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A Review of Shapley Axioms

Here, we provide a high-level review of the axioms that Shapley used to describe an equitable
valuation function [Sha53]. We consider the data Shapley setting, letting v(z;U,D) denote the
value of z ∈ D for a finite subset D ⊆ Z with respect to potential U : Z∗ → [0, 1].

• Symmetry – Consider zi, zj ∈ D; suppose for all S ⊆ D \ {zi, zj}, U(S ∪ {zi}) = U(S ∪ {zj}).
Then,

v(zi;U,D) = v(zj ;U,D).

That is, if two data points are equivalent, then they should receive the same value.

• Null player – Consider z ∈ D; suppose for all S ⊆ D \ {z}, U(S ∪ {z}) = U(S). Then,

v(z;U,D) = 0.

That is, if a data point contributes no marginal gain in potential to any nontrivial subset,
then it receives no value.

• Additivity – Consider two potentials U1, U2. For all z ∈ D,

U(z;U1 + U2, D) = U(z;U1, D) + U(z;U2, D).

That is, the value of a data point with respect to the combination of two tasks (addition of
two potentials) is the sum of the values with respect to each task (potential) separately.

Theorem A.1 ( [Sha53] ). The Shapley value is the unique valuation function that satisfies the
symmetry, null player, and additivity axioms.

Additionally, the Shapley value satisfies the desirable property that it allocates all of the value to
the contributors.

∗Code is available on Github at https://github.com/amiratag/DistributionalShapley
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• Efficiency – The sum of the individuals’ Shapley values equals the value of the coalition.
That is, ∑

z∈D
v(z;U,D) = U(D).

It is straightforward to verify that the distributional Shapley value immediately inherits the prop-
erties of symmetry, null player, and additivity (by linearity of expectation). Further, it satisfies an
on-average variant of efficiency.

Proposition A.2. Given a potential U and a data distribution D, for m ∈ N,

E
z∼D

[ν(z;U,D,m)] =
ED∼Dm [U(D)]− U(∅)

m
.

Proof. We expand the expected distributional Shapley value with its definition and then apply
linearity of expectation.

E
z∼D

[ν(z;U,D,m)] = E
z∼D

 E
k∼[m]

S∼Dk−1

[U(S ∪ {z})− U(S)]


=

1

m
·
m∑
k=1

 E
z∼D

S∼Dk−1

[U(S ∪ {z})]− E
S∼Dk−1

[U(S)]


=

1

m
·
m∑
k=1

(
E

Sk∼Dk
[U(Sk)]− E

Sk−1∼Dk−1
[U(Sk−1)]

)
=

1

m
·
(

E
D∼Dm

[U(D)]− U(∅)
)

B Distributional Shapley Value for Mean Estimation

Proposition (Restatement of Proposition 2.4). Suppose D has bounded second moments. Then
for z ∈ Z and m ∈ N, ν(z;Uµ,D,m) for mean estimation over D is given by

ES∼Dm [U(S)]

m
+
Cm
m
·
(

E
s∼D

[
‖s− µ‖2

]
− ‖z − µ‖2

)
for an explicit constant Cm = Θ(1) determined by m.

Proof. Consider the unsupervised learning task of mean estimation using the empirical estimator.
Specifically, suppose we receive samples from some distribution D supported on Rd with mean
µ = Es∼D[s] and bounded second moments. Given a subset S ⊆ Rd, we consider the empirical
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estimator µ̂S = 1
|S| ·

∑
s∈S s. We define a potential U(S) by the performance of the empirical

estimator.

U(S) = E
s∼D

[
‖s− µ‖2

]
− ‖µ̂S − µ‖2

= B2 − ‖µ̂S − µ‖2

By convention, we will assume that U(∅) = 0. For notational convenience, let Es∼D

[
‖s− µ‖2

]
=

B2 for some B = Θ(1). As such, we can evaluate the difference in potentials as follows.

=
(
B2 −

∥∥µ− µ̂S∪{z}∥∥2
)
−
(
B2 − ‖µ− µ̂S‖2

)
= ‖µ− µ̂S‖2 −

∥∥µ− µ̂S∪{z}∥∥2

Importantly, note that we can relate µ̂S∪{z} to µ̂S .

