
Gradient Temporal-Difference Learning with Regularized Corrections

A. Results in the Batch Setting
The proofs of convergence for many of the methods require
independent samples for the updates. This condition is
not generally met in the fully online learning setting that
we consider throughout the rest of the paper. In Figure 7
we show results for all methods in the fully offline batch
setting, demonstrating that—on the small problems that we
consider—the conclusions do not change when transferring
from the batch setting to the online setting. We include two
additional methods in the batch setting, the Kernel Residual
Gradient methods (Feng, Li & Liu, 2019), which do not
have a clear fully online implementation.

We create a new batch dataset for each of 500 independent
runs by getting 100k samples from the state distribution
induced by the behavior policy, then sampling from the
transition kernel for each of these states. We then perform
mini-batch updates by sampling 8 independent transitions
from this dataset. Each algorithm makes n updates for
n ∈ [1, 2, 4, 8, . . . , 8192], choosing the stepsize which mini-
mizes the area under the RMSPBE learning for each n. This
effectively shows the best performance of each algorithm if
it was given a budget of n updates, allowing us to make com-
parisons across several different timescales. The constant
stepsizes swept are α ∈ {2−8, 2−7, . . . , 20}.
In Figure 7, we demonstrate that GTD2 and the Kernel-
RG methods generally perform poorly across these set
of domains. We additionally show that TDC, TD, and
TDRC are often indistinguishable in the batch setting—
except Boyan’s Chain where TDC still performs inexpli-
cably poorly—suggesting that perhaps TDRC’s gain in per-
formance of TDC is due to the correlated sampling induced
by online learning. We finally show that TDC++, which is
TDC with regularized C, generally performs comparably to
GTD2.

A.1. Relationship to Residual Gradients

The Residual Gradient (RG) family of algorithms provide an
alternative gradient-based strategy for performing temporal
difference learning. The RG methods minimize the Mean
Squared Bellman Error (MSBE), while the Gradient TD fam-
ily of algorithms minimize a particular form of the MSBE,
the Mean Squared Projected Bellman Error (MSPBE). The
RG family of methods generally suffer from difficulty in
obtaining independent samples from the environment, lead-
ing towards stochastic optimization algorithms which find
a biased solution (Sutton & Barto, 2018). However, very
recent work has generalized the MSBE and proposed an
algorithmic strategy to perform unbiased stochastic updates
(Feng, Li & Liu, 2019; Dai et al., 2018). We compare to the
approach in Feng, Li, and Liu (2019) below.

A.2. Derivation of the TDC++ Update Equations

In this section, we derive the update equations for TDC++,
i.e. TDC with the regularized Cβ matrix. Consider the
MSPBE objective (see Eq. 7) but with a regularized Cβ :

MSPBE++(wt)
def
= E[δtxt]

>
(
E
[
xtx
>
t

]−1
+ β I

)
E[δtxt]

= (−Aw + b)>C−1β (−Aw + b).

The gradient of this objective is − 1
2∇wMSPBE++(wt) =

A>C−1β (b−Awt) = E[δtxt] − γE
[
x′x>

]
hβ − β hβ .

Using this gradient and the same update for ht+1 as in
TDRC, we obtain the update equations for TDC++ (with an
additional η in the stepsize for h):

ht+1 ← ht + ηα
[
δt − (h

>

t xt)
]
xt − ηαβht

wt+1 ← wt + αδtxt − αγ(h
>

t x)xt+1 − αβht.

A.3. Convergence of TDC++

It is straightforward to show that TDC++ converges to the
TD fixed point under very similar conditions as TDC (Maei,
2011). We show the key steps here (for details see Maei
(2011) or Appendix H). The G matrix for TDC++ is G =[ −ηCβ −ηA
A>−Cβ −A

]
. If we can show that the real parts of

all the eigenvalues of G are negative, then the algorithm
would converge. First note that for an eigenvalue λ ∈ C of
G, det(G−λ I) = det(λ(Cβ +λ I)+A(ηA>+λ I)) = 0.
Then for some non–zero vector z ∈ C, z∗(λ(Cβ +λ I) +

A(ηA>+λ I)) z = 0. Upon simplifying this, we obtain
the following quadratic equation in λ:

‖ z ‖2λ2 + (z∗(ηCβ +A) z)λ+ η‖Az ‖2 = 0.

If λ1 and λ2 are two solutions of this equation, then

λ1λ2 = η
‖Az ‖2
‖ z ‖2 , λ1 + λ2 = − (z∗(ηCβ +A) z)

‖ z ‖2 .

Since, λ1λ2 > 0 and real, the real parts of both λ1
and λ2 have the same sign. Thus, Re(λ1 + λ2) < 0
would imply that each of Re(λ1) < 0 and Re(λ2) <
0 and we would be done. Assuming Re(λ1 + λ2) =

− (z∗(ηCβ +A) z)∗+(z∗(ηCβ +A) z)
2‖ z ‖2 = −z∗(ηCβ +H) z

‖ z ‖2 < 0,

where H
def
= 1

2 (A+A>), leads to the condition

η > −λmin(C−1β H),

for TDC++ to converge.

