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A Proof of Proposition 1 

Two DAGs are Markov equivalent if and only if they have the same skeleton and v-structures (Verma & 
Pearl, 1991). Therefore, it suffices to show that two DAGs G1 and G2 are distribution equivalent if and only 
if they have the same skeleton and v-structures. 

By Corollary 2, DAGs G1 and G2 are equivalent if and only if there exist sequences of parent exchanges 
that map them to one another. Suppose G1 and G2 are distribution equivalent. Therefore there exists a 
sequence of parent exchanges mapping one to another. Since DAGs do not have 2-cycles, parent exchange 
for them will only result in flipping an edge, and since the other parents of the vertices at the two ends 
of that edge should be the same, it does not generate or remove a v-structure. Therefore, the sequence of 
parent exchanges does not change the skeleton or change the set of v-structures. Therefore, G1 and G2 are 
Markov equivalent. 

If two DAGs G1 and G2 have the same skeleton and v-structures, then their difference can be demonstrated 
as a sequence of edge flips such that in each flip, all the parent of the two ends have been the same, which 
means this flip is a parent exchange. Therefore, by Corollary 2, DAGs G1 and G2 are distribution equivalent. 

B Proof of Proposition 2 

If side:
 
If supp(Q1U

(1)) ⊆ supp(QG2 ), then we can simply choose the entries of Q1U
(1) as the entries of Q2 (as they
 

are all free variables). Therefore,
 

= Q1U
(1)(U (1))JQJQ2Q

J = Q1Q
J 
1 .2 1 

That is, Q2 can generate the distribution which was generated by Q1. Since this is true for all choices of Q1, 
and since the reverse (i.e., starting with Q2) is also true, by definition, G1 is distribution equivalent to G2. 

Only if side:
 
If G1 is distribution equivalent to G2, then for all choices of Q1, generating Q1Q

J = Θ, there exists Q2
1 
generated by G2, such that Q2Q

J = Θ. Since Q2 is generated by G2, by definition, supp(Q2) ⊆ supp(QG2 ).2 
Also, since Q1Q

J = Θ and Q2Q
J
2 = Θ, we have Q2 = Q1U , for some orthogonal transformation U , due 1 

to the fact that the generating vectors of a Gramian matrix can be determined up to isometry. Therefore, 
since Q2 = Q1U and supp(Q2) ⊆ supp(QG2 ), we conclude that supp(Q1U) ⊆ supp(QG2 ). It remains to 
show that there exists a rotation U (1), for which supp(Q1U

(1)) ⊆ supp(QG2 ). Note that U is an orthogonal 
transformation and hence, UU J = I and det(U) = 1 or −1. 

• If det(U) = 1, it means that U is a rotation and we are done by choosing U (1) = U . 
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•	 If det(U) = −1 (i.e., U is an improper rotation), all we need is to find an orthogonal transformation 
V , such that (a) supp(Q1U) = supp(Q1UV ), i.e., it does not change the support, (b) det(V ) = −1, 
which implies that det(UV ) = 1. That is, adding the transformation V to U does not change the 
support but makes the combination UV into a rotation. Finding such a V is easy, simply choosing a 
diagonal matrix with an odd number of diagonal entries equal to −1 and the rest equal to 1. This will 
not change the support and only changes the sign of a subset of the entries. Therefore, we are done by 
choosing U (1) = UV . Note that we are not forced to add a specific reflection at the end, we just add a 
particular one to do a sign flipping to show that the improper rotation can be changed into a rotation. 

C Proof of Proposition 3 

•	 If ξi,j = 0, then by definition, the Givens rotation corresponding to A(i, j, k) is a zero degree rotation. 
Therefore, applying A(i, j, k) has no effect. 

•	 If ξi,j = ξi,k = ×, then there exists a matrix Q for which zeroing ξi,j is an acute rotation and the other 
rows of Q either have no element in the (j, k) plane, or if they do, they will not become aligned with 
either j or k axis in the (j, k) plane after the rotation. Therefore, support (0, 0) will stay at (0, 0), and 
any other support will become (×, ×). 

•	 If ξi,j = × and ξi,k = 0, then the i-th row has been aligned with the j axis in the (j, k) plane before 
the rotation and since the rotation is planar, will become aligned with the k axis after the rotation, 
and hence we have a π/2 rotation. Therefore, all other rows aligned with one axis will become aligned 
with the other axis, and any vector not aligned with either axes will remain the same. Therefore, we 
have support transformations (×, 0) → (0, ×), (0, ×) → (×, 0), (×, ×) → (×, ×), and (0, 0) → (0, 0), 
which is equivalent to switching columns j and k. 

D Proof of Theorem 1 

We first prove the following weaker result: 

Theorem 4. Let ξ1 and ξ2 be the support matrices of directed graphs G1 and G2, respectively. G1 is 
distribution equivalent to G2 if and only if both following conditions hold: 

•	 There exists a sequence of support rotations that maps ξ1 to a subset of ξ2. 

•	 There exists a sequence of support rotations that maps ξ2 to a subset of ξ1. 

We need the following lemma for the proof. 

Lemma 1. Consider a matrix Q and a support matrix ξ. If the support matrix of Q is a subset of ξ, then 
for all i, j, k, the support matrix of QG(j, k, θ) is subset of ξA(i, j, k), where, ⎧ 

0,	 if Qi,j = Qi,k = 0 and ξi,j = ξi,k = 0 ,⎪⎪⎪⎪⎨0,	 if Qi,j = Qi,k = 0 and ξi,k = ξi,j = 0,
θ = 

π/2,	 if Qi,j = Qi,k = 0 and ξi,j = ξi,k = 0,⎪⎪⎪⎪⎩tan−1(−Qi,j /Qi,k), otherwise. 