µ̂S∪{z} = µ̂S +
1

k
· (z − µ̂S)

Using these expressions, we can expand the distributional Shapley value into a form that will be
convenient to work with.

ν(z;U,D,m) = E
k∼[m]

S∼Dk−1

[U(S ∪ {z})− U(S)]

=
1

m
·
m∑
k=1

E
S∼Dk−1

[U(S ∪ {z})− U(S)]

=
1

m
·

(
U({z})− U(∅) +

m∑
k=2

E
S∼Dk−1

[U(S ∪ {z})− U(S)]

)

=
1

m
·

(
B2 − ‖z − µ‖2 +

m∑
k=2

E
S∼Dk−1

[
‖µ− µ̂S‖2 −

∥∥µ− µ̂S∪{z}∥∥2
])

We, thus, focus our efforts on bounding the summation from k = 2 to m. As such, we can evaluate
the difference in potentials within the expectation as follows.

‖µ− µ̂S‖2 −
∥∥µ− µ̂S∪{z}∥∥2

= ‖µ− µ̂S‖2 −
∥∥∥∥µ− µ̂S − 1

k
· (z − µ̂S)

∥∥∥∥2

= ‖µ− µ̂S‖2 −
(
‖µ− µ̂S‖2 +

1

k2
· ‖z − µ̂S‖2 −

2

k
· 〈µ− µ̂S , z − µ̂S〉

)
=

2

k
· 〈µ− µ̂S , z − µ̂S〉 −

1

k2
· ‖z − µ̂S‖2
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Taking an expectation over S ∼ Dk−1, we can simplify each term in the summation separately;
first, some identities that will be useful and hold for all n ∈ N:

E
S∼Dn

[µ̂S ] = µ (1)

E
S∼Dn

[〈µ− µ̂S , q〉] = 0 (2)

E
S∼Dn

[
‖µ̂S‖2 − ‖µ‖2

]
= E

S∼Dn

[
‖µ̂S − µ‖2

]
=

1

n
· E
s∼D

[
‖s− µ‖2

]
(3)

where (1) follows because µ̂S an unbiased estimator of µ; (2) holds for all q ∈ Rd; and (3) is a
well-known fact that can be derived using (1) and (2).

Beginning with the first inner product.

E
S∼Dk−1

[〈µ− µ̂S , z − µ̂S〉] = E
S∼Dk−1

[〈µ− µ̂S , µ− µ̂S〉] (4)

= E
S∼Dk−1

[
‖µ− µ̂S‖2

]
=

1

k − 1
· E
s∼D

[
‖s− µ‖2

]
(5)

where (4) applies (2) with q = µ− z and (5) applies (3).

Expanding the next term.

E
S∼Dk−1

[
‖z − µ̂S‖2

]
= E

S∼Dk−1

[
‖z‖2 + ‖µ̂S‖2 − 2〈z, µ̂S〉+ ‖µ‖2 − ‖µ‖2

]
= E

S∼Dk−1

[
‖z‖2 − 2〈z, µ̂S〉+ ‖µ‖2

]
+ E
S∼Dk−1

[
‖µ̂S‖2 − ‖µ‖2

]
= ‖z − µ‖2 +

1

k − 1
· E
s∼D

[
‖s− µ‖2

]
(6)

where (6) follows by applying linearity of expectation and (1) to the first term and (3) to the second
term.

Thus, in all, the value can be expressed as follows.

m∑
k=2

E
S∼Dk−1

[
2

k
· 〈µ− µ̂S , z − µ̂S〉 −

1

k2
· ‖z − µ̂S‖2

]

=
m∑
k=2

(
2

k · (k − 1)
· E
s∼D

[
‖s− µ‖2

]
− 1

k2 · (k − 1)
· E
s∼D

[
‖s− µ‖2

]
− 1

k2
· ‖z − µ‖2

)

=
m∑
k=2

(
2B2 − ‖z − µ‖2

k · (k − 1)
− B2 − ‖z − µ‖2

k2 · (k − 1)

)

=
m− 1

m
·
(

2B2 − ‖z − µ‖2
)

+ c(m) ·
(
B2 − ‖z − µ‖2

)
=
m− 1

m
·B2 + (1− 1/m+ c(m)) ·

(
B2 − ‖z − µ‖2

)
where

∑m
k=2

1
k·(k−1) = m−1

m and we take c(m) =
∑m

k=2
1

k2·(k−1)
.
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Thus, plugging this expression back into our original expansion.