TDC++ differs from TDRC in that it has an extra term
(−αβ ht) in the update for the weight wt+1. Further, un-
like TDRC, the convergence of TDC++ doesn’t require any
conditions on β.
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Figure 7. Sensitivity to the number of update steps for the offline batch setting. Each problem used a dataset of 100k samples sampled
from the stationary distribution, then mini-batch updates used 8 independent samples from the dataset. On the x-axis we show a
log-scale number of updates for each algorithm, on the y-axis we show the area under the RMSPBE learning curve averaged over 500
independent runs and 500 independently sampled datasets, with shaded regions showing the standard error over runs. For each number
of update steps shown, we sweep over stepsizes and select the best stepsize for that number of updates; stepsizes were swept from
α ∈ {2−5, 2−4, . . . , 20}. For TDRC, we set β = 1. This effectively shows the best performance of each algorithm if it was only given a
fixed number of updates. GTD2 and the Kernel-RG methods show notably slower convergence than other methods.
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Figure 8. Relative performance of methods using the Adam stepsize selection algorithm, compared using the average area under the
RMSPBE learning curve. Values swept are: α ∈ {2−8, 2−7, . . . , 2−1, 20} and as before, we set β = 1 for TDRC. On Baird’s
counterexample, TD, HTD, and VTrace all exhibit slow learning as well. The actual number for area under the learning curve are shown
in Table 2.

B. Incorporating Accelerations
True stochastic gradient methods provide the benefit that
they should be amenable to accelerations for stochastic
approximation, such as momentum, mirror-prox updates
(Juditsky & Nemirovski, 2011), and variance reduction
techniques (Du et al., 2017). This is in fact one of the
arguments motivating GTD2, and its formulation as a sad-
dlepoint method.

We begin investigating how acceleration in the online pre-
diction setting impacts the overall performance and relative
ordering of the algorithms. Momentum is commonly used
in online deep RL systems, and is a form of acceleration.
We compare all the methods using Adam (Kingma & Ba,
2014; Reddi, Kale & Kumar, 2019), which includes mo-
mentum. Several recently proposed optimizers include mo-
mentum and are best viewed as extensions of Adam. Here
we use Adam as there is little evidence in the literature that
these new variants are better than Adam for online updates.
We sweep over values of the meta-parameters in Adam,
β1, β2 ∈ {0.9, 0.99, 0.999}, and select the values that best
minimize the total RMSPBE separately for each algorithm.

The bar plot in Figure 8 parallels Figure 1, which uses Ada-
grad, with similar conclusions. The only notable difference
is that TDC’s performance on Boyan’s chain is much better,
though it is still not as good as TD and TDRC. Overall,
the use of momentum did not accelerate convergence, with

performance similar to Adagrad. The comparison is not
perfect, as Adagrad allows the stepsizes to decrease to zero,
which enables the algorithms to converge nicely on these do-
mains. Adam does not due to the exponential average in the
squared gradient term. These results, then, mainly provide
a sanity check that results under an alternative optimizer are
consistent with the previous results.

The majority of accelerations that can be used in policy
evaluation are designed for off-line batch updates. Although
we are more concerned with online performance, we use the
batch setting in Appendix A as a sanity check to ensure that
none of the recently proposed accelerated policy evaluation
methods significantly outperform TD, TDC, or TDRC. In
addition we include Kernel Residual Gradient (Kernel-RG)
(Feng, Li & Liu, 2019). Figure 7 shows the performance
of several methods given a fixed budget number of updates.
Surprisingly, the Kernel-RG methods show much slower
convergence across all problems tested.

C. Sensitivity to the Scale of h
In Figure 3 we demonstrate TDRC’s sensitivity to the reg-
ularization weight, β, which is responsible for balancing
between the loss due to the regularizer and the mean-squared
error for h. We motivate empirically that, on a set of small
domains, the scale of the regularizer does not significantly
affect the performance of TDRC. However, as the scale of h
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Figure 9. Relationship between TDRC and TD performance across different reward scales for different values of beta. On the x-axis
we show the scale of the rewards for the terminal states of the random walk, on the y-axis we show a range of values of β. Each dot
represents the number of standard deviations away from TD that TDRC’s performance is across 500 independent runs for that particular
value of β. For each dot, TDRC and TD choose the stepsize with lowest area under the RMSPBE learning curve; with stepsizes swept
from α ∈ {2−5, 2−4, . . . , 20}. As the scale of the rewards increases (left to right on the x-axis), the variance of the secondary weights, h,
also increases; effectively requiring a larger value of β. This figure demonstrates that TDRC with β = 1 remains relatively insensitive to
the scale of the rewards except in extreme cases when the variance of the rewards from transition to transition is quite large.

varies we likewise expect the scale of β to vary accordingly.

We design a set of small experiments to understand how
changes in the environment cause the scale of h to change,
and how that relates to the performance of TDRC across sev-
eral values of β. The scale of h changes whenever the size
of the TD error or scale of the features change. For these
experiments, we chose to increase the range of the TD error
by making the initial value function V = 0 and manipulat-
ing the magnitude of the rewards. We run this experiment
on the five state random-walk domain with each of the fea-
ture representations used in Section 4, and change only the
rewards in the terminal states by a multiplicative constant.
We compute the mean and standard deviation of TD’s per-
formance across 500 independent runs and compute the
number of standard deviations TDRC’s mean performance
is from TD’s mean performance. We let the reward vary
by order of magnitudes, with the multiplicative constant
taking values {10−2, 10−1, . . . , 103}. For each scaling, we
test multiple values of β ∈ {2−5, 2−4, . . . , 24} and for each
of these instances we select the best constant stepsize from
{2−5, 2−4, . . . , 2−1}.
In Figure 9, we show the range of β for which TDRC’s per-
formance is as good, or nearly as good, as TD’s performance
as the magnitude of the rewards increases. As hypothesized,
the range of acceptable β decreases as the reward magnitude
increases; however, the range of β only appreciably shrinks
for a pathologically large deviation between rewards and
initial value function. This demonstrates that, while β is
problem dependent, its range of acceptable values is robust
to all but the most pathological of examples across several
different representations.