Proof. The rotation and the support rotation do not alter any columns except the j-th and k-th columns. 
Hence we only need to see if the desired property is satisfied by those two columns. If the support of Q 
and ξ are the same on those two columns, the desired result follows from the definition of support rotation. 
Otherwise, 
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•	 If the support of (Qi,j , Qi,k) is the same as (ξi,j , ξi,k), then the effect of the rotation on Q is the same 
as the effect of the support rotation on ξ, except that if we are in the second case of Proposition 3, 
the support rotation cannot introduce any extra zeros in rows [p] \ {i}, while this is possible for the 
rotation on Q. Therefore, the support matrix of QG(j, k, θ) is subset of ξA(i, j, k). 

•	 If Qi,j = 0 and Qi,k = 0, and (ξi,j , ξi,k) = (×, ×), then the rotation is a ±π/2 while we have an acute 
rotation for ξ (second case of Proposition 3). Hence, if a zero entry of Q in a row in [p]\{i} has become 
non-zero after the rotation, ξ has non-zero entries in both entries of that row. Therefore, the support 
matrix of QG(j, k, θ) is subset of ξA(i, j, k). 

•	 If [Qi,j = 0 and Qi,k = 0, and (ξi,j , ξi,k) = (×, ×)], or [Qi,j = 0 and Qi,k = 0, and (ξi,j , ξi,k) = (0, ×)], 
or [Qi,j = 0 and Qi,k = 0, and (ξi,j , ξi,k) = (×, ×)], then the rotation has no effect on Q, while the 
support rotation can only turn some of the zero entries in rows [p] \ {i} to non-zero. Therefore, the 
support matrix of QG(j, k, θ) is subset of ξA(i, j, k). 

•	 Finally, if [Qi,j = 0 and Qi,k = 0, and (ξi,j , ξi,k) = (×, 0)], then by the statement of the lemma, the 
rotation on Q will be π/2. Due to this fact and part three of Proposition 3, for both Q and ξ, columns 
j and k will be flipped. Therefore, the support matrix of QG(j, k, θ) is subset of ξA(i, j, k). 

Proof of Theorem 4. By Propositions 2, it suffices to show that there exists a sequence of support rotations
 
A1, · · · Am, such that ξ1A1, · · · Am ⊆ ξ2 if and only if for all choices of Q1, there exists a sequence of Givens
 
rotations G1, · · · Gm! such that supp(Q1G1, · · · Gm! ) ⊆ supp(QG2 ).
 

Only if side:
 
For any matrix Q1, by definition, the support matrix of Q1 is a subset of ξ1. In the sequence of support
 
rotations, use the first support rotation A1(i, j, k) to generate Givens rotation G1(j, k, θ), where θ is defined
 
in the statement of Lemma 1. Therefore, by Lemma 1, the support matrix of Q1G1(j, k, θ) is a subset
 
of ξ1A1(i, j, k). Repeating this procedure, we see that the support matrix of Q1G1, · · · Gm is a subset
 
of ξ1A1, · · · Am. Now, by the assumption, ξ1A1, · · · Am ⊆ ξ2, and by definition, supp(ξ2) = supp(QG2 ).
 
Therefore, supp(Q1G1, · · · Gm) ⊆ supp(QG2 ).
 

If side:
 
Consider Givens rotation G(j, k, θ) applied to matrix Q. The effect of this rotation is one of the following:
 

1. For an acute rotation, zeroing a subset of entries in columns j and k. 

2. For a ±π/2 rotation, swapping the support of columns j and k. 

3. For an acute rotation, making no entries zero, while making a subset of the entries in columns j and 
k non-zero. 

4. For an acute rotation, no change to supp(Q). 

Since the assumption is true for all Q, we focus on matrices with support matrix ξ1 (i.e., none of the free 
parameters are set at zero). If in case 1 above the subset has more than one element, more than one rows 
of Q have been aligned on the (j, k) plane, not on the j and k axes. Therefore, there exists another Q (i.e., 
another choice of free parameters), in which those rows are not aligned. Consider Q∗ for which no such 
alignment happens, and hence, each of the Givens rotations in its sequence of rotations that causes case 1 
above, only makes one entry zero. Therefore, its corresponding sequence of rotations acts exactly the same 
as support rotations for effects 1 and 2 above, in terms of their effect on the support. 

Hence, the proof is complete by showing that cases 3 and 4 can be ignored, because we assumed that the 
support matrix of Q∗ is ξ1, and each not ignored Givens rotation corresponds to a support rotation, and by 
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definition, supp(QG2 ) = supp(ξ2). Clearly, case 4 can be ignored as it has no effect on the support. For case 
3, we note that this effect only adds elements to the support, and hence we want the support after rotations 
to be a subset of supp(QG2 ), the rotations of this type do not serve for that purpose. Therefore, if we ignore 
such rotations, the resulting support would be smaller compared to the case of considering these rotations. 
Note that if due to such rotation entry Qi,j has become non-zero and later in the sequence there exists a type 
1 rotation making Qi,j zero again, we already have zero in position (i, j) and that type 1 rotation should be 
ignored as well. 

Similar to the notion of distribution set, for a support matrix ξ we define 

Θ(ξ) := {Θ : Θ = Q̃Q̃J , for any Q̃ s.t. supp(Q̃) ⊆ supp(ξ)}. 

˜Note that unlike Q, the matrix Q is allowed to have zeros on its diagonal. 

Definition 1. A support rotation mapping ξ to ξe is lossless if Θ(ξ) = Θ(ξe). 