ν(z;U,D,m)

=
1

m
·
(
m− 1

m
·
(

2B2 − ‖z − µ‖2
)

+ (1 + c(m)) ·
(
B2 − ‖z − µ‖2

))
=
m− 1

m2
·B2 +

C(m)

m
·
(
B2 − ‖z − µ‖2

)
=

1

m
·
(
C(m) ·

(
E
s∼D

[
‖s− µ‖2

]
− ‖z − µ‖2

)
+

(
E
s∼D

[
‖s− µ‖2

]
− E
S∼Dm

[
‖µ̂S − µ‖2

]))
where C(m) = 2 − 1/m + c(m) = Θ(1) is an explicit function of m, and we use the fact that

ES∼Dm

[
‖µ̂S − µ‖2

]
= 1

m ·B
2.

C Stability of Distributional Shapley Values – Omitted Proofs

C.1 RKHS empirical risk minimization is Lipschitz stable.

Reproducing Kernel Hilbert Spaces. A number of our theoretical results focus on supervised
learning over Reproducing Kernel Hilbert Spaces (RKHS). Suppose Z = X ×Y; let F to denote a
RKHS, with associated feature map ϕ : X → F , inner product 〈·, ·〉F , and norm ‖·‖F , such that
for all f ∈ F ,

f(x) = 〈f, ϕ(x)〉F
Given F , we define a natural metric over Z, where for labeled pairs zi = (xi, yi) and zj = (xj , yj),

dF (zi, zj) =

{
‖ϕ(xi)− ϕ(xj)‖F if yi = yj

+∞ o.w.

That is, the distance is given by the RKHS norm if xi and xj have the same label, and are arbitrarily
dissimilar otherwise.

We define the potential of a subset S ⊆ Z for an RKHS learning problem as the performance
achieved when training using S. Specifically, suppose ` : [0, 1] × [0, 1] → R+ is an L-Lipschitz,
convex loss function and D is a distribution supported on Z. We define the potential function
UF : Z∗ → [0, 1] in terms of the population loss over D of the following regularized ERM.

UF (S) = 1− E
(x,y)∼D

[`(fS(x), y)]

where fS = argmin
f∈F

{
erS(f) +

λ

2
‖f‖2F

}
where erS(f) = 1

|S|
∑

(x,y)∈S `(f(x), y) and λ > 0.

Lemma C.1 (Learning RKHS is Lipschitz stable). Suppose F is a RKHS with feature map φ :
X → F . Let D be a distribution over Z = X × Y such that E(x,y)∼D [‖φ(x)‖F ] = B. Then,
UF : Z∗ → [0, 1] as defined above is (2L2B/λk)-Lipschitz stable.
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In other words, stability depends on the Lipschitz constant of the loss, the expected norm over D,
and the degree of regularization.

Proof. We follow the proof of replacement stability of RKHS from [Aga11] closely. For notational
convenience, we drop reference to F in ‖·‖ and 〈·, ·〉.

Suppose S ∈ Zk−1 and suppose z, z′ ∈ Z are two points such that z = (x, y) and z′ = (x′, y); i.e.
they share the same label. By the definition of dF , this is the only case we need to consider. Let
f, f ′ ∈ F denote the empirical risk minimizers over S ∪ {z} and S ∪ {z′}, respectively.

f = argmin
g∈F

{
erS∪{z}(g) +

λ

2
‖g‖2F

}
f ′ = argmin

g∈F

{
erS∪{z′}(g) +

λ

2
‖g‖2F

}

For α ∈ [0, 1], let

fα = α · f + (1− α) · f ′

f ′α = (1− α) · f + α · f ′.