D. Investigating QC on Mountain Car
In this section we include a deeper preliminary investiga-
tion into the performance of QC on the Mountain Car en-
vironment with non-linear function approximation. As we
observed in Figure 5, QC performed considerably worse
than either Q-learning and QRC. We hypothesize that this
poor performance is the result of high variance updates
to the value function estimate due to a poor estimate of
E[δt | S = st]. We relax the restrictions on the secondary
stepsize, ηα, by using η = 1

2 , allowing QC to become more
like Q-learning and reducing the variance of the update
to the secondary weights. We conclude by investigating
the effects of prioritization of the replay buffer by drawing
samples according to the squared TD error.

We start by investigating the performance of each algorithm
when only a single step of replay is used on each environ-
mental step. The learning curve in Figure 10 reaffirms that
QRC and Q-learning significantly outperform QC in this
setting. Interestingly, the norm of QC’s secondary set of
weights grows nearly monotonically throughout learning
while in contrast, QRC’s secondary weights start large at
the beginning of learning and quickly shrink as the value
function estimates become more accurate. The bottom right
curve shows the mean and standard deviation of the max-
imum absolute value of q̂(St, ·) for each step of learning.
The variance of QC’s maximum state-action value increased
significantly over the maximum observable return in the
Mountain Car domain—which is represented by a dashed
line at 100. These plots in combination suggest that QRC’s
additional constraint on the magnitude of the secondary
weights helps stabilize the learning system when using neu-
ral network function approximators.

One plausible explanation for QC’s poor performance is that
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Figure 10. Control methods on Mountain Car with neural network
function approximation. Each method takes one update step for ev-
ery environment step and uses η = 1. Top Left: Average number
of steps to goal. Top Right: Sensitivity to stepsize showing area
under the learning curve for each value of α. Bottom Left: Mag-
nitude of the secondary weights for each algorithm. Q-learning
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Bottom Right: Mean and standard deviation of the maximum
action-value for each step of learning. QC exhibited massive
growth in action-values throughout learning and Q-learning exhib-
ited periodic spikes of instability.
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Figure 11. Same as Figure 10 except η = 0.5. Learning perfor-
mance of QC is now competitive with Q-learning and QRC, though
QC and Q-learning both exhibited more instability than QRC.

the TD error is high variance in the Mountain Car environ-
ment, increasing the variance of the stochastic updates to the
secondary weights. We test this hypothesis by decreasing
the stepsize for the secondary weights. If the variance of the
updates is large, then a smaller stepsize can help stabilize
learning. We choose η = 1

2 and otherwise keep all other
empirical settings the same.

Figure 11 shows that QRC and QC now perform very simi-
larly and only slightly outperform Q-learning. As discussed
in Section 4.2, decreasing the secondary stepsize makes both
TDC and TDRC behave more similarly to TD, so this result
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Figure 12. Same as Figure 10 except η = 0.5 and each method
takes ten update steps for every environment step using prioritized
experience replay.

is not surprising. Interestingly, Figure 11 shows that still
the magnitude of the secondary weights quickly grows for
QC; however, unlike the previous experiment, the secondary
weights for QRC do not quickly decay either.

Given that each of the algorithms seem to perform similarly
when η = 1

2 , we revisit the highly off-policy experiment
shown in Figure 5 when η = 1

2 . To further exaggerate the
off-policy sampling, we additionally prioritize the experi-
ence replay buffer by drawing samples according to their
squared TD error. Figure 12 shows that, while the learning
curve performance between algorithms appears to be the
same, Q-learning exhibits significant instability in its value
function approximation.

These preliminary experiments suggest that, like TDC, QC’s
performance is highly driven by the magnitude of its sec-
ondary stepsize. When the secondary stepsize is well-tuned
QC shows similar stability to QRC; while QRC remains
stable across all experimental settings. Q-learning, like TD,
is sensitive to the degree of off-policy data, becoming in-
creasingly unstable as more off-policy updates are made. In
each of the experimental settings included in this section,
Q-learning exhibited occasional spikes of instability; further
motivating the desire to extend sound Gradient TD methods
for non-linear control.

E. Additional Linear Prediction Results
In this section we include additional results supporting the
experiments run in the main body of the text. The primary
conclusions drawn from these results were redundant with
experiments in the text, but are included here for complete-
ness.

We include results analogous to those in Section 4, except
using a constant stepsize on all problems. While constant
stepsizes are not commonly used in practice, they are useful
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Figure 14. Sensitivity to the second stepsize, for changing parameter η. All methods use a constant stepsize α. All methods are free to
choose any value of α for each specific value of η. Methods that do not have a second stepsize are shown as flat line.

for drawing clear conclusions without stepsize selection
algorithm playing a confounding role. We show in Figure 13,
that the relative performance between methods does not
change when using a constant stepsize. We do notice that
TDC performs more similarly to HTD, TD, and TDRC in
the constant stepsize case, which suggests that TDC benefits
less from using Adagrad than these other methods.

Figure 14 shows that algorithms are generally more similar
in terms of stepsize sensitivity. This suggests that differ-
ences in between the algorithms are less pronounced when
using constant stepsizes, which provides more support for
the argument that empirical comparisons should simultane-
ously consider modern stepsize selection algorithms.

