in a Bayesian or frequentist way, depending on
its access to a reliable observation model. The proposed
algorithm relies on online replanning and can dynamically
switch between exploration and exploitation modes.

The problem in this paper is related to multi-tasking simul-
taneous localization and mapping (SLAM) (Guez & Pineau,
2010) where the agent may have side tasks such as maximiz-
ing a reward function in addition to localization and map-
ping. Nevertheless, divergent from the conventional SLAM
setting which represents a map via a set of landmarks, we
consider a map that consists of a set of task-related state
attributes. Another related modeling framework is that of
POMDPs (Sharan & Burdick, 2014) as they naturally repre-
sent state uncertainty. Nevertheless, in order for a POMDP
to capture the perception uncertainty, the state variable must
also include the environment’s configuration (e.g., position
of the obstacles) in addition to the agent’s configuration
(e.g., position of the agent). This state extension signifi-
cantly increases the dimension of the state space and makes
the solution computationally prohibitive (i.e., will result in a
curse of dimensionality). Additionally, quantitative analysis
of a POMDP with a temporal logic task is in general an
undecidable problem (Chatterjee et al., 2016).

2. Related Work
There exist several formalisms for modeling decision-
making under imperfect perception. Bai et al. (2014) mod-
eled an integrated perception and planning problem using
POMDPs and developed a value iteration algorithm over
generalized policy graphs. In (Ghasemi & Topcu, 2019), the
authors proposed a perception-aware point-based POMDP
solver for settings where an agent can simultaneously take
a planning action and a perception action. In (Benenson
et al., 2006), the authors integrated SLAM with a partial
motion planner for autonomous navigation. Fu et al. (2016)
considered a robot with a temporal logic task in a proba-
bilistic map obtained from a semantic SLAM. By defining
a notion of δ-confident labeling function around the mean
of the probabilistic map, they reformulated the stochastic
control problem into a deterministic shortest path problem.

Temporal logic planning under imperfect perception has
been studied from different perspectives. Jones et al. (2013)
proposed a new type of logic, called distribution temporal
logic, to enable expressions over belief-based predicates.
In (Ding et al., 2011), the authors considered an agent mov-
ing over a graph where the truth values of the predicates over
the nodes depend on known probabilities. There is also a
family of solutions that rely on sampling methods (Vasile &
Belta, 2013). In another related work, da Silva et al. (2019)
propose a synthesis algorithm for probabilistic temporal
logic over reals specifications in the belief space. In (Mon-
tana et al., 2017), the authors proposed a sampling-based

solution to temporal logic planning under imperfect state
information. To tackle the curse of history, their method
relies on constructing a transition system by sampling from
a feedback-based information roadmap. A relevant work to
ours is that of Kress-Gazit et al. (2009) where they consid-
ered uncertainty in the environment propositions and pro-
posed to design a reactive controller offline such that it can
satisfy the task for all admissible environments. However, if
the number of environment propositions are large, the con-
troller should be able to cope to all admissible environments
which is intractable.

Similar to our proposed approach, many solutions resort to
replanning techniques. In (Wongpiromsarn et al., 2009), the
authors tackled the state explosion problem of controller
synthesis by proposing an iterative receding-horizon plan-
ning. For a subclass of temporal logic formulas, Livingston
et al. (2012) introduced a method to locally patch a nomi-
nal controller once a change in the environment is detected.
In (Lahijanian et al., 2016), the authors proposed an iterative
replanning strategy that can relax the constraints imposed
by the task if the discovery of a new obstacle deems the
task unrealizable. Fu and Topcu (2015; 2016) designed an
alternating active sensing and planning strategy for temporal
logic tasks. Their approach is also an online replanning one
that only calls for sensing when no strategy can be found
for the current belief. In contrast, in this work sensing and
planning occur simultaneously. Another related work is
that of (Guo et al., 2013) where the agent generates a plan
according to its initial knowledge and after new real-time
information is gathered, it revises the plan. However, their
model is deterministic as opposed to the stochastic model
in our work, and the information is perfect and infrequent.

3. Problem Formulation
We now introduce the agent model, the environment model,
the observation model and the task specification language
that we use in the formal problem statement.

3.1. Agent Model

We model the interaction between the agent and the envi-
ronment by a Markov decision process (MDP).