By the assumption that ` is convex, we can derive the following inequalities for any (x, y) ∈ Z and
any S ⊆ Z.

`(fα(x), y) ≤ α · `(f(x), y) + (1− α) · `(f ′(x), y)

=⇒ erS(fα) ≤ α · erS(f) + (1− α) · erS(f ′) (7)

Note that fα and f ′α are also feasible hypotheses in the Hilbert space. Thus, by the fact that f, f ′

are ERMs,

erS∪{z}(f) +
λ

2
‖f‖2 ≤ erS∪{z}(fα) +

λ

2
‖fα‖2

erS∪{z′}(f
′) +

λ

2

∥∥f ′∥∥2 ≤ erS∪{z′}(f
′
α) +

λ

2

∥∥f ′α∥∥2

Rearranging, and applying convexity, we derive the following inequality.

λ

2
·
(
‖f‖2 +

∥∥f ′∥∥2 − ‖fα‖2 −
∥∥f ′α∥∥2

)
≤ erS∪{z}(fα)− erS∪{z}(f) + erS∪{z′}(f

′
α)− erS∪{z′}(f

′) (8)

We can simplify the inner term of the LHS of (8) as follows.

‖f‖2 +
∥∥f ′∥∥2 − ‖fα‖2 −

∥∥f ′α∥∥2
= ‖f‖2 +

∥∥f ′∥∥2 −
∥∥f ′ − α(f ′ − f)

∥∥2 −
∥∥f + α(f ′ − f)

∥∥2

= 2α〈f ′ − f, f ′ − f〉 − 2α2
∥∥f ′ − f∥∥2

= 2α(1− α)
∥∥f − f ′∥∥2
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Then, we can bound the RHS of (8) as follows.

erS∪{z}(fα)− erS∪{z}(f) + erS∪{z′}(f
′
α)− erS∪{z′}(f

′)

≤ (1− α) ·
(
erS∪{z}(f

′)− erS∪{z}(f) + erS∪{z′}(f)− erS∪{z′}(f
′)
)

(9)

=
1− α
k
·
(
`(f ′(x), y)− `(f(x), y) + `(f(x′), y)− `(f ′(x′), y) + (k − 1) · 0

)
(10)

=
(1− α)

k
·
(
`(f ′(x), y)− `(f ′(x′), y)− `(f(x), y) + `(f(x′), y)

)
≤ (1− α)L

k
· 〈f ′ − f, ϕ(x)− ϕ(x′)〉 (11)

≤ (1− α)L

k
·
∥∥f − f ′∥∥ · ∥∥ϕ(x)− ϕ(x′)

∥∥ (12)

where (9) follows by expanding according to (7), and then simplifying; (10) follows by the fact that
erS∪{z}(f) = 1

k · `(f(x), y) + k−1
k erS(f), but the errors on S cancel to 0, erS(f ′)− erS(f) + erS(f)−

erS(f ′); (11) follows by the Lipschitzness of `; and (12) follows by Cauchy-Schwarz.

The analysis above applied for any α ∈ [0, 1]; taking α = 1/2 implies

λ

4
·
∥∥f − f ′∥∥2 ≤ L

2k
·
∥∥f − f ′∥∥ · ∥∥ϕ(x)− ϕ(x′)

∥∥
=⇒

∥∥f − f ′∥∥ ≤ 2L

λk
· dF (z, z′).

Because ` is L-Lipschitz, we obtain Lipschitz-stability of UF .

UF (S ∪ {z})− UF (S ∪
{
z′
}

) = E
(x0,y0)∼D

[
`(f ′(x0), y0)− `(f(x0, y0)

]
≤ E [‖ϕ(x0)‖] · 2L2

λk
· dF (z, z′)

=
2L2B

λk
· dF (z, z′)

C.2 Similar distributions yield similar valuation functions.

For two distributions Ds,Dt over Z, let Γst be the collection of joint distributions over Z × Z,
whose marginals are Ds and Dt.1 Fixing a metric d over Z, the Wasserstein distance is the infimum
over all such couplings γ ∈ Γst of the expected distance between (s, t) ∼ γ.