For completeness, we include the values visualized in Fig-
ure 1 as a table of values in Table 1. The standard error is
reported for each entry in the table. The bold entries high-
light the algorithm with the lowest RMSPBE for the given
problem. The same is included for Figure 8 in Table 2 and
for Figure 13 in Table 3.

F. Investigating Target Networks
One motivation for designing more stable off-policy algo-
rithms is to improve learning interactions with neural net-
work function approximators. A currently pervasive tech-

nique for improving stability of off-policy learning with
neural networks is to use target networks. In this section, we
investigate the impact of using target networks for each of
the non-linear control algorithms investigated in this work.

In Figures 15, 16, and 17 we investigate the impact of syn-
chronizing the target network to the value function approxi-
mation after every 4, 64, and 256 updates respectively. All
the experimental settings remain the same, other than the
rate of target network synchronization. The conclusions
drawn in the main body of the paper continue to hold when
using target networks; QC learns very slowly which is exag-
gerated by increasing delay in updates to the bootstrapped
target, QRC is stable and insensitive to choice of stepsize,
and Q-learning performs well but is negatively impacted by
the introduction of target networks on these domains.

G. Parameter Settings and Other Experiment
Details

G.1. Actor-Critic Algorithm with TDRC

We assume that the agent’s policy πθ(A|S) is parameterized
by weight vector θ. To incorporate TDRC into the one-step
actor-critic algorithm (Sutton & Barto, 2018), we simply
change the update rule for the value function approximation
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Tabular Inverted Dependent Boyan Baird
GTD2 0.079 ± 0.001 0.063 ± 0.001 0.041 ± 0.001 0.269 ± 0.003 0.357 ± 0.009
TDC 0.063 ± 0.001 0.053 ± 0.001 0.034 ± 0.001 0.639 ± 0.001 0.196 ± 0.007
HTD 0.048 ± 0.001 0.048 ± 0.001 0.025 ± 0.001 – 2.123 ± 0.013
TD 0.046 ± 0.001 0.051 ± 0.001 0.024 ± 0.001 0.248 ± 0.003 4.101 ± 0.095

VTrace 0.060 ± 0.001 0.059 ± 0.001 0.038 ± 0.001 – 4.101 ± 0.095
TDRC 0.049 ± 0.001 0.047 ± 0.001 0.026 ± 0.001 0.222 ± 0.002 0.242 ± 0.006

Table 1. Average area under the RMSPBE learning curve for each problem using the Adagrad algorithm. Bolded values highlight the
lowest RMSPBE obtained for a given problem. These values correspond to the bar graphs in Figure 1.

Tabular Inverted Dependent Boyan Baird
GTD2 0.094 ± 0.001 0.074 ± 0.001 0.048 ± 0.001 0.274 ± 0.006 0.356 ± 0.009
TDC 0.071 ± 0.002 0.057 ± 0.001 0.033 ± 0.001 0.244 ± 0.005 0.215 ± 0.007
HTD 0.060 ± 0.002 0.053 ± 0.001 0.032 ± 0.001 – 3.623 ± 0.027
TD 0.058 ± 0.002 0.055 ± 0.001 0.031 ± 0.001 0.237 ± 0.006 3.993 ± 0.053

VTrace 0.069 ± 0.001 0.063 ± 0.001 0.042 ± 0.001 – 3.993 ± 0.053
TDRC 0.061 ± 0.001 0.049 ± 0.001 0.031 ± 0.001 0.209 ± 0.004 0.232 ± 0.007

Table 2. Average area under the RMSPBE learning curve for each problem using the Adam stepsize selection algorithm. Bolded values
highlight the lowest RMSPBE obtained for a given problem. These values correspond to the bar graphs in Figure 8.

Tabular Inverted Dependent Boyan Baird
GTD2 0.090 ± 0.001 0.082 ± 0.001 0.044 ± 0.001 0.292 ± 0.004 0.361 ± 0.009
TDC 0.075 ± 0.001 0.070 ± 0.001 0.041 ± 0.001 0.309 ± 0.004 0.205 ± 0.007
HTD 0.063 ± 0.001 0.069 ± 0.002 0.035 ± 0.001 – 1184.368 ± 69.421
TD 0.060 ± 0.001 0.070 ± 0.002 0.034 ± 0.001 0.226 ± 0.005 11401.550 ± 270.628

VTrace 0.072 ± 0.001 0.076 ± 0.002 0.045 ± 0.001 – 18.239 ± 0.046
TDRC 0.064 ± 0.001 0.066 ± 0.001 0.036 ± 0.001 0.217 ± 0.004 0.232 ± 0.006

Table 3. Average area under the RMSPBE learning curve for each problem using the a constant stepsize. Bolded values highlight the
lowest RMSPBE obtained for a given problem. These values correspond to the bar graphs in Figure 13.
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Figure 15. Non-linear control methods with target networks. Tar-
get network is synchronized with the value function after every 4
updates.
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Figure 16. Same as Figure 15, except target network is synchro-
nized after every 64 updates.
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Figure 17. Same as Figure 15, except target network is synchro-
nized after every 256 updates.
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Boyan’s chain Baird’s counterexample

Random walk

Figure 18. Above we provide a graphic depiction of each of the
three MDPs and the corresponding feature representations used in
our experiments. We omit the three feature representations used
in the Random Walk due to space restrictions (see Sutton et al.,
2009). All unlabeled transitions emit a reward of zero.