Definition 1. A Markov decision process (MDP) is a tuple
M = (S, sinit,A, T ), where S is a finite discrete state
space, sinit ∈ S is an initial state, A is a finite discrete
action space, and T : S ×A× S → [0, 1] is a probabilistic
transition function such that, for all s ∈ S and for all a ∈ A,∑
s′∈S T (s, a, s′) = 1.

The agent’s decisions create a path over the MDP. Let ∗ to
denote the Kleene star. A finite path µ = s0a1s1a2s2 . . . ∈
ansn ∈ (S ×A)∗ is a finite sequence of states and actions
such that s0 = sinit and, for all i ∈ Z, Pr(si, ai+1, si+1) >
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0.

A policy π is a mapping from the history h(t) =
(s0, a1, s1, a2, . . . , st) of states and actions to a distribution
over the action space. A memoryless policy π : S ×A →
[0, 1] is a policy whose output action at depends only on the
current state st. A deterministic policy π : (S ×A)∗ → A
is a policy that outputs an action deterministically.

A policy π when implemented on an MDP M =
(S, sinit,A, T ), induces a Markov chain. For a memo-
ryless deterministic policy π, let π(s) indicate the action
chosen by the policy at state s. Then, the induced Markov
chain is Mπ = M = (Sπ, sinitπ, T π) where Sπ = S,
sinit

π = sinit, and T π : S × S → [0, 1] is such that

T π(s, s′) = T (s, π(s), s′).

3.2. Environment Model

The agent perceives its environment through a set of binary-
valued properties associated with the states, called atomic
propositions. If an atomic proposition p holds true at a
state s, we denote that by s |= p. A time-varying labeling
function captures the belief of the agent about the truth
values of the atomic propositions.

Definition 2. An environment model is a tuple E =
(S,AP, L̄) where S is a finite, discrete state space, AP
is a set of atomic propositions, and L̄ : S → 2AP is a
deterministic labeling function that captures the true state
of the environment. The agent’s belief at time t is a proba-
bilistic labeling function Lt : S ×2AP → [0, 1]. For a state
s and a subset of atomic propositions P ⊆ AP , Lt(s, P )
assigns the probability of the event that P holds true at s,
i.e., Pr(

⋂
p∈P s |= p).

Notice that at each time step t and for every state s ∈ S,∑
P⊆AP Lt(s, P ) = 1. L0 is the agent’s prior belief which

for example, may be an uninformative prior distribution. We
assume that the truth values of the propositions are mutually
independent in each state,

∀s ∈ S and ∀P ⊆ AP :

Pr(
⋂
p∈P

s |= P ) =
∏
p∈P

Pr(s |= p),

and also between every pair of different states,

∀s1, s2 ∈ S, s1 6= s2 and ∀P1, P2 ⊆ AP :

Pr(s1 |= P1 ∧ s2 |= P2) = Pr(s1 |= P1)Pr(s2 |= P2).

This independence assumption facilitates the update of the
labeling function over time. Nevertheless, so long as the
joint distribution model is known, the updates can be com-
puted.

3.3. Observation Model

At each time step, the agent’s perception module processes
a set of sensory measurements regarding the atomic propo-
sitions. While the measurements may be from multiple
sensing units, for ease of notation, we consider their joint
model by a general observation function.

Definition 3. Let Z(s1, s2, p) ∈ {True,False} denote the
perception output of the agent at state s1 for the atomic
proposition p at state s2. The joint observation model
of the agent is O : S × S ×AP × {True,False} → [0, 1]
where O(s1, s2, p, b) represents the probability that
Z(s1, s2, p) = True if the truth value of p is according
to b.

In particular, an accurate observation model is the one for
which the output probability of O(s1, s2, p, b) is one for
b = True and zero for b = False .

In the Bayesian framework, the observation model is used
for the update of the agent’s belief. Nevertheless, in the
absence of such observation model, one can perform the
update in a frequentist way.

3.4. Task Specification Language

We use syntactically co-safe linear temporal logic
(scLTL) (Kupferman & Vardi, 2001) to specify finite-
horizon tasks for the agent.

Definition 4. The formulas in scLTL are inductively defined
according to the following grammar:

ϕ := True | p | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2 | ♦ϕ,

where the truth symbols, negation, and conjunction (∧) are
borrowed from the propositional logic. p ∈ AP is an atomic
proposition and ϕ, ϕ1, and ϕ2 are scLTL formulas. The
temporal operators © , U , and ♦ correspond to Next, Until,
and Eventually, respectively.