Similar to the test for distribution equivalence, losslessness can be evaluated by checking if there exists a 
sequence of support rotations that maps ξe back to a subset of ξ. Clearly, reduction, reversible acute rotation, 
and column swap are lossless, as they are reversible. In most of the cases, irreversible acute rotations are 
lossy and lead to expansion of Θ(ξ), as it introduces capacity for having extra free variables. However, this 
is not necessarily the case. 

We have the following observations regarding checking for distribution equivalence. 

Lemma 2. All the support rotations for checking the distribution equivalence of two directed graphs should 
be lossless. 

We need the following lemma for the proof. 

Lemma 3. If support matrix ξ is mapped to ξe via a support rotation, then Θ(ξ) ⊆ Θ(ξe). 

Proof. For reduction, reversible acute rotation, and column swap, we have Θ(ξ) = Θ(ξe), and irreversible 
acute rotation only introduces extra free variables, and hence, leads to Θ(ξ) ⊆ Θ(ξe). To make the argument 
regarding irreversible acute rotation rigorous, consider irreversible acute rotation A(i, j, k), which zeros ξi,j . 
For all l ∈ [p] \ {i}, if ξl,j = ξl,k, this rotation results in (ξl,j , ξl,k) = (×, ×). Suppose (ξi! ,j , ξi!,k) = (0, ×). 
A(ie, j, k) will be a reversible acute rotation for ξe and leads to ξee such that ξ  ξee. Therefore, Θ(ξ) ⊆ 
Θ(ξee) = Θ(ξe). 

Proof of Lemma 2. If support matrix ξ is mapped to ξe via a lossy support rotation, i.e., Θ(ξ) = Θ(ξe) then 
by Lemma 3, we have Θ(ξ)  Θ(ξe). Suppose we want to check the equivalence of directed graphs G1 and 
G2 with support matrices ξ1 and ξ2, respectively. We note that Θ(G1) = Θ(ξ1). Suppose ξ1 is mapped to 
ξ through a sequence of support rotations, including a lossy rotation, which in turn is mapped to ξe ⊆ ξ2. 
Therefore, 

Θ(G1) = Θ(ξ1)  Θ(ξ) ⊆ Θ(ξe) ⊆ Θ(ξ2) = Θ(G2). 

Therefore, 
Θ(G1) = Θ(G2). 

Using Lemma 2, we can prove Theorem 1: 
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Proof. The if side is clear by Theorem 4. For the only if side, by Theorem 4 and Lemma 2 we show that 
if ξ1 can be mapped to ξ2 via a sequence of lossless support rotations (i.e., Θ(ξ1) = Θ(ξ2)) including an 
irreversible acute rotation, then there exists a sequence of support rotations which does not include any 
irreversible acute rotations that maps ξ1 to a subset of ξ2. 

We show that every irreversible acute rotation can be replaced by other types of support rotation. Consider 
the first irreversible acute rotation A(i, j, k) in the sequence, which maps ξ to ξe . Applying this rotation, we 
have (ξe , ξe ) = (0, ×), and columns ξe and ξe agree on the rest of the entries. Suppose, prior to applying i,j i,k ·,j ·,k 
this rotation, columns ξ·,j and ξ·,k disagree on m entries in rows with indices diff = {s1, · · · , sm}. Let 

diffj = {l : l ∈ diff, ξl,j = 0}, 

diffk = {l : l ∈ diff, ξl,k = 0}, 

and  
max{mj ,mk}, mj = mk,

M =
mj + 1, otherwise. 

where mj = |diffj | and mk = |diffk|. We can always swap two columns, hence, without loss of generality, 
assume M = mj + 1{mj =mk}. 

Claim 1. ξ can be transformed via reduction and reversible acute rotation to a support matrix, in which 
there exist columns with indices {t1, · · · , tM−1} such that the sub-matrix of ξ on columns {t1, · · · , tM−1, j, k}
and rows diff ∪ {i} has a column with i zeros, for all i ∈ {0, 1, ..., M}, and the sub-matrix of ξ on columns 
{t1, · · · , tM −1, j, k} and the rest of the rows has equal columns. 

Proof of Claim 1. Since A(i, j, k) is lossless, we can map ξe to a subset of ξ. Therefore, we should be able to 
introduce zeros in ξe in indices diffj of column j and indices diffk of column k, without removing the existing 
zeros, except potentially ξe We first use a reversible acute rotation on columns j and k to move the newly ij . 
introduce zero in ξe to the first index in diffj , and we denote the resulting support matrix by ξ(1). We ij 
note that reduction is the only support rotation, which increases the number of zeros in the support matrix. 
Therefore, we need one reduction for reviving each of the m − 1 other removed zeros in the transformation 
of ξ to ξe . 

The claim can be proven by induction. The base of the induction, i.e., for M = 2 can be proven as follows: 

• Case 1: mj = mk = 1. In order to have the zero in column k, we need to perform a reduction, 
(1) (1) (1) (1)

for which, we need another column ξ equal to ξ , i.e., dH (ξ , ξ ) = 0, where dH (·, ·) denotes ·,t1 ·,k ·,t1 ·,k 
the Hamming distance between its two arguments. Since the original irreversible acute rotation was 
on the (j, k) plane and did not affect other columns, the column t1 with the aforementioned property 

(1)
exists in the original support matrix ξ as well, i.e., ξ·,t1 = ξ·,t1 

. Now, a reversible acute rotation can 
be performed on columns t1 and k to set dH (ξ·,j , ξ·,j ) = 0, and then a reduction can be performed to 
introduce another zero in column j of ξ. The resulting support matrix has the desired property stated 
in the claim. 