step for the TDRC update. This yields the following update
equations for Actor-Critic with TDRC:

δt = Rt+1 + γw>t xt+1 −w>t xt

wt+1 ← wt + αδtxt − γ(h>t xt)xt+1

ht+1 ← ht + ηα
(
δt − h>t xt

)
xt − ηαβht

θt+1 ← θt + αγt+1δt∇θt lnπθ(At | St),

where the original actor-critic algorithm can be recovered
with h0 = 0 and η = 0 and a TDC-based actor-critic
algorithm can be obtained with β = 0. In practice, the
γt+1 term in the update for θ is often dropped so, as such,
in our actor-critic experiment we likewise did not include
this term in our implementation. For ADAM optimizer
we used β1 = 0.9 and β2 = 0.999. We swept over α ∈
{2−8, 2−7, . . . , 2−2, 2−1} and had η = 1 for TDC. We used
tile coding with 5 tilings and 4× 4 tiles.

G.2. Prediction Experimental Details

For the results shown in the main body of the paper on the
random walk, Boyan’s Chain, and Baird’s Counterexample
we swept over free meta-parameters for every method com-
paring the meta-parameters which performed best according
to the area under the RMSPBE learning curve. The step-
sizes swept for all algorithms were α ∈ {2−7, 2−6, . . . , 20}.
For TDC and HTD, we swept values of the second step-
size by sweeping over a multiplicative constant times the
primary stepsize, η ∈ {20, 21, . . . , 26} maintaining the
convergence guarantees of the two-timescale proof of con-
vergence for TDC. For GTD2, we swept values of η ∈
{2−6, 2−5, . . . , 25, 26} as the saddlepoint formulation of
GTD2 allows for a much broader range of η while still
maintaining convergence.

G.3. Cart Pole and Mountain Car Experimental
Details

To solve these task we used a fully connected neural net-
work with two hidden layers where each layer had 64 nodes
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in Cart Pole (32 nodes in Mountain Car) with ReLU as the
non–linearity and the output layer as linear. The weights
were updated using a replay buffer of size 4,096 in Cart
Pole (size 4000 in Mountain Car) and mini-batch size of
32 using ADAM optimizer with ε = 10−8, β1 = 0.9, and
β2 = 0.999. We also used ADAM optimizer for updating
the h vector using ε = 10−8, β1 = 0.99, and β2 = 0.999.
The neural network weights were initialized using Xavier
initialization (Glorot & Bengio, 2010) and the biases were
initialized with a normal distribution with mean 0 and stan-
dard deviation 0.1. The second weight vectors were ini-
tialized to 0. Actions were selected using an ε-greedy pol-
icy where ε = 0.1. We tested several values of the step-
size: {2−13, ..., 2−2} for Cart Pole and {2−17, ..., 2−2} for
Mountain Car. The final results show the performance av-
eraged over 200 independent runs. In these task we set
η = 1 for QC and QRC methods and set the regularization
parameter β = 1 for QRC.

G.4. MinAtar Experimental Details

We ran the MinAtar experiments for 5 million steps. Dis-
count factor parameter, γ was set to 0.99. The rewards were
scaled by (R× (1− γ)) so that the neural network does not
have to estimate large returns. The Q-Learning and QRC
network architectures were the same as that used by (Young
& Tian, 2019). The network had one convolutional layer
and one fully connected layer after that. The convolutional
layer used sixteen 3 × 3 convolutions with stride 1. The
fully connected layer had 128 units. Both convolutional and
fully connected layers used ReLU gates. The network is
initialized the same way as (Young & Tian, 2019). We did
not use target networks for MinAtar experiments because
(Young & Tian, 2019) showed that using target networks
has negligible effects on the results.

We used a circular replay buffer of size 100,000. The agent
started learning when the replay buffer had 5,000 samples
in it. We annealed epsilon from 1.0 to 0.1 through the first
100,000 steps and then kept it at 0.1 for the rest of the steps.
The agent had one training step using a mini-batch of size
32 per environment step. As explained by (Young & Tian,
2019), frame skipping was not necessary since the frames of
the MinAtar environment are more information rich. Other
hyperparameters were chosen the same as (Young & Tian,
2019) and (Mnih et al., 2015). We used the RMSProp
optimizer with a smoothing constant of 0.95, and ε = 0.01.
For QRC, we used RMSProp to learn the second weight
vector h. We swept over RMSprop stepsizes in powers of 2,
{2−10, ..., 2−5} for breakout, and {2−12, ..., 2−8} for space
invaders. η was set to 1 for QC and QRC and β was 1 for
QRC.

For the learning curve, we plotted the setting that resulted
in the best area under the learning curve. We computed

the moving average of returns over 100 episodes (shown in
Figure 6) similar to (Young & Tian, 2019). For computing
the total discounted reward, we simply averaged over all of
the returns that the agent got during 5 million steps to get
a single number for each run and each parameter setting.
We then averaged this number over 30 independent runs of
the experiment to produce one point in the bottom part of
Figure 6. For MinAtar experiments, we used python version
3.7, Pytorch version 1.4, and public code made available on
Github for MinAtar1.

H. Convergence of TDRC
In this section, we prove Theorem 3.1. Our analysis closely
follows the one timescale proof for TDC convergence (Maei,
2011). We provide the full proof here for completeness.