Let Σ = 2AP denote the finite alphabet composed of all
possible valuations of the propositions. A letter σ ∈ Σ
is interpreted as the valuation that assigns value True to
all p ∈ σ and False to all p ∈ AP \ σ. A finite word
w = σ0σ1σ2 . . . σn ∈ Σ∗ is a finite sequence of letters. An
scLTL formula ϕ generates a language over finite words
such that a word w is included in the language if it satisfies
ϕ, denoted by w |= ϕ. See (Baier & Katoen, 2008) for the
complete set of rules that determine the semantics of scLTL
specifications.

The language defined by an scLTL formula can equiva-
lently be represented through a deterministic finite automa-
ton (Kupferman & Vardi, 2001).

Definition 5. A deterministic finite automaton (DFA) is a
tuple D = (Q, qinit,Σ, δ,F), where Q is a finite set of
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states, qinit ∈ Q is an initial state, Σ is an input alphabet,
δ : Q× Σ→ Q is a deterministic transition function, and
F ⊆ Q is a set of accepted states.

A run ρ = q0q1q2 . . . qn ∈ Q∗ on D is a finite sequence of
states such that q0 = qinit and, for all i ∈ Z, there exists
σi ∈ Σ, qi+1 = δ(qi, σi). ρ is an accepting run of D if and
only if qn ∈ F . Let w = σ0σ1σ2 . . . σn ∈ Σ∗ be a finite
word. w is included in the language defined by a DFA D
if the corresponding run of w on D, indicated by ρ(w), is
accepting.

Consider an environment model E = (S,AP, L̄) and a
finite path µ = s0a1s1a2s2 . . . ∈ ansn ∈ (S×A)∗ over an
MDPM = (S, sinit,A, T ). Let w(µ) = σ0σ1σ2 . . . σn ∈(
2AP

)∗
indicate the word generated by µ according to L̄,

i.e., σi = {p | p ∈ L̄(si)}. µ satisfies an scLTL task ϕ if
and only if the run induced by µ, i.e., ρ(w(µ)), on the DFA
representation of ϕ is accepting.

3.5. Problem Statement

We consider an agent whose interaction with the environ-
ment is captured by an MDP. The agent is tasked with
an scLTL specification that can be successfully completed
within finite time. The agent is unaware of the environment
state. However, it starts with a prior knowledge and over
time, gathers observations that can be used to further revise
its belief. The formal definition of the problem is stated
next.

Problem 1. Given an MDP M = (S, sinit,A, T ), an
environment model with unknown labeling function E =
(S,AP, ), an observation model O, and an scLTL task ϕ,
find a policy π that maximizes the probability of satisfying
the task conditioned on the true labeling function, i.e.,

π∗ = argmax
π

Pr(Mπ |= ϕ | L̄).

4. Proposed Algorithm
Before introducing the algorithm, it is necessary to first de-
scribe the challenges of having a probabilistic view of the
environment and, in particular, atomic propositions. In a
setting where the agent is uncertain about the valuations of
all atomic propositions over the whole environment, there
may be up to 2|S||AP| possibilities for how the environment
is configured. In this case, computing policies that can
account for all possible configurations, as offline reactive
synthesis does (Baier & Katoen, 2008), is indeed computa-
tionally intractable. Additionally, if the environment is not
dynamically changing, then such a comprehensive policy
that accounts for all possible configurations, is not even
needed. Another fundamental challenge is the fact that
the nature of the probabilistic perception differs from the
stochasticity of the agent model. Therefore, as seen in Ex-

(a) An MDP. The edge labels represent an action and a transition prob-
ability, respectively, while the node labels capture agent’s knowledge
about the value of property p at each state.

(b) A DFA with knowledge uncertainty. The edge labels represent
properties’ valuations that lead to a transition where τ denotes any
valuation (tautology). Node q3 is the accepting state.

Figure 1. The MDP transitions behave in a stochastic way while
the uncertainty in knowledge does not.

ample 1, one cannot combine the belief probabilities on the
perception side with the transition probabilities of the MDP.
Example 1 (Stochastic transition versus knowledge uncer-
tainty). Consider the simple MDP and DFA in Figure 1.
The DFA accepts any path on the MDP whose induced word
is in the form of (pτ)∗¬pτ . For instance, if the true labels
are s0 |= p, s1 |= p, and s2 |= ¬p, then the path

s0
a−→ s2

c−→ s2
d−→ s0

on the MDP generates the run

q0
p−→ q1

¬p−→ q0
¬p−→ q2

p−→ q3

on the DFA which is accepting and satisfies the task.