W1(Ds,Dt) , inf
γ∈Γst

E
(s,t)∼γ

[d(s, t)] (13)

With this metric, we show the following theorem that formalizes the idea that distributional Shapley
values are stable under small perturbations to the underlying data distribution.

1That is, for all γ ∈ Γst, if (s, t) ∼ γ, then s ∼ Ds and t ∼ Dt.
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Theorem (Restatement of Theorem 2.7). Fix a metric space (Z, d) and let U : Z∗ → [0, 1] be
β(k)-Lipschitz stable with respect to d. Suppose Ds and Dt are two distributions over Z. Then, for
all m ∈ N and all z ∈ Z,

|ν(z;U,Ds,m)− ν(z;U,Dt,m)| ≤ 2

m

m−1∑
k=1

kβ(k) ·W1(Ds,Dt).

Proof. For notational convenience, for any z ∈ Z and subset S ⊆ Z, we denote ∆zU(S) = U(S ∪
{z}) − U(S). Thus, fixing z ∈ Z, we can write ν(z;U,D,m) as Ek∼[m] ES∼Dk−1 [∆zU(S)]. We
analyze ES∼Dk−1 [∆zU(S)] for each fixed k ∈ {2, . . . ,m} separately.2

Let γ ∈ Γst be some coupling of Ds and Dt. Then, we can expand the expectation as follows.

E
S∼Dk−1

s

[∆zU(S)] = E
S×T∼γk−1

[∆zU(S)] (14)

= E
S×T

[∆zU(S)−∆zU(T )] + E
S×T

[∆zU(T )] (15)

= E
S×T

[∆zU(S)−∆zU(T )] + E
T∼Dk−1

t

[∆zU(T )] (16)

where (14) and (16) follow by the assumption that the marginals of γ are Ds and Dt; and (15)
follows by linearity of expectation.

To bound the first term of (16), we expand the difference between ∆zU(S) and ∆zU(T ) into
a telescoping sum of k pairs of terms, where we bound each pair to depend on a single draw

(si, ti) ∼ γ. For S, T ∈ Zk and i ∈ {0, . . . , k}, denote by Zi =
(⋃k

j=i+1 sj

)
∪
(⋃i

j=1 tj

)
; note that

Z0 = S and Zk = T . Then, we can rewrite ∆zU(S)−∆zU(T ) as follows.

∆zU(S)−∆zU(T ) =
k∑
i=1

∆zU(Zi−1)−∆zU(Zi)

Now suppose U is β(k)-Lipschitz stable with respect to d; note that this implies ∆zU is 2β(k)-
Lipschitz stable (because β is non-increasing). Then, we obtain the following bound.

E
S×T∼γk−1

[∆zU(S)−∆zU(T )] = E
S×T∼γk−1

[
k−1∑
i=1

∆zU(Zi−1)−∆zU(Zi)

]

=
k−1∑
i=1

E
S,T∼γk−1

[∆zU(Zi−1)−∆zU(Zi)]

=
k−1∑
i=1

E
si,ti∼γ
R∈Zk−2

[∆zU(R ∪ {si})−∆zU(R ∪ {ti})] (17)

≤ 2β(k − 1) ·
k−1∑
i=1

E
(si,ti)∼γ

[d(si, ti)] (18)

≤ 2(k − 1)β(k − 1) · E
(s,t)∼γ

[d(s, t)] (19)

2Note that for a fixed potential U , m = 1 is uninteresting because both sides of the inequality are 0; in particular,
|S| is always 0, so the LHS is given by the difference U(z)− U(z).
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where (17) notes Zi−1 and Zi differ on only the ith data point; (18) follows from the assumption
that ∆zU is 2β(k)-Lischitz stable and linearity of expectation; and finally (19) follows by the fact
that each draw from γ is i.i.d.

Finally, we note that the argument above worked for an arbitrary coupling in Γst; thus, we can
express the difference in values in terms of the infimum over Γst.