H.1. Reformulating the TDRC Update

We combine the TDRC update equations (Eq. 8 and 9) into
a single linear system in variable %>t

def
=
[
h>t w>t

]
:

%t+1 = %t +αt(Gt+1 %t +gt+1), (12)

with Gt+1
def
=

[
−η(xt x

>
t +β I) ηρt xt(γ xt+1−xt)

>

−ρt(γ xt+1 x
>
t ) ρt xt(γ xt+1−xt)

>

]

and gt+1
def
=

[
ηρtRt+1 xt
ρtRt+1 xt

]
.

For a random variable X, using the definition of importance
sampling, we know that Eb[ρX] = Eπ[X]. Further, while
learning off–policy we assume the excursion setting and
use the stationary state distribution corresponding to the be-
havior policy, i.e. Eπ[xt x

>
t ] =

∑
S∈S db(S)x(S)x(S)>,

and consequently Eb[xt x>t ] = Eπ[xt x
>
t ]. Therefore, G def

=

Eb[Gk] =

[ −ηCβ −ηA
A>−C −A

]
and g

def
= Eb[gk] =

[
η b
b

]
,

and Eq. 12 can be rewritten as

%t+1 = %t +αt
(
h(%t) +Mt+1

)
, (13)

where h(%)
def
= G%+g and Mt+1

def
=

(Gt+1−G)%t +(gt+1−g) is the noise sequence.
Also, let Ft def

= σ(%1,M1, . . . ,%t−1,Mt).

H.2. Main Proof

To prove the convergence of TDRC, we use the results from
Borkar & Meyn (2000) which require the following to be
true: (i) The function h(%) is Lipschitz and there exists
h∞(%)

def
= limc→∞

h(c%)
c for all % ∈ R2d; (ii) The sequence

(Mt,Ft) is a Martingale difference sequence (MDS), and
E
[
‖Mt+1‖2 | Ft

]
≤ c0(1+‖% ‖2) for any initial parameter

1https://github.com/kenjyoung/MinAtar



Gradient Temporal-Difference Learning with Regularized Corrections

Box 1: Derivation of Eq. 14.

Following the analysis given in Maei (2011), we write

det(G−λ I) = det
[−ηCβ −λ I −ηA

A>−C −A−λ I

]
= (−1)2d det

[
ηCβ +λ I ηA

C−A> A+λ I

]
.

For a matrix U =

[
A1 A2

A3 A4

]
, det(U) = det(A1) · det(A4−A3 A

−1
1 A2). Further, since C is positive semi–definite,

Cβ +λ I would be non–singular for any β > 0. Using these results, we get

det(G−λ I) = det(ηC+(ηβ + λ) I) · det(A+λ I−η(C−A>)(ηC+(ηβ + λ) I)−1 A). (B1)

Now ηC
(
ηC+(ηβ+λ) I

)−1
=
((
ηC+(ηβ+λ) I

)
−(ηβ+λ) I

)(
ηC+(ηβ+λ) I

)−1
= I−(ηβ+λ)

(
ηC+(ηβ+

λ) I
)−1

. We can then write

A+λ I−η(C−A>)(ηC+(ηβ + λ) I)−1 A

=A+λ I−ηC(ηC+(ηβ + λ) I)−1 A+ηA>(ηC+(ηβ + λ) I)−1 A

=A+λ I−
(
I−(ηβ + λ)

(
ηC+(ηβ + λ) I

)−1
)
A+ηA>(ηC+(ηβ + λ) I)−1 A

=λ I+(ηβ + λ)
(
ηC+(ηβ + λ) I

)−1
A+ηA>(ηC+(ηβ + λ) I)−1 A

=

[
λ (A)

−1 (
ηC+(ηβ + λ) I

)
+ (ηβ + λ) I+ηA>

]
(
ηC+(ηβ + λ) I

)−1
A

= (A)
−1
[
λ
(
ηC+(ηβ + λ) I

)
+ A

(
ηA>+(ηβ + λ) I

)
]
(
ηC+(ηβ + λ) I

)−1
A .

Putting the above result in Eq. B1 along with the fact that det(A1 A2) = det(A1) · det(A2), we get

det(G−λ I) = det
(
λ
(
ηC+(ηβ + λ) I

)
+ A

(
ηA>+(ηβ + λ) I

))
.

vector %1 and some constant c0 > 0; (iii) The stepsize
sequence αt satisfies

∑
t αt = ∞ and

∑
t α

2
t < ∞; (iv)

The origin is a globally asymptotically stable equilibrium
for the ODE %̇ = h∞(%); and (v) The ODE %̇ = h(%) has
a unique globally asymptotically stable equilibrium.

The function h(%) = G%+g is Lipschitz with the co-
efficient ‖G ‖ and h∞(%) = G% is well defined for all
% ∈ R2d. (Mt,Ft) is an MDS, since by construction it satis-
fies E[Mt+1 | Ft] = 0 andMt ∈ Ft. The coverage assump-
tion implies that the second moments of ρt are uniformly
bounded. Then applying triangle inequality to Mt+1 =
(Gt+1−G)%t +(gt+1−g) and using the boundedness
of second moments of the quadruplets (xt, Rt,xt+1, ρt),
we get E

[
‖Mt+1‖2 | Ft

]
≤ E

[
‖(Gt+1−G)%t ‖2 | Ft

]
+

E
[
‖gt+1−g ‖2 | Ft

]
≤ c0(‖%t ‖2 + 1). Condition on the

stepsizes follows from our assumptions in the theorem state-
ment. To verify the conditions (iv) and (v), we first show
that the real parts of all the eigenvalues of G are negative.