• Case 2: mj = 2,mk = 0. In order to have the zero in the second index of diffj , we need to perform 
(1)

a reduction, for which, we need another column equal to ξ This can be obtained by one of the ·,j . 
following cases: 

(1) (1)
– There already exists a column t1, such that dH (ξ , ξ ) = 0. Similar to Case 1, This implies ·,t1 ·,j 

that column t1 also exists in ξ. Therefore, ξ has the desired property. 
(1) (1) (1) (1)

– There exists a column t1, such that dH (ξ , ξ ) = 0, but dH (ξ , ξ ) = 1. Similar to Case 1, ·,t1 ·,j ·,t1 ·,k 
This implies that column t1 also exists in ξ. Therefore, a reversible acute rotation can transform 
ξ to a support matrix with the desired property. 
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(1) (1)
– There exists a column t1, such that dH (ξ , ξ·,k ) = 0. Similar to Case 1, This implies that column ·,t1 

t1 also exists in ξ. Therefore, two reductions, one on columns (t1, k), and then one on columns 
(t1, j) can transform ξ to a support matrix with the desired property. 

• Case 3: mj = 2,mk = 1. In order to have the zero in column k, we need to perform a reduction, for 
(1) (1)

which, we need another column t1 equal to column k, i.e., dH (ξ , ξ ) = 0. Similar to Case 1, This ·,t1 ·,k 
implies that column t1 also exists in ξ. Therefore, ξ has the property desired in the claim. 

Now, suppose the property holds for M = n. To show that it also holds for M = n + 1, a reasoning same as 
the one provided for the base case of the induction can be used, and it can be shown that for the required 
extra reduction, an extra column tn should exist in ξ. 

By Claim 1, ξ can be transformed via reduction and reversible acute rotation to a support matrix with the 
stated property. Therefore, we assume ξ has the property. Therefore, we have columns {t1, · · · , tM−1, j, k}
with any number of zeros 0 ≤ i ≤ M on rows diff ∪{i}, and it is easy to see the i zeros in these columns can 
be relocated to any other indices via only reversible acute rotations amongst these columns. Therefore, any 
effect sought to be achieved via columns j and k of ξe, can be obtained via columns {t1, · · · , tM−1, j, k} of 
ξ, and hence, the irreversible acute rotation could have been replaced by other types of rotations. 

E Proof of Proposition 4 

To show that the property holds for cycle C = (X1, · · · , Xm, X1), we note that our desired support matrix 
is ξ1, when columns 2 to m are all shifted to left by one, and column 1 is moved to location m. Therefore, it 
suffices to first flip columns 1 and 2, then 2 and 3, all the way to m − 1 and m. For each flip, we use the third 
part of Proposition 3. For instance, for flipping columns j and j + 1, we find row i such that ξi,j = ξi,j+1 (if 
there is no such row, then no flip for those columns is needed as they are already the same). If, say ξi,j = ×, 
we use support rotation A(i, j, j + 1) for flipping columns j and j + 1. Following the same reasoning, we see 
that support rotation of ξ2 leads to a subset of ξ1. 

F Proof of Proposition 5 

If side:
 
If columns of ξ2 are permutation of columns of ξ1, then ξ1 can be mapped to ξ2 and vice versa via a sequence
 
of column swap rotations. Therefore, by Theorem 1, G1 ≡ G2.
 

Only if side:
 
If G1 ≡ G2, the by Theorem 1, ξ1 can be mapped to a subset of ξ2 and ξ2 can be mapped to a subset
 
of ξ1, both via only reductions, reversible acute rotations and column swaps. If each pair of column of ξ1
 

are different in more than one entry, then we are not able to perform any reversible acute rotations and
 
reductions. Therefore, we have been able to perform the mapping merely via column swaps. Therefore,
 
columns of ξ2 are permutation of columns of ξ1.
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G Proof of Proposition 6
 

Only if side:
 
By definition, directed graph G is reducible if there exists directed graph Ge such that G ≡ Ge and ξe ⊂ ξ. By
 
Theorem 1, ξ can be mapped to a subset of ξe via a sequence of support rotations comprised of reductions,
 
reversible acute rotations and column swaps. We note that reduction is the only support rotation, which
 
increases the number of zeros in the support matrix. Therefore, there should be a reduction in the sequence.
 
We can always swap any two columns and the location of two columns does not influence the feasibility of
 
reduction or reversible acute rotations. Therefore, column swaps can be ignored in reducibility.
 

If side:
 
Suppose the performed reduction turns a non-zero entry in column j to zero, using a reduction on columns j
 
and k. Note that prior to the reduction, these columns have the same number of zeros and in order to be able
 
to perform the reduction a sequence of reversible acute rotations have been performed to prepare column k
 
such that the hamming distance of columns j and k be equal to zero. That is, its zeros have been moved to
 
match the zero pattern of column j. We can always assume that we only moved the zeros of column k, as if
 
there are columns to move the zeros of column j, they can be used to move the zeros of column k as well.
 
The only concern is that the zeroed entry may be on the diagonal. In this case, a reversible acute rotation
 
can be performed on columns j and k to move the new zero to another index of column j. Also, entry (j, j)
 
cannot be the only non-zero entry of column j; otherwise, column k should also have only one non-zero
 
entry, which should initially be located at (k, k). Therefore, to perform a reversible acute rotation on any
 
other column l and k, column l should have only two non-zero entries, on (k, l) and (j, l), while one of them
 
should initially be located at (l, l). This reasoning can be repeated p times and leads to the contradiction
 
that the final column is not allowed to have a non-zero entry on the diagonal, which contradicts the fact
 
that ξ is the support matrix corresponding to a directed graph. Finally, all the performed reversible acute
 
rotations can be done in the reverse direction to obtain the initial zero pattern for columns [p] \ {j}.
 

H Proof of Proposition 7 

Using Proposition 6, we show that for directed graph G with support matrix ξ, if there exists a sequence of 
reversible support rotations that enables us to apply a reduction to ξ, then G has a 2-cycle. Suppose the 
reduction is performed on columns j and k, to turn a non-zero entry of column j to zero. If no reversible 
support rotations prior to the reduction is needed, it implies that already columns j and k are identical. 
Therefore, ξj,k = ξj,j = ×, and ξk,j = ξk,k = ×. Therefore, there exists a 2-cycle between j and k and the 
proof is complete. Therefore, we assume some reversible support rotations are needed. 

Consider the first rotation in the sequence of reversible support rotations applied to column k. Assume it is 
performed on columns t1 and k. Therefore, the support of column t1 has one element more than the support 
of column k, and the Hamming distance between these two columns is one. The only way that this does not 
cause a 2-cycle between t1 and k is that ξt1,k = 0, and ξk,t1 = ×, and all the entries show be the same. This 
rotation is supposed to move the extra zero in column k to an index, which is zero in column j (to reduce 
the Hamming distance between columns j and k). Therefore, since after this rotation, ξt1,k will become 
non-zero, we should have ξt1,j = ×. This will lead to a 2-cycle unless if ξj,t1 = 0. Now, if ξj,t1 = 0, because 
all the entries of columns t1 and k where the same, we also have ξj,k = 0. This gives us two options for ξk,j : 

•	 If ξk,j = 0, then we need another column t2 so that we perform a reversible acute rotation on columns 
t2 and k to move ξj,k = 0 to entry ξk,k, which is currently non-zero. This means that columns t2 and k 
should be the same on all the entries, except that ξj,t2 = ×, but ξj,k = 0. Therefore, ξk,t2 = ξk,k = × 
and ξt2,k = ξt2,t2 = ×, which implies that there is a 2-cycle between t2 and k. 
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•	 If ξk,j = ×, then in order for columns k and j to have the same number of non-zero entries, there 
should exist index l such that ξl,k = ×, and ξl,j = 0. Now, we need another column t2 so that we 
perform a reversible acute rotation on columns t2 and k to move ξj,k = 0 to entry ξl,k. This means that 
columns t2 and k should be the same on all the entries, except that ξj,t2 = ×, but ξj,k = 0. Therefore, 
ξk,t2 = ξk,k = × and ξt2,k = ξt2,t2 = ×, which implies that there is a 2-cycle between t2 and k. 

Proof of Corollary 1 

We first prove the following corollary: 

Corollary 3. Irreducible directed graphs G1 and G2 with support matrices ξ1 and ξ2 are equivalent if and 
only if there exist sequences of reversible acute rotations and column swaps that map their support matrices 
to one another. 

Proof. By Proposition 6, there exists no sequence of reversible acute rotations that enables us to apply a 
reduction to the support matrix. Therefore, we only need to consider reversible acute rotations and column 
swaps, and we need to map one support matrix to the other, rather than mapping it to a subset of the other. 

Proof of Corollary 1. DAGs do not have 2-cycles. Therefore, by Proposition 7, DAGs are irreducible. There
fore, the result follows from Corollary 3. 

J Proof of Theorem 2 

If side:
 
If there exist sequences of parent reduction, parent exchange, and cycle reversion, mapping one graph to a
 
subgraph of the other, then there exist sequences of reduction, reversible acute rotation, and column swap
 
mapping the support matrix of one graph to a subset of the support matrix of the other. Therefore, by
 
Theorem 1, G1 is distribution equivalent to G2.
 

Only if side:
 
The proof of the only if side consists of two steps:
 

•	 Step 1. We note that 

1. All support rotations of reduction type, that do not make a diagonal entry zero are representable 
by a parent reduction. This is clear from the definitions of reduction and parent reduction. 

2. All reversible acute rotations, that do not make a diagonal entry zero are representable by a parent 
exchange. This is clear from the definitions of reversible acute rotation and parent exchange. 

3. If	 we have a reversible acute rotation and a column swap on columns j and k such that the 
reversible acute rotation makes the diagonal entry ξj,j zero and then the column swap swaps 
columns j and k (we call such a pair a flip pair), then this pair can be replaced by a reversible 
acute rotation that makes the non-diagonal entry ξj,k zero, and hence, is representable by a parent 
exchange. 

4. If we start with a support matrix with no diagonal entries equal to zero and by performing a 
sequence of column swaps reach another support matrix with no diagonal entries equal to zero, 
then this sequence is representable by a cycle reversion. To see this, we note that if after the 
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sequence of column swaps, column j has moved to location k, it implies that its j-th and k-th 
elements are non-zero. Therefore, the original support matrix corresponds to a graph containing 
the edge j → k, and the final support matrix corresponds to a graph containing the edge k → j. 
This reasoning identifies the cycle before, and the reversed cycle after the transformation. 

Step 1 implies that if we have a sequence of support rotations which includes 1. reduction rotations, that 
do not make a diagonal entry zero, 2. reversible acute rotations, that do not make a diagonal entry zero, 
3. flip pairs, and 4. sequence of column swaps starting and ending on a support matrix with non-zero 
diagonal entries, (we call such a sequence, a representable sequence) then we can represent this sequence 
with a sequence of parent reductions, parent exchanges, and cycle reversions. 

•	 Step 2. If G1 is distribution equivalent to G2, then by Theorem 1, there exists a sequence of reduction, 
reversible acute rotations, and column swap mapping the support matrix of one to the other. We show 
that in this case, there exists a representable sequence as well that maps the support matrix of one to 
the other. Therefore, by Step 1 the only if side will be concluded. 

We note that since ξ1 is a support matrix of a directed graphs, it does not have any zeros on the 
main diagonal. Given the sequence of support rotations, the column swaps do not enable us or prevent 
us from performing reversible acute rotations and reductions, and merely change the indices of the 
columns. Therefore, we can have an equivalent sequence of support rotations, in which we have moved 
all the column swaps, except those involved in flip pairs, to the end of the sequence. Consider the 
first rotation in the sequence of the rotations which zeros out a diagonal entry. If this rotation is of 
reduction type and has zeroed out ξi,i using columns i and j, then ξi,j should have been non-zero. 
Therefore, we can instead replace it by zeroing ξi,j , and use column j instead of column i in the next 
steps. If this rotation is of reversible acute rotation type and has zeroed out ξi,i using columns i and 
j, then ξi,j should have been non-zero. Therefore, again we can instead replace it by zeroing ξi,j , and 
use column j instead of column i in the next steps. Therefore, we can perform all the reductions and 
reversible acute rotations and from ξ1 obtain ξ1

e , which does not have any zeros on the main diagonal, 
and via a sequence of column swaps can be mapped to a subset of ξ2. 

Now, we perform the reverse of that sequence of column swaps on ξ2, which gives us a superset of ξe 1 
(call it ξ2 

ee), and hence, does not have any zeros on the main diagonal. Therefore, since ξ2 is a support 
matrix of a directed graph and hence, it also does not have any zeros on the main diagonal, by part 4 of 
Step 1, this is equivalent to a cycle reversion. ξ2 

ee is a superset of ξ1
e , and both ξee and ξ1 

e are graphically 2 
representable. By Lemma 2, the corresponding directed graph of ξee is the same (if the directed graph 2 
corresponding to ξee is irreducible) or reducible to the directed graph corresponding to ξ1

e . Therefore,2 
by Proposition 6 we can perform the reduction via a sequence of reversible acute rotations. Similar 
to the reasoning in the previous paragraph, since we start with a support matrix with no zeros on the 
main diagonal, this can be done without zeroing any element of the main diagonal, and hence, we can 
map ξ2 

ee to ξ1
e . Finally, reversing the reversible acute rotations of the sequence from ξ1 to ξ1

e , we obtain 
a subset of ξ1, and the whole sequence from ξ2 to a subset of ξ1 is a representable sequence. Similarly, 
we can construct a representable sequence mapping ξ1 to a subset of ξ2, which completes the proof. 

K Proof of Corollary 2 

DAGs do not have 2-cycles. Therefore, by Proposition 7, DAGs are irreducible. Hence, a parent reduction 
cannot be performed. Also, DAGs do not have cycles. Hence, there will not be any cycle reversions. 
Therefore, the result follows from Theorem 2. 
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L	 Proof of Proposition 8 

To violate faithfulness, there are finite number of sets of hard constraints that should be satisfied (since hard 
constraints are distributional constraints and hence limited). Let θi be the set of values satisfying the i-th 
set of constraints. By the definitions of hard constraints, θi is Lebesgue measure zero. Therefore, the set of 
distributions not g-faithful to G, which is the finite union is also Lebesgue measure zero. 

M	 Proof of Proposition 9 

Suppose G∗ is the ground truth DG and it generates distribution Θ, and G1 is a candidate DG which we 
want to decide whether it is the ground truth or not. 

∼Suppose G1 = G∗ . Then there exists a set of distribution with non-zero Lebesgue measure that both G1 and 
G∗ can generate. Suppose Θ is a distribution coming from this intersection which also satisfies Assumption 
1. Then clearly, since both DGs can generate Θ, there is no way to realize which one has been the ground 
truth, and hence, G1 is non-identifiable from G∗ . 

∼For the opposite direction, suppose G1 = G∗ then either there is no distribution that they can both generate, 
or the measure of such distributions is zero. In the first case, Θ is not generatable by G1 and hence we can 
identify that G1 is not the ground truth. In the second case, by Assumption 1, Θ cannot be from the 
intersection and hence again is not generatable by G1 and hence we can identify that G1 is not the ground 
truth. 

N	 Proof of Theorem 3 

Let G∗ and Θ be the ground truth structure and the generated distribution, and for an ML estimator, assume 
we are capable of finding a correct pair ( B̂ML, Ω̂ML), such that (I − B̂ML)Ω̂

−1 (I − B̂ML)
J = Θ and denote ML

the directed graph corresponding to B̂ML by ĜML. We have Θ ∈ Θ(ĜML), which implies that Θ contains 
all the distributional constraints of ĜML. Therefore, under Assumption 1, we have H(ĜML) ⊆ H(G∗). 

Let ( B̂£0 , Ω̂£0 ) be the output of g0-regularized ML estimator, and denote the directed graph corresponding 
to B̂£0 by Ĝ£0 . Since the likelihood term increases much faster with the sample size compared to the penalty 
term, asymptotically, we still have the desired properties that Θ contains all the distributional constraints 
of Ĝ£0 , and hence, under Assumption 1, we again have H(Ĝ£0 ) ⊆ H(G∗). 

Now, consider an irreducible equivalent of G∗, denoted by G† . Since H(G∗) = H(G†), we have H(Ĝ£0 ) ⊆ 
H(G†). Also, because of the penalty term we have |E(Ĝ£0 )| ≤ |E(G†)|, otherwise the algorithm would 
have outputted G† . Therefore, by Assumption 1, we have H(Ĝ£0 ) = H(G†), and hence H(Ĝ£0 ) = H(G∗). 

∼Therefore, by definition, Ĝ£0 = G∗ . 

O	 Algorithm for Enumerating Members of a Distribution Equiva
lence Class and Determining the Equivalence of Two Structures 

We first propose an algorithm for enumerating members of the distribution equivalence class of a directed 
graph with support matrix ξ, based on a depth-first traversal. The algorithm is based on a search tree that 
is rooted at ξ and branches out via Reduction and AcuteRotation operations. These two operations 
are defined in Algorithm 1. Since those two rotation operations are independent of column swaps, we 
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perform a similar depth-first traversal of column swaps at the end, leveraging the graphical, cycle reversion 
representation for efficiency. 

Algorithm 1 Reduction and Acute Rotation Operations 
1: function Reduction(ξ, i, j) 
2: Initialize ξe ← ξ 
3: ξe ← 0i,j 

e4: return ξ
5: end function 
6: 
7: function AcuteRotation(ξ, i, j, k, i) 
8: Initialize ξe ← ξ 
9: ξe ← 0i,j 
10: ξe,j

e ← 1 
11: ξe,k

e ← 1 
e12: return ξ

13: end function 

Each vertex in the search tree corresponds to a support matrix and each of its children corresponds to 
the outputs of an admissible Reduction and AcuteRotation operation. Algorithm 2 represents the 
pseudo-code of the function which compiles a set of those operations for a given support matrix. 

Algorithm 2 Finding Legal Rotations 
1: function FindRotations(ξ) 
2: Initialize Rotations = ∅ 
3: // Find Legal Reductions 
4: for j, k such that Iξ·,j − ξ·,kI1 = 0 do 
5: for i such that ξi,j = 1 do 
6: if i = j then 
7: Rotations ← Rotations ∪ {Reduction(ξ, i, j)}
8: end if 
9: if i = k then 
10: Rotations ← Rotations ∪ {Reduction(ξ, i, k)}
11: end if 
12: end for 
13: end for 
14: // Find Legal Acute Rotations 
15: for j, k such that Iξ·,j − ξ·,kI1 = 1 do 
16: i ← index such that ξe,j  = ξe,k 
17: for i = i such that ξi,j = 1 do 
18: if i = j then 
19: Rotations ← Rotations ∪ {AcuteRotation(ξ, i, j, k, i)}
20: end if 
21: if i = k then 
22: Rotations ← Rotations ∪ {AcuteRotation(ξ, i, k, j, i)}
23: end if 
24: end for 
25: end for 
26: return Rotations 
27: end function 

Algorithm 3 enumerates the equivalence class. The algorithm keeps track of the search tree state using a 
stack S which contain sets of rotated support matrices. The first step of the algorithm enumerates a subset 
of the equivalence class of ξ∗ by finding sequences of Reduction and AcuteRotation operations. The 
second step enumerates column swaps in a similar depth-first fashion. It is made efficient by using the fact 
that sequences of legal column swaps correspond to sequences of cycle reversions. 
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Algorithm 3 Enumerating equivalent structures 
1: function ReverseCycles(ξ) 
2: Reversed ← ∅ 
3: C ← list of cycles in ξ 
4: for C in C do 
5: ξe ← Column-permuted ξ with cycle C reversed 
6: Reversed ← Reversed ∪ {ξe}
7: end for 
8: return Reversed 
9: end function 
10: 
11: procedure EnumerateEquiv(p × p support matrix ξ∗) 
12: Initialize Equiv ← {ξ∗}. 
13: Initialize empty stack S 
14: S.push(FindRotations(ξ∗)) 
15: while S is not empty do 
16: Rotations ← S.pop() 
17: if |Rotations| = 0 then 
18: continue 
19: else 
20: ξ ← a support matrix in the set Rotations 
21: Rotations ← Rotations \ {ξ}
22: S.push(Rotations) 
23: if ξ not in Equiv then 
24: Equiv ← Equiv ∪ {ξ}
25: S.push(FindRotations(ξ)) 
26: end if 
27: end if 
28: end while 
29: // Enumerate legal column swaps via cycle reversion 
30: for ξ̃ in Equiv do 
31: Initialize empty stack S 
32: S.push(ReverseCycles(ξ̃)) 
33: while S is not empty do 
34: Reversals ← S.pop() 
35: if |Reversals| = 0 then 
36: continue 
37: else 
38: ξ ← a support matrix in the set Reversals 
39: Reversals ← Reversals \ {ξ}
40: S.push(Reversals) 
41: if ξ not in Equiv then 
42: Equiv ← Equiv ∪ {ξ}
43: S.push(ReverseCycles(ξ)) 
44: end if 
45: end if 
46: end while 
47: end for 
48: end procedure 

Finally, the procedure EnumerateEquiv in Algorithm 3 may be used to determine whether or not two 
DGs with respective support matrices ξ1 and ξ2 are equivalent by enumerating the equivalence class of ξ1 

and checking whether or not ξ2 is in that equivalence class. 

P Virtual Edge Search Operator 

For acyclic DGs, under the Markov and faithfulness assumptions, a variable Xi is adjacent to a variable Xj 

if and only if Xi and Xj are dependent conditioned on any subset of the rest of the variables. This is not the 
case for cyclic DGs (Richardson, 1996). Two non-adjacent variables Xi and Xj are dependent conditioned 
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Figure 1: Virtual edge search operator. 

on any subset of the rest of the variables if they have a common child Xk which is an ancestor of Xi or Xj . 
In this case, we say there exists a virtual edge between Xi and Xj . Figure 1(a) demonstrates two examples. 
In this figure, virtual edges are shown with dashed red edges. 

There are two cases that detecting a virtual edge as a real edge can trap the greedy search into a local optima 
which can be improved. 

Case 1. This case is shown in the first row of Figure 1. If a greedy search algorithm finds the edges between 
Xk and Xj but does not find Xk and Xj to be on a cycle, that is, if it does not find the directions correctly, it 
can significantly increase the likelihood by adding an edge at the location of the virtual edge between Xi and 
Xj . The algorithm would therefore be trapped in a local optimum shown in Figure 1(b) with one more edge 
than the ground truth shown in Figure 1(c). To resolve this issue, we propose adding the following search 
operator: Suppose we have a triangle over three variables Xi, Xj and Xk, and there exists an additional 
sequence of edges connecting Xj and Xk. In one atomic move, we perform a series of edge reversals to form 
a cycle containing Xj → Xk along the sequence, delete the edge connecting Xi to Xj , and orient the edge 
Xi → Xk. If the likelihood is unchanged, the edge deletion improves the score. 

Case 2. This case is shown in the second row of Figure 1. This case involves the case that the cycle over 
Xj and Xk in the ground truth is a 2-cycle. If a greedy search algorithm finds one edges between Xk and 
Xj , it can significantly increase the likelihood by adding edges at the location of the virtual edges between 
Xi and Xj and between Xl and Xk. The algorithm would therefore be trapped in a local optimum shown 
in Figure 1(b) with one more edge than the ground truth shown in Figure 1(c). To resolve this issue, we 
propose adding the following search operator: Suppose we have triangles over three variables Xi, Xj and 
Xk and Xl, Xj and Xk, as shown in the figure. In one atomic move, we delete the edge connecting Xi to 
Xj and the edge connecting Xl to Xk, and add the edge Xk → Xj . If the likelihood is unchanged, the edge 
deletion improves the score. 
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Figure 2: Example 1. Comparison of 5 most commonly learned structures. 
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Figure 3: Example 2. Comparison of 5 most commonly learned structures. 

In order to evaluate the proposed search operator, we performed two experiments. The first involves the 
ground truth structure shown in Figure 2b, Graph 1. This graph has one equivalent structure, which is Graph 
2 in the same figure. We run the tabu search algorithm with and without the proposed search operator for 
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100 instantiations of the edge weights and variances. The 5 most commonly found structures found by tabu 
search without and with the proposed operator are shown in Figures 2a and 2b, respectively. While the 
proposed algorithm finds an equivalent structure 89% of the time, the nominal tabu search never finds an 
equivalent structure. 

Next, we consider the ground truth structure shown in Figure 3b, Graph 1. This structure has one equivalent, 
which is Graph 2 in the same figure. While the nominal tabu search algorithm finds an equivalent structure 
45% of the time, the proposed algorithm is much more reliable, finding an equivalent structure 83% of the 
time. 

Q Score Decomposability 

When the DG is acyclic, the distribution generated by a linear Gaussian structural equation model satisfies 
the local Markov property. This implies that the joint distribution can be factorized into the product of the 
distributions of the variables conditioned on their parents as follows.  

P (V ) = P (Xi|Pa(Xi)). 
Xi∈V 

The benefit of this factorization is that the computational complexity of evaluating the effect of operators 
can be dramatically reduced since a local change in the structure does not change the score of other parts 
of the DAG. 

In contrast, for the case of cyclic DGs the distribution does not necessarily satisfy the local Markov property. 
However, the distribution still satisfies the global Markov property (Spirtes, 1995). Therefore, our search 
procedure factorizes the joint distribution into the product of conditional distributions. Each of these 
distributions is over the variables in a maximal strongly connected subgraph (MSCS), conditioned on their 
parents outside of the MSCS. This can be shown as follows, where an MSCS is denoted by S.  

P (V ) = P (Si|Pa(Si)). 
Si⊆V 

After applying an operation, the likelihoods of all involved MSCSs are updated. Note that an operation can 
merge several MSCSs or break one into several smaller MSCSs. We perform the updates as follows: 

•	 If the change adds an edge from MSCS S1 to S2, These two MSCSs and any MSCS on any path from 
S2 to S1 will fused into a new large MSCS. 

•	 If the change is performed inside an MSCS, the score of the rest of MSCSs do not change. 

•	 If the change removes or reverses an edge inside an MSCS, we find the MSCSs in that subset again, as 
it may be divided into smaller MSCSs. 

R Effect of Sample Size on the Performance 

In this section, we compare the performance of the discussed structure learning algorithms in the case of 
p = 5 variables and three different sample sizes: n = 103 , 104 , and 105 . The results of the comparison are 
shown in Figure 4. As can be seen in the figure, the performance of the g0-regularized local search methods 
show marked improvement as sample size is increased. 

For all experiments, including those in the main text, we use the following hyperparameters for the search 
algorithms. For the g1-regularized MLE, we use a regularization coefficient of 0.1, and threshold the learned 
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Figure 4: Results for n = 103 , 104 , 105 , top to bottom. Left column: multi-domain evaluation. The 
percentage of outputs with success rate larger than a certain value is plotted vs. success percentages. Right 
column: SHD evaluation. The percentage of outputs with SHD less than or equal to a certain value is 
plotted vs. SHD. 

B matrix at 0.05. See (Koller & Friedman, 2009) for details on greedy hill search and tabu search and its 
parameters. For tabu search, we use a tabu length of 5 for the p = 5 case and 10 for the p = 20 and p = 50 
cases. In all cases, we used a tabu search patience of 5. 
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