ν(z;U,Ds,m)− ν(z;U,Dt,m)

≤ inf
γ∈Γst

E
k∼[m]

[
E

S×T∼γk−1
[∆U (S)−∆zU(T )]

]
≤ 2

m

m∑
k=2

(k − 1)β(k − 1) inf
γ∈Γst

E
(s,t)∼γ

[d(s, t)]

=
2

m

m−1∑
k=1

kβ(k) ·W1(Ds,Dt)

where the first summation is taken over k ∈ {2, . . . ,m} as the term associated with k = 1 is 0.

Recall that often in applications, we take the potential function to depend on the underlying data
distribution. For instance, we may take UD(S) = Ez∼D [`S(z)], where `S(z) is the loss on a point
z ∈ Z achieved by a model trained on the data set S ⊆ Z. In the case where we only have access
to samples from Ds, we still may want to guarantee that ν(z;UDs ,Ds,m) and ν(z;UDt ,Dt,m) are
close. Thankfully, such a result follows by showing that UDs is close to UDt , and another application
of the triangle inequality. As an example, we can show the following guarantee for RKHS.

Corollary C.2. For two distributions Ds,Dt over X × Y, let UFs and UFt be defined as in Ap-
pendix D.1 over Ds and Dt, respectively. Then, for all z ∈ X × Y,∣∣ν(z;UFs ,Ds,m)− ν(z;UFt ,Dt,m)

∣∣ ≤ 2(L2B + L) ·W1(Ds,Dt).

Proof. First, we apply Theorem 2.7 with U = UFs to bound
∣∣ν(z;UFs ,Ds,m)− ν(z;UFs ,Dt,m)

∣∣,
and then bounding

∣∣ν(z;UFs ,Dt,m)− ν(z;UFt ,Dt,m)
∣∣. For all Z ⊆ Z,

UFs (Z)− UFt (Z) = E
s∼Ds

[`Z(s)]− E
t∼Dt

[`Z(t)]

= inf
γ∈Γst

E
(s,t)∼γ

[`Z(s)− `Z(t)]

≤ inf
γ∈Γst

E
s,t

[L · d(s, t)]

≤ L ·W1(Ds,Dt).

As ν(z;UFs ,Dt,m)− ν(z;UFs ,Dt,m) can be written as the expectation of two differences between
in UFs (Z) and UFt (Z), applying the triangle inequality implies the claimed inequality.

D Estimating Distributional Shapley Values – Omitted Proofs

We require the following standard concentration inequality.
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Theorem (Hoeffding’s Inequality). Suppose X1, . . . , XT are independent random variables, where
Xt is bounded in the range [−bt, bt]. Let X = 1

T

∑T
t=1Xt. Then,

Pr
[∣∣X −E[X]

∣∣ > ε
]
≤ 2 · exp

(
−T 2ε2

2 ·
∑T

t=1 b
2
t

)

D.1 Iteration complexity of Algorithm 1.

Theorem (Restatement of Theorem 3.1). Fixing a potential U and distribution D, and Z ⊆ Z,

suppose T ≥ Ω
(

log(|Z|/δ)
ε2

)
. Algorithm 1 produces unbiased estimates and with probability at least

1− δ, |ν(z;U,D,m)− νT (z)| ≤ ε. for all z ∈ Z.

Proof. The theorem follows from the analysis of Theorem D.1, by taking the stability to be trivial,
β(k) = 1, and using uniform sampling wk = 1/m for all k ∈ [m].

D.2 Running time analysis under stability.

Theorem D.1 (Generalizes Theorem 3.2). Suppose U is β(k)-deletion stable and for all sets S ⊆ Z
of cardinality |S| = k, U(S) can be evaluated in time R(k); consider a set of positive weights
{wk : k ∈ [m]} and p ∈ [0, 1]. Algorithm 2 produces unbiased estimates of ν(z;U,D,m) that with
probability at least 1− δ are ε-accurate for all z ∈ Zp and runs in expected time

RTw(m) ≤ O

(
p · |Z| · log(|Z| /δ)

ε2m2
·

(
m∑
k=1

β(k)2

wk

)
·

(
m∑
k=1

wk ·R(k)

))

Proof. First, we bound the iteration complexity and time complexity to evaluate models at each
iteration within Algorithm 2. The running time bound then follows by the fact that we need to
evaluate a model per z ∈ Zp, per iteration where the expected cardinality of |Zp| = p · |Z|.

Abusing notation, denote by

∆zU(k) = E
S∼Dk−1

[U(S ∪ {z})− U(S)] .

Suppose we sample k according to a possibly non-uniform discrete distribution where Pr[k ∈ m] =
wk; we denote a random drawn from this distribution by k ∼ [m]w. Then, by sampling k ∼ [m]w,
computing ∆zU(S) for S ∼ Dk, and reweighting, we obtain an unbiased estimate of ν(z;U,D,m).

ν(z;U,D,m) = E
k∼[m]

[∆zU(k)]

=
1

m

m∑
k=1

∆zU(k)

=

m∑
k=1

wk
∆zU(k)

wkm

= E
k∼[m]w

[
∆zU(k)

wkm

]
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For simplicity, we analyze a sampling scheme where we sample Tk sets with cardinality k for
Tk ≥ wk · T . (By the multiplicative Chernoff bound, this event will occur with high probability.)
That is, for all z ∈ Z and for each k ∈ [m], we sample Tk subsets S ∼ Dk and compute ∆zU(S).
For each z ∈ Z, each such sample is an independent unbiased estimate of ∆zU(k), so reweighting
according to wk and averaging over k ∈ [m] gives an unbiased estimate of ν(z;U,D,m).

νT (z) =
1

T

m∑
k=1

Tk∑
t=1

∆zU(St)

wkm

Note that by β(k)-deletion stability, for each k, the terms in the summation associated with ∆zU(k)

are bounded in magnitude by β(k)
wkm

. Thus, we can apply Hoeffding’s inequality to derive the following
bound to obtain ε-error with probability at least 1− δ0.

δ0 ≥ 2 · exp

 −ε2T 2

2 ·
∑m

k=1

∑Tk
t=1

(
β(k)
wkm

)2


≥ 2 · exp

 −ε2T 2

2
m2 ·

∑m
k=1wk · T ·

(
β(k)
wk

)2


= 2 · exp

 −ε2m2T

2 ·
∑m

k=1
β(k)2

wk


Thus, taking the failure probability δ0 = δ/ |Z| small enough to union bound over all z ∈ Z, we
derive the following bound on T .

T ≥ Ω

(
log(|Z| /δ)
ε2m2

·
m∑
k=1

β(k)2

wk

)

Using this bound on T , we can compute the necessary running time for Algorithm 2 in terms of
R(k) per z ∈ Zp.

Tw(m) = T ·
m∑
k=1

wk ·R(k)

=
log(|Z| /δ)
ε2m2

·

(
m∑
k=1

β(k)2

wk

)
·

(
m∑
k=1

wk ·R(k)

)
Thus, we can compare various sampling schemes for different stability factors. Note that in the
case of the uniform sampling scheme, where wk = 1/m for all k ∈ [m], the sampling probabilities
cancel.

Tu(m) =
log(|Z| /δ)
ε2m2

·

(
m∑
k=1

β(k)2

1/m

)
·

(
m∑
k=1

1/m ·R(k)

)

=
log(|Z| /δ)
ε2m2

·

(
m∑
k=1

β(k)2

)
·

(
m∑
k=1

R(k)

)
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Thus, the overall running time is given asRTw(m) = p·|Z|· log(|Z|/δ)
ε2m2 ·

(∑m
k=1

β(k)2

wk

)
·(
∑m

k=1wk ·R(k)).

Concretely, to see the special case of the theorem stated as Theorem 3.2, suppose that β(k) = k−b

for b ≥ 1/2 and R(k) = kc for c ≥ 1. With these settings of the parameters, uniform sampling
takes time

Tu(m) =
log(|Z| /δ)
ε2m2

·

(
m∑
k=1

k−2b

)
·

(
m∑
k=1

kc

)

=
log(|Z| /δ)
ε2m2

·O(log(m)) ·O(mc+1)

≤ log(|Z| /δ)
ε2

· Õ
(
mc−1

)
.

Suppose, instead, we take wk ∝ k1−2b; that is, we choose wk such that the first summation will still
be bounded by Hm = Θ(log(m)). Under such a sampling scheme, the running time is bounded as

Tw(m) =
log(|Z| /δ)
ε2m2

·

(
m∑
k=1

k−1

)
·

(
m∑
k=1

kc+1−2b

)

=
log(|Z| /δ)
ε2m2

·O(log(m)) ·O(mc+2−2b)

≤ log(|Z| /δ)
ε2

· Õ
(
mc−2b

)
.

In other words, the biased sampling scheme allows us to save roughly a factor-m2b−1 in computation
time. Thus, if U is O(1/k)-deletion stable, then the biased sampling scheme saves roughly a factor
m in computation time.

D.3 Finite Sample Approximation to D

While the analysis of Theorem D.1 focuses on the running time of Algorithm 2, we can equally
interpret it as a sample complexity bound. In particular, taking R(k) = k corresponds to the
sample complexity of taking a fresh sample S ∼ Dk per iteration. Thus, using Algorithm 2, the
naive sample complexity given by resampling for each iteration gives the bound of

M ≈ log(|Z| /δ)
ε2m2

·

(
m∑
k=1

β(k)2

wk

)
·

(
m∑
k=1

wk · k

)

Taking β(k) = wk = 1/k yields

M ≈ log(|Z| /δ)
ε2m

·

(
m∑
k=1

1

k

)

≈ log(m) · log(|Z| /δ)
ε2m
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E Empirical Performance

E.1 Empirical performance of speed-up methods

Following the point removal experiment in [GZ19], for Adult Income prediction task and the
UK Biobank breast cancer prediction task, we examine each speed-up trick’s (interpolation and
biased sampling) for different levels of computational savings. To have an extensive view of the
performance of these methods, we examine each task using four different predictive models. As
it is shown in Fig. 1, there is no significant drop in performance by making the computation of
D-Shapley even 10 times faster using either of the tricks.

E.2 Speeding-up Distributional Shapley for Cifar10

In this experiment, we apply both speed-up methods to compute the D-Shapley values for Cifar10
dataset. We use biased sampling with a speed-up factor of 10 and interpolation with a speed-up
factor of 50 (we compute values for 1000 data points). The model is an Inception-v3 [SVI+16]
model pretrained on ILSVRC2012 (Imagenet) [RDS+15] dataset with all layers frozen except the
last layer. Fig. 2 shows the point-removal results for the complete dataset (e.g. removing 50% of
the points with the highest D-Shapley value drops the prediction accuracy from 77% to 68%.)

F Case Study

We report the complete results for Section 4 experimental setting. As mentioned, we use four
large scale datasets from the UCI repository [DG17]: 1- Covertype dataset with 581012 samples
where each sample contains 54 visual features of forest images and the task is to detect the type
of forest cover (from a set of 7 different covers). We use a Random Forest model. 2- Diabetes130
dataset [SDG+14] that with 100000 samples. Each sample containts 54 patient and hospital fea-
tures. The task is to predict whether the patient will be readmitted to the hospital. We use an
AdaBoost model. 3- Wearable Computing: Classification of Body Postures and Movements (PUC-
Rio) Data Set which has 165632 points where each point has 18 attributes and has one of the 5
postures. We use a multinomial logistic regression model. 4- Dataset for Sensorless Drive Diagnosis
Data Set that contains 58509 data points. Each data point has 48 features. The dataset has 11
classes. We use a Gradient Boosting model.
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Figure 1: Speedup performance For two ML tasks, we apply the interpolation and biased
sampling speed-up tricks separately. Here we depict the performance (in rank correlation and R2

coefficient metrics) of this two methods for the two tasks. For each task, results for four different
learning algorithms are shown. We also show the point removal experiment introduced in [GZ19]
for several levels of computational cost.
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Figure 2: Fast-D-Shpaley for CIFAR10
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Figure 3: Consistent data pricing Points from an acquired set are added to the buyer’s initial
dataset in three different orders: according to ν (D-Shapley), according to φ (TMC), and randomly.
The plot shows the change in the accuracy of the model, relative to its performance using the buyer’s
initial dataset, as the points are added; shading indicates standard error of the mean.
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