H.3. Proving that the Real Parts of Eigenvalues of G
are Negative (assuming C to be non–Singular)

In this section, we consider the case when the C matrix is
non–singular. TDRC converges even when C is singular
under alternate conditions, which are given in Section H.4.
From Box 1, we obtain

det(G−λ I) =det
(
λ(ηC+(ηβ + λ) I)

+ A(ηA>+(ηβ + λ) I)
)
, (14)

for some λ ∈ C. Now because an eigenvalue λ of ma-
trix G satisfies det(G−λ I) = 0, there must exist a non–
zero vector z ∈ Cd such that z∗[λ(ηC+(ηβ + λ) I) +
A(ηA>+(ηβ + λ) I)] z = 0, which is equivalent to

λ2 +

(
ηβ + η

z∗Cz

‖ z ‖2 +
z∗Az

‖ z ‖2
)
λ

+η

(
β
z∗Az

‖ z ‖2 +
z∗AA> z

‖ z ‖2

)
= 0.
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Box 2: Solutions of Eq. 15.

The solutions of a quadratic ax2 + bx+ c = 0 are given by x = − b
2a ±

√
b2−4ac
2a . Using this, we solve for λ in Eq. 15:

2λ = −(ηβ + ηbc + λz)±
√

(ηβ + ηbc + λz)2 − 4η(βλz + ba)

= −
(
ηβ + ηbc + (λr + λci)

)
±
√(

ηβ + ηbc + (λr + λci)
)2 − 4η

(
β(λr + λci) + ba

)

= −Ω− λci±
√

(Ω + λci)2 − 4η(βλr + ba)− 4ηβλci

= −Ω− λci±
√(

Ω2 − λ2c − 4η(βλr + ba)
)

+
(
2Ωλc − 4ηβλc

)
i

= −Ω− λci±
√(

Ω2 − Ξ
)

+
(
2Ωλc − 4ηβλc

)
i,

where in the second step we put λz = λr + λci, and also we define Ω = ηβ + ηbc + λr and Ξ = λ2c + 4η(βλr + ba),
which are both real numbers.

We define bc = z∗Cz
‖ z ‖2 , ba = z∗AA> z

‖ z ‖2 , and λz = z∗Az
‖ z ‖2 ≡

λr + λci for λr, λc ∈ R. The constants bc and ba are real
and greater than zero for all non–zero vectors z. Then the
above equation can be written as

λ2 + (ηβ + ηbc + λz)λ+ η(βλz + ba) = 0. (15)

We solve for λ in Eq. 15 (see Box 2 for the full derivation) to
obtain 2λ = −Ω−λci±

√
(Ω2 − Ξ) + (2Ωλc − 4ηβλc)i,

where we introduced intermediate variables Ω = ηβ+ηbc+
λr, and Ξ = λ2c + 4η(βλr + ba), which are both real num-
bers.

Using Re(
√
x+ yi) = ± 1√

2

√√
x2 + y2 + x we get

Re(2λ) = −Ω ± 1√
2

√
Υ, with the intermediate variable

Υ =
√

(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2 + (Ω2 − Ξ). Next
we obtain conditions on β and η such that the real parts of
both the values of λ are negative for all non–zero vectors
z ∈ C.

H.3.1. CASE 1

First consider Re(2λ) = −Ω + 1√
2

√
Υ. Then Re(λ) < 0 is

equivalent to

Ω >
1√
2

√
Υ. (16)

Since, the right hand side of this inequality is clearly posi-
tive, we must have

Ω = ηβ + ηbc + λr > 0. (C1)

This gives us our first condition on η and β. Simplifying Eq.
16 and putting back the values for the intermediate variables
(see Box 3 for details), we get

Ω2 + Ξ >
√

(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2. (17)

Again, since the right hand side of the above inequality is
positive, we must have

Ω2+Ξ = (ηβ+ηbc+λr)
2+λ2c+4η(βλr+ba) > 0. (C2)

This is the second condition we have on η and β. Continuing
to simplify the inequality in Eq. 17 (again see Box 3 for
details), we get our third and final condition:

(ηβ+ ηbc +λr)
2(βλr + ba) + βλ2c(ηbc +λr) > 0. (C3)

If λr > 0 for all z ∈ R, then each of the Conditions C1, C2,
and C3 hold true and consequently TDRC converges. This
case corresponds to the on–policy setting where the matrix
A is positive definite and TD converges.

Now we show that TDRC converges even when A is not
PSD (the case where TD is not guaranteed to converge). If
we assume βλr + ba > 0 and ηbc + λr > 0, then each of
the Conditions C1, C2, and C3 again hold true and TDRC
would converge. As a result we obtain the following bounds:

β < − ba
λr
⇒ β < min

z

(
−z∗AA> z

z∗Hz

)
, (18)

η > −λr
bc
⇒ η > max

z

(
−z∗Hz

z∗Cz

)
, (19)

with H
def
= 1

2 (A+A>). These bounds can be made more
interpretable. Using the substitution y = H

1
2 z we obtain

min
z

(
−z∗AA> z

z∗Hz

)
≡ min

y

y∗(−H−
1
2 AA>H−

1
2 )y

‖y ‖2

= λmin(−H−
1
2 AA>H−

1
2 )

= −λmax(H−
1
2 AA>H−

1
2 )

= −λmax(H−1 AA>),

where λmax represents the maximum eigenvalue of the ma-
trix. Proceeding similarly for η, we can write the bounds in
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Box 3: Simplification of Eq. 16.