A key observation is that the nature of the probabilities of the
MDP transitions are distinct from that of the agent’s belief.
A stochastic transition means that if the agent takes the same
action at the same state multiple times, every time the next
state is determined by the given probabilities. Therefore, a
path like

s0
a−→ s1

d−→ s0
a−→ s2

is possible on the MDP. On the other hand, the true labels of
the states are fixed and the distribution of the agent’s belief
does not translate into similar behavior. For instance, the
path

s0
b−→ s0

b−→ s0
b−→ s0

on the MDP cannot generate the run

q0
p−→ q1

p∨¬p−→ q0
¬p−→ q2

p∨¬p−→ q3
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Figure 2. The schematic of the perception-planning loop. The blue blocks refer to pure perception modules and the red blocks refer to
pure planning modules, and the purple block indicates a combined perception and planning module of the algorithm.

on the DFA. Since in this run, the truth value assignment of
property p at state s0 is inconsistent.

The outline of the proposed algorithm is illustrated in Fig-
ure 2. At each state, the agent gathers some perception
outputs and uses them to update its belief. If the updated be-
lief is significantly different from the previous one, the agent
must replan. Otherwise, it will continue with its previous
policy and takes a step according to it. To check the signifi-
cance of the added information, we compute the divergence
between the prior and posterior beliefs. If the threshold
(a hyperparameter given to the algorithm) is exceeded, the
agent first estimates the most probable configuration of the
environment. Then, the agent applies a synthesis algorithm
with the estimated environment model. This synthesis algo-
rithm outputs a strategy that maximizes the probability of
satisfying the given temporal logic task. The given strategy
induces a Markov chain that is used to calculate the risk
due to perception uncertainty. If the risk is lower than a
threshold (another hyperparameter given to the algorithm),
the agent uses the computed policy to take a step. Other-
wise, it will find an active perception strategy to reduce its
perception uncertainty. We now proceed to explain different
stages of the proposed algorithm.

4.1. Information Processing

Consider the agent’s state to be st at time t. The agent will
receive new perception outputs according to the observation
model O(st, ., ., .) for all states and atomic propositions.

The agent employs the observations to update its learned
model of the environment in a Bayesian approach. For ease
of notation, let Lt ≡ Lt(s, p) and O(b) ≡ O(st, s, p, b).
Given the prior belief of the agent Lt−1 and the received

observations Z , the posterior belief follows

Pr(s |= p|Z(st,s, p) = True) =

Lt−1O(True)

Lt−1O(True) + (1− Lt−1)O(False)
,

Pr(s |= p|Z(st, s, p) = False) =

Lt−1(1−O(True))

Lt−1(1−O(True)) + (1− Lt−1)(1−O(False))
,

for all s ∈ S and p ∈ AP . Depending on the truth value
observed for p, Lt(s, p) will be updated according to one of
the above expressions. Besides, for any P ⊆ AP ,

Lt(s, P ) =
∏
p∈AP

Lt(s, p).

4.2. Divergence Test on the Belief

If the agent’s knowledge about the environment configura-
tion has not significantly changed from its knowledge in the
previous state, then the agent will continue with its previ-
ous policy. Nevertheless, if its knowledge has significantly
changed, the agent will synthesize a new policy. We use
Jensen-Shannon divergence to quantify the change in the
belief distribution between two consecutive time steps. The
cumulative Jensen-Shannon divergence over the states and
the propositions can be expressed as

DJSD(Lt−1‖Lt) =
1

2
DKL(Lt−1‖Ltm) +

1

2
DKL(Ltm‖Lt)

=
1

2

∑
s∈S

∑
p∈AP

Lt−1(s, p) log
Lt−1(s, p)

Ltm(s, p)

+ (1− Lt−1(s, p)) log
1− Lt−1(s, p)

1− Ltm(s, p)

+
1

2

∑
s∈S

∑
p∈AP

Ltm(s, p) log
Ltm(s, p)

Lt(s, p)

+ (1− Ltm(s, p)) log
1− Ltm(s, p)

1− Lt(s, p)
,
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where Ltm = 1/2 (Lt−1 + Lt) is the average distribution.
One of the input parameters to the algorithm is a threshold
γd on the above divergence. If γd is not exceeded, the
agent uses its previous policy πt−1 to pick an action and
transitions according to its outcome. Otherwise, it has to
synthesize a new policy.

For the policy synthesis step, the agent first estimates the
most probable environment configuration from the distri-
bution dictated by its updated belief. Let L̂t : S → 2AP

indicate the agent’s inference of the environment configu-
ration at time t. The maximum a posteriori estimation is
fairly simple as it decomposes into finding the mode of the
posterior distribution for each property at each state. For
binary-valued atomic propositions that follow Bernoulli dis-
tributions, the inference turns into picking the more probable
outcome for each property at each state, i.e.,

L̂t(s) = {p ∈ AP |Lt(s, p) ≥ 0.5}.

4.3. Policy Synthesis

The first step to synthesize a policy πt on the MDP that
maximizes the probability of satisfying a temporal logic
formula is to construct a product of the MDP with the au-
tomaton representing the formula. The product system is
an extended MDP that not only captures the state evolution
according to the agent model but also keeps track of the task
progress according to the automaton.

Definition 6. Given an MDP M = (S, sinit,A, T ), an
environment model E = (S,AP,L), and a DFA D =
(Q, qinit,Σ, δ,F) the product MDP is defined as MD =
M ⊗ D = (SD, sinitD,AD, TD) where SD = S × Q,
sinitD = (sinit, qinit), AD = A, and TD : SD × AD ×
SD → [0, 1] is defined such that TD((s, q), a, (s′, q′)) =
T (s, a, s′) if δ(q,L(s′)) = q′, and 0 otherwise.

Finding an optimal policy, i.e., a policy that maximizes the
probability of realizing a temporal logic task, translates into
a reachability criterion on the product MDP. Let FMD =
S ×F denote the equivalent accepting states on the product
MDP. The agent must find a policy that with high probability
reaches to FMD .

A well-known result from temporal logic synthesis states
that there exists an optimal memoryless deterministic policy
on the product MDP (Baier & Katoen, 2008). Hence, one
can restrict the search space to that of memoryless determin-
istic policies and formulate

πt = arg max
π∈Πnm,d

Pr(Mπ
D |= ♦FMD | L̂t), (1)

where Πnm,d is the set of memoryless and deterministic
policies. To find πt in (1), we use a linear programming
approach (Baier & Katoen, 2008). The optimal value of
the linear program is the maximum probability of reaching

to the accepting states. In order to find the corresponding
optimal policy, it suffices to find the actions for which the
constraints are active. If there are more than one action
with active constraint for a state, any of those actions can be
chosen arbitrarily.

4.4. Risk Assessment of Imperfect Perception

To assess the risk of the computed policy due to the percep-
tion uncertainties, we now factor in the probabilistic belief
of the agent over the environment properties. In particu-
lar, we first generate the induced Markov chain Mπt

D by
applying the policy πt over the product MDPMD (see Sec-
tion 3). Next, we verify the induced Markov chain with the
uncertain labels against the task specification. We develop
an algorithm (described in the supplementary material) via
a computation graph that yields the exact probability of the
task realization. However, due to the complexities explained
in Example 1, such quantitative analysis has exponential
complexity, as formalized in the next theorem.

Theorem 1. LetMπt

D to be a Markov chain with n states
and Lt to be a fully probabilistic labeling function (i.e., all
labels are uncertain) over m atomic propositions. Quantita-
tive verification ofMπt

D against a reachability specification
has a complexity of O(n2nm).

Proof. See the supplementary material for the proof.

Since the complexity of an exact quantitative analysis is pro-
hibitive, we instead propose a statistical verification. More
specifically, we approximate the expected value of the prob-
ability of the task realization over all possible instances of
the environment

EL∼Dist(L) [Pr (Mπt

D |= ϕ)]

by an empirical expectation with N samples

ÊL∼Dist(L) [Pr (Mπt

D |= ϕ)] =
1

N

N∑
i=1

Pr (Mπt

D |= ϕ|Li) ,

where Li are samples drawn from Dist(L) = Lt. By the
application of Hoeffding’s inequality, we establish the fol-
lowing concentration result.

Theorem 2. Let f(Li) = Pr (Mπt

D |= ϕ|Li) denote the
output of verification for an environment modeled byLi. The
empirical expectation of EL∼Dist(L) [f(L)] withN samples
has the following concentration bound

Pr

(∣∣∣∣∣EL∼Dist(L) [f(L)]− 1

N

N∑
i=1

f(Li)

∣∣∣∣∣ ≥ ε
)

≤ 2 exp(−2Nε2).

It is worth noting that Pr (Mπt

D |= ϕ|Li) itself is the output
of a system of linear equations (Baier & Katoen, 2008) that
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Figure 3. Total probabilistic finite automaton for the formula ϕ =
(¬obsU door1)∨ ((¬door2 U key)∧ (¬obsU door2)). State q3,
a sink state, and the transitions to it have been added to make
the automaton total. The transitions between the states of the
automaton are probabilistic where the probabilities depend on
the belief over the states’ propositions. For example, δ̄(q0, q2|s)
indicates how Lt(s, .) determines the probability of the transition
between q0 and q2.

depend on the sampled labeling. Therefore, further charac-
terization of f(Li) such as bounding its higher moments is
very difficult. Pr (Mπt

D |= ϕ|Li) can also be computed via
statistical verification techniques by sampling paths over the
Markov chain (Agha & Palmskog, 2018).

For a policy πt, we define a risk parameter

R(MD, πt,Lt, ϕ) =
∣∣∣Pr(Mπt

D |= ϕ | L̂t)

− EL∼Dist(L) [Pr (Mπt

D |= ϕ)]
∣∣∣,
(2)

which accounts for the variation in the task realization guar-
antee of the policy with respect to the perception uncertainty.
Another input parameter to the proposed perception and
planning algorithm is a threshold γr on the risk due to per-
ception uncertainty. If γr is not exceeded, the agent acts
according to the computed policy πt. Otherwise, it takes an
active perception strategy as explained next.

4.5. Active Perception Strategy

We develop an algorithm to compute an active perception
strategy in the form of a sequence of actions that the agent
follows to reduce its perception uncertainty. We consider
three criteria for computing an active perception strategy.
First, such a strategy should enable the agent to reduce its
uncertainty about the value of the propositions that affect the
task progress. These propositions are the ones that enable
the transitions from the current stage of the task, i.e., state
of the automaton, to the next ones. For example in Figure 3,
if the agent is at state q1, the propositions that matter are
obs and door2. To measure the uncertainty reduction, we
use expected entropy of the said propositions over the whole
state space. Second, an active perception strategy must
not affect the stage of the task and so, the agent has to
remain in the same state of the automaton. Third, after the

agent completes the sequence of actions, it should be able to
return to the point from which it started the active perception
strategy.

Based on these criteria, we propose Algorithm 1 to construct
an active perception strategy. This algorithm takes a bound
CA on the number of actions and uses that to construct a
tree of depth CA. Each node of the tree has four parameters:
distribution over the states of the MDP, distribution over the
states of the DFA, expected entropy reduction, and reach-
ability probability back to the root node. The distribution
over the states of the MDP depends on its transitions while
the distribution over the states of the DFA depend on the
agent’s belief over the propositions, as shown in Figure 3.
Once the tree is generated, the algorithm picks the best node
using a hyperparameter β that weighs safety versus infor-
mation quality. Safety refers to the ability of the agent to
remain in the same state of the automaton as well as its
ability to return to the root node while information quality
refers to the amount of entropy reduction. The sequence
of actions leading to the optimum node with respect to a
combination of safety and information quality results in the
active perception strategy. After following this sequence of
actions, the perception-planning loop starts over. Further
details of different steps as well as analysis of the proposed
algorithm are provided in the supplementary material.

5. Simulation Results
We evaluate the proposed task-oriented active perception
and planning algorithm in two simulation domains. The
first one is a discretized planar environment and the second
one is an urban environment in the AirSim (Shah et al.,
2017) platform. Simulation videos, additional simulation
results, and link to the implementation files are provided in
the supplementary material.

5.1. Planar Navigation with Finite-Horizon Tasks

In the first set of simulations, we consider an agent that
navigates in a discretized 2D environment and has a finite-
horizon task. For instance, the task encoded as a DFA
in Figure 3 asks the agent to either go to the state where
door1 is located or find a key and go to the state where
door2 is located, while avoiding the obstacles. We imple-
mented different versions of the task-oriented perception
and planning algorithm to evaluate the effect of each module
on the performance.

Table 1 reports the results for a reach-avoid task in an envi-
ronment with 64 states and with randomly generated obsta-
cles and target. In the table, No perc. refers to a baseline
scenario where the agent estimates the environment config-
uration with its prior knowledge and plans according to that.
Perc. w/ no update is a perception strategy that incorporates
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Algorithm 1 Constructing an Active Perception Strategy

Input: A product MDP MD = (SD, sinitD,AD, TD),
set of atomic propositions AP , an observation model
O, a bound on number of actions CA, and a weighting
parameter β
Output: A sequence of actions
Initialize G = (V,E) with V = {v0 = (bs0 =
[(st, 1)], bq0 = [(qt, 1)],∆e0 = 0, r0 = 1)} and E = {},
Vexp = v0, and k = 0
for j = 0, . . . , CA do
Vadd = {}
for v ∈ Vexp do

for a ∈ A do
k ← k + 1
Compute belief bsk over the next state of the MDP
Compute belief bqk over the next state of the DFA
Compute expected entropy reduction ∆ek
Compute reachability probability rk back to st
vk = (bsk, b

q
k,∆ek, rk)

Vadd ← Vadd ∪ vk
E ← E ∪ {(v, vk)}

end for
end for
V ← V ∪ Vadd
Vexp ← Vadd

end for
Return the sequence of actions leading to
v∗ = argmaxl∈[k] ∆el + β(bql (qt) + rl)

only the most recent perception output. Perc. w/ update
is perception with a Bayesian update, as described in Sec-
tion 4. Except the first algorithm, all the other ones have
a replanning module, however, the ones with div. replan
only if the divergence threshold over the change in the belief
is exceeded. info. means that active perception is enabled
and hence, the agent will perform active perception strate-
gies when the risk due to perception uncertainty is high.
The results show that adding the divergence test, reduces
the number of policy synthesis steps. Furthermore, the di-
vergence test reduces the success rate. On the other hand,
adding the active perception module increases the success
rate. Figure 4 depicts the results from a risk assessment step
for the MDP with 64 states and 2 atomic propositions. Even
though the size of the sampling space is large (264), it can
be seen that the empirical expectation of the reachability
probability quickly converges with about 20 samples.

5.2. Drone Navigation in Simulated Urban
Environment

In the AirSim (Shah et al., 2017) simulator, we designed
an urban environment and tasked a drone to fly from an
initial state to a specific flagged building while avoiding

Table 1. Results of planar navigation under a reach-avoid task us-
ing different versions of the proposed algorithm. Success is the
percentage of runs that complete the task. #Step is the average
length of the runs and #Plan is the number of times that the agent
synthesizes a new policy.

Algorithm Success #Step #Plan

No perc. 0% 50 1
Perc. w/ no update + replan 0% 38.4 38.4

Perc. w/ update + replan 84% 21.8 21.8
Perc. w/ update + div. 80% 22.8 14.8

Perc. w/ update + replan + info. 92% 19.4 19.4
Perc. w/ update + div. + info. 86% 22.6 14.6

Figure 4. Statistical verification of an induced Markov chain with
uncertain atomic propositions.

collision with other entities of the environment. The drone
is equipped with 4 cameras and 4 depth sensors. The per-
ception module processes the cameras’ readings as well as
the depth measurements to map the semantic labels to a dis-
cretized model of the environment. We applied the proposed
perception and planning scheme. However, in contrast to
the previous simulation scenario, an observation model does
not exist here. Therefore, we used a frequentist update rule
for the agent’s belief. Details of the simulation setting, as
well as the recordings of the resulting behavior of the drone
are presented in the supplementary material.

6. Conclusion
In this paper, we studied settings where an agent aims to
satisfy a task expressed as a syntactically co-safe linear tem-
poral logic specification under partial knowledge about the
state of the environment. We modeled the partial knowledge
of the agent about the environment through probabilistic se-
mantic variables of the states. We proposed a task-oriented
perception and planning algorithm that integrates the pro-
cess of information gathering with that of control design.
The proposed algorithm enables the agent to process new
information from the perception module and plan according
to the best interpretation of the current knowledge. Further-
more, it equips the agent with a module to assess the risk
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due to imperfect perception and if the risk is identified as
high, it generates a task-related active perception strategy.

As part of future work, we plan to relax the independence
assumption of the atomic propositions and instead, consider
spatial and causal relations between them. Inclusion of
such relations will increase the complexity of different steps
of the algorithm including belief update, the maximum a
posteriori inference over the belief, as well as finding an
active perception strategy. However, it will enable the agent
to incorporate side knowledge in learning the environment
model.
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