Putting the value of Υ =
√

(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2 + (Ω2 − Ξ) back in Ω > 1√
2

√
Υ, we get

Ω >
1√
2

√√
(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2 + (Ω2 − Ξ)

⇔ Ω2 >
1

2

[√
(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2 + (Ω2 − Ξ)

]
[squaring both sides]

⇔ Ω2 + Ξ >
√

(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2

⇔ (Ω2 + Ξ)2 > (Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)
2 [squaring both sides]

⇔ Ω2Ξ > (Ωλc − 2ηβλc)
2

⇔ Ω2(λ2c + 4η(βλr + ba)) > Ω2λ2c + 4η2β2λ2c − 4ηβλ2cΩ [putting Ξ = λ2c + 4η(βλr + ba)]

⇔ Ω2η(βλr + ba) > η2β2λ2c − ηβλ2cΩ
⇔ (ηβ + ηbc + λr)

2(βλr + ba) > ηβ2λ2c − βλ2c(ηβ + ηbc + λr) [putting Ω = ηβ + ηbc + λr]

⇔ (ηβ + ηbc + λr)
2(βλr + ba) > −βλ2c(ηbc + λr)

⇔ (ηβ + ηbc + λr)
2(βλr + ba) + βλ2c(ηbc + λr) > 0.

Note that all these steps have full equivalence (especially the squaring operations in second and fourth step are completely
reversible), because we explicitly enforce that Ω > 0 and Ω2 + Ξ > 0 in Conditions C1 and C2 respectively. As a result,
if we satisfy conditions C1, C2, and C3, Re(2λ) = −Ω + 1√

2

√
Υ < 0 would be satisfied as well.

Eq. 18 and 19 equivalently as

β < −λmax(H−1 AA>), (20)

η > −λmin(C−1 H). (21)

If these bounds are satisfied by η and β then the real parts
of all the eigenvalues of G would be negative and TDRC
will converge.

H.3.2. CASE 2

Next consider Re(2λ) = −Ω − 1√
2

√
Υ. The second term

is always negative and we assumed Ω > 0 in Eq. C1. As a
result, Re(λ) < 0 and we are done.

Therefore, we get that the real part of the eigenvalues of
G are negative and consequently condition (iv) above is
satisfied. To show that condition (v) holds true, note that
since we assumed A+β I to be non–singular, G is also
non–singular; this means that for the ODE %̇ = h(%),
%∗ = −G−1 g is the unique asymptotically stable equi-
librium with V̄(%)

def
= 1

2 (G%+g)>(G%+g) as its associ-
ated strict Lyapunov function.

H.4. Convergence of TDRC when C is Singular

When C is singular, bc = z∗Cz
‖ z ‖2 is no longer always greater

than zero for an arbitrary vector z. Consequently, if we
explicitly set bc = 0 we would get alternative bounds on η
and β for which TDRC would converge. Putting bc = 0 in

Conditions C1, C2, and C3, we get

ηβ + λr > 0,

(ηβ + λr)
2 + λ2c + 4η(βλr + ba) > 0, and

(ηβ + λr)
2(βλr + ba) + βλ2cλr > 0.

As before, we are concerned with the case when A is not
PSD and thus λr < 0. Further, assume that βλr + ba > 0
(this is the same upper bound on β as given in Eq. 18). We
simplify the third inequality above to obtain the bound on η.
As a result, we get the following bounds for β and η:

β < − ba
λr
, η >

1

β

(√
−βλ2cλr
βλr + ba

− λr
)
. (22)

The bound on η automatically satisfies the first condition
ηβ + λr > 0. Therefore, if β and η satisfy these bounds,
TDRC converges even for a singular C matrix.

I. Fixed Points of TDRC
Theorem I.1 (Fixed Points of TDRC) If w is a TD fixed
point, i.e., a solution to Aw = b, then it is a fixed point for
the expected TDRC update,

A>βC
−1
β (b−Aw) = 0.

Further, the set of fixed points for TD and TDRC are equiva-
lent if Cβ is invertible and if −β does not equal to any of
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the eigenvalues of A. Note that Cβ is always invertible if
β > 0, and is invertible if C is invertible even for β = 0.

Proof: To show equivalence, the first part is straight-
forward: when Aw = b, then b − Aw = 0 and so
A>βC

−1
β (b − Aw) = 0. This means that any TD fixed

point is a TDRC fixed point. Now we simply need to show
that under the additional conditions, a TDRC fixed point is
a TD fixed point.

If −β does not equal any of the eigenvalues of A, then
Aβ = A + βI is a full rank matrix. Because both Aβ

and Cβ are full rank, the nullspace of A>βC
−1
β (b −Aw)

equals to the nullspace of b−Aw. Therefore, w satisfies
A>βC

−1
β (b−Aw) = 0 iff (b−Aw) = 0.

We can prove Theorem I.1, in an alternate fashion as well.
The linear system in Eq. 12 has a solution (in expectation)
which satisfies

G%+g = 0.

We show that this linear system has full rank and thus a
single solution: w = A−1 b and h = 0. If we show that
the matrix G is non–singular, i.e. its determinant is non–
zero, we are done. From Eq. 14 it is straightforward to
obtain

det(G) = η2d det(A>+β I) · det(A),

which is non–zero if we assume that β does not equal the
negative of any eigenvalue of A and that A is non–singular.

�


