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Abstract
Shapley value is a classic notion from game the-
ory, historically used to quantify the contributions
of individuals within groups, and more recently
applied to assign values to data points when train-
ing machine learning models. Despite its founda-
tional role, a key limitation of the data Shapley
framework is that it only provides valuations for
points within a fixed data set. It does not account
for statistical aspects of the data and does not give
a way to reason about points outside the data set.
To address these limitations, we propose a novel
framework – distributional Shapley – where the
value of a point is defined in the context of an
underlying data distribution. We prove that distri-
butional Shapley has several desirable statistical
properties; for example, the values are stable un-
der perturbations to the data points themselves
and to the underlying data distribution. We lever-
age these properties to develop a new algorithm
for estimating values from data, which comes
with formal guarantees and runs two orders of
magnitude faster than state-of-the-art algorithms
for computing the (non-distributional) data Shap-
ley values. We apply distributional Shapley to
diverse data sets and demonstrate its utility in a
data market setting.

1. Introduction
As data becomes an essential driver of innovation and ser-
vice, how to quantify the value of data is an increasingly
important topic of inquiry with policy, economic, and ma-
chine learning (ML) implications. In the policy arena, recent
proposals, such as the Dashboard Act in the U.S. Senate,
stipulate that large companies quantify the value of data

*Equal contribution 1Department of Electrical Engineering,
Stanford University, CA, USA 2Department of Computer Science,
Stanford University, CA, USA 3Department of Biomedical Data
Science, Stanford University, CA, USA. Correspondence to: James
Zou <jamesz@stanford.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

they collect. In the global economy, the business model of
many companies involves buying and selling data. For ML
engineering, it is often beneficial to know which type of
training data is most valuable and, hence, most deserving of
resources towards collection and annotation. As such, a prin-
cipled framework for data valuation would be tremendously
useful in all of these domains.

Recent works initiated a formal study of data valuation in
ML (Ghorbani & Zou, 2019; Jia et al., 2019b). In a typical
setting, a data set B = {zi} is used to train a ML model,
which achieves certain performance, say classification ac-
curacy 0.9. The data valuation problem is to assign credit
amongst the training set, so that each point gets an “equi-
table” share for its contribution towards achieving the 0.9
accuracy. Most works have focused on leveraging Shapley
value as the metric to quantify the contribution of individual
zi. The focus on Shapley value is in large part due to the fact
that Shapley uniquely satisfies basic properties for equitable
credit allocation (Shapley, 1953). Empirical experiments
also show that data Shapley is very effective – more so than
leave-one-out scores – at identifying points whose addition
or removal substantially impacts learning (Ghorbani et al.,
2017; Ghorbani & Zou, 2019).

At a high-level, prior works on data Shapley require three
ingredients: (1) a fixed training data set of m points; (2) a
learning algorithm; and (3) a performance metric that mea-
sures the overall value of a trained model. The goal of this
work is to significantly reduce the dependency on the first in-
gredient. While convenient, formulating the value based on
a fixed data set disregards crucial statistical considerations
and, thus, poses significant practical limitations.

In standard settings, we imagine that data is sampled from a
distribution D; measuring the Shapley value with respect to
a fixed data set ignores this underlying distribution. It also
means that the value of a data point computed within one
data set may not make sense when the point is transferred
to a new data set. If we actually want to buy and sell data,
then it is important that the value of a given data point
represents some intrinsic quality of the datum within the
distribution. For example, a data seller might determine that
z has high value based on their data set Bs and sell z to
a buyer at a high price. Even if the buyer’s data set Bb is
drawn from a similar distribution as Bs, the existing data
Shapley framework provides no guarantee of consistency
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between the value of z computed within Bs and within Bb.
This inconsistency may be especially pronounced in the case
when the buyer has significantly less data than the seller.

OUR CONTRIBUTIONS.

Conceptual: Extending prior works on data Shapley, we
formulate and develop a notion of distributional Shapley
value in Section 2. We define the distributional variant in
terms of the original data Shapley: the distributional Shap-
ley value is taken to be the expected data Shapley value,
where the data set is drawn i.i.d. from the underlying data
distribution. Reformulating this notion of value as a statisti-
cal quantity allows us to prove that the notion is stable with
respect to perturbations to the inputs as well as the under-
lying data distribution. Further, we show a mathematical
identity that gives an equivalent definition of distributional
Shapley as an expected marginal performance increase by
adding the point, suggesting an unbiased estimator.

Algorithmic: In Section 3, we develop this estimator into
a novel sampling-based algorithm, D-SHAPLEY. In con-
trast to prior estimation heuristics, D-SHAPLEY comes with
strong formal approximation guarantees. Leveraging the
stability properties of distributional Shapley value and the
simple nature of our algorithm, we develop theoretically-
principled optimizations to D-SHAPLEY. In our experi-
ments across diverse tasks, the optimizations lead to order-
of-magnitude reductions in computational costs while main-
taining the quality of estimations.

Empirical: Finally, in Section 4, we present a data pric-
ing case study that demonstrates the consistency of values
produced by D-SHAPLEY. In particular, we show that a
data broker can list distributional Shapley values as “prices,”
which a collection of buyers all agree are fair (i.e. the data
gives each buyer as much value as the seller claims). In
all, our results demonstrate that the distributional Shapley
framework represents a significant step towards the practical
viability of the Shapley-based approaches to data valuation.

Related works. Shapley value, introduced in (Shapley,
1953), has been studied extensively in the literature on co-
operative games and economics (Shapley et al., 1988), and
has traditionally been used in the valuation of private infor-
mation and data markets (Kleinberg et al., 2001; Agarwal
et al., 2019).

Our work follows recent works that apply Shapley value
to the data valuation problem. (Ghorbani & Zou, 2019)
developed the notion of “Data Shapley” and provided two
algorithms to efficiently estimate values. Specifically, lever-
aging the permutation-based characterization of Shapley
value, they developed a “truncated Monte Carlo” sampling
scheme (referred to as TMC-SHAPLEY), demonstrating em-
pirical effectiveness across various ML tasks. (Jia et al.,

2019b) gave several additional methods for efficient approx-
imation of Shapley values for training data; subsequently,
(Jia et al., 2019a) provided an exact algorithm for computa-
tion of Shapley values for nearest neighbor classifiers.

Beyond data valuation, the Shapley framework has been
used in a variety of ML applications, e.g. as a measure of fea-
ture importance (Cohen et al., 2007; Kononenko et al., 2010;
Datta et al., 2016; Lundberg & Lee, 2017; Chen et al., 2018).
The idea of a distributional Shapley value bears resemblance
to the Aumann-Shapley value (Aumann & Shapley, 1974),
a measure-theoretic variant of Shapley that quantifies the
value of individuals within a continuous “infinite game.”
Our distributional Shapley value focuses on the tangible
setting of finite data sets drawn from a (possibly continuous)
distribution.

2. Distributional Data Valuation
Preliminaries.

Let D denote a data distribution supported on a universe Z .
For supervised learning problems, we often think of Z =
X × Y where X ⊆ Rd and Y is the output, which can be
discrete or continuous. Form ∈ N, let S ∼ Dm a collection
of k data points sampled i.i.d. from D. Throughout, we use
the shorthand [m] = {1, . . . ,m} and let k ∼ [m] denote a
uniform random sample from [m].

We denote by U : Z� → [0, 1] a potential function1 or
performance metric, where for any S ⊆ Z , U(S) represents
abstractly the value of the subset. While our analysis applies
broadly, in our context, we think of U as capturing both the
learning algorithm and the evaluation metric. For instance,
in the context of training a logistic regression model, we
might think of U(S) as returning the population accuracy
of the empirical risk minimizer when S is the training set.

2.1. Distributional Shapley Value

Our starting point is the data Shapley value, proposed in
(Ghorbani & Zou, 2019; Jia et al., 2019b) as a way to valuate
training data equitably.
Definition 2.1 (Data Shapley Value). Given a potential
function U and data set B ⊆ Z where |B| = m, the data
Shapley value of a point z ∈ B is defined as

φ(z;U,B) ,
1

m

mX
k=1

1�
m�1
k�1

� X
S�Bnfzg:
jSj=k�1

(U(S ∪ {z})− U(S)) .

In words, the data Shapley value of a point z ∈ B is a
weighted empirical average over subsets S ⊆ B of the

1We use Z∗ =
⋃

n∈N Z
n to indicates any finite Cartesian

product of Z with itself; thus, U is well-defined on the any natural
number of inputs from Z .
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marginal potential contribution of z to each S; the weight-
ing is such that each possible cardinality |S| = k ∈
{0, . . . ,m− 1} is weighted equally. The data Shapley value
satisfies a number of desirable properties; indeed, it is the
unique valuation function that satisfies the Shapley axioms2.
Note that as the data set size grows, the absolute magnitude
of individual data points’ values typically scales inversely.

While data Shapley value is a natural solution concept for
data valuation, its formulation leads to several limitations.
In particular, the values may be very sensitive to the exact
choice of B; given another B0 6= B where z ∈ B ∩B0, the
value φ(z;U,B) might be quite different from φ(z;U,B0).
At the extreme, if a new point z0 6∈ B is added to B, then in
principle, we would have to rerun the procedure to compute
the data Shapley values for all points in B ∪ {z0}.

In settings where our data are drawn from an underlying dis-
tributionD, a natural extension to the data Shapley approach
would parameterize the valuation function by D, rather than
the specific draw of the data set. Such a distributional Shap-
ley value should be more stable, by removing the explicit
dependence on the draw of the training data set.

Definition 2.2 (Distributional Shapley Value). Given a po-
tential function U : Z� → [0, 1], a distributionD supported
on Z , and some m ∈ N, the distributional Shapley value of
a point z ∈ Z is the expected data Shapley value over data
sets of size m containing x.

ν(z;U,D,m) , E
B�Dm�1

[φ (z;U,B ∪ {z})]

In other words, we can think of the data Shapley value
as a random variable that depends on the specific draw
of data from D. Taking the distributional Shapley value
ν(z;U,D,m) to be the expectation of this random variable
eliminates instability caused by the variance of φ(z;U,B).
While distributional Shapley is simple to state based on the
original Shapley value, to the best of our knowledge, the
concept is novel to this work.

We note that, while more stable, the distributional Shapley
value inherits many of the desirable properties of Shapley,
including the Shapley axioms and an expected efficiency
property; we cover these in Appendix A. Importantly, dis-
tributional Shapley also has a clean characterization as the
expected gain in potential by adding z ∈ Z to a random
data set (of random size).

Theorem 2.3. Fixing U and D, for all z ∈ Z and m ∈ N,

ν(z;U,D,m) = E
k�[m]

S�Dk�1

[U(S ∪ {z})− U(S)]

That is, the distributional Shapley value of a point is its

2For completeness, the axioms – symmetry, null player, addi-
tivity, and efficiency – are reviewed in Appendix A.

expected marginal contribution in U to a set of i.i.d. samples
from D of uniform random cardinality.

The identity holds as a consequence of the definition of data
Shapley value and linearity of expectation.

Proof.

ν(z;U,D,m) = E
D�Dm�1

[φ(z;U,D ∪ {z})]

= E
D�Dm�1

2664 1

m

mX
k=1

1�
m�1
k�1

� X
S�D:
jSj=k�1

(U(S ∪ {z})− U(S))

3775

=
1

m

mX
k=1

1�
m�1
k�1

� E
D�Dm�1

2664 X
S�D:
jSj=k�1

(U(S ∪ {z})− U(S))

3775
=

1

m

mX
k=1

E
S�Dk�1

[U(S ∪ {z})− U(S)] (1)

= E
k�[m]

S�Dk�1

[U(S ∪ {z})− U(S)]

where (1) follows by the fact that D ∼ Dm�1 consists of
i.i.d. samples, so each S ⊆ D with |S| = k−1 is identically
distributed according to Dk�1.

Example: mean estimation. Leveraging this characteri-
zation, for well-structured problems, it is possible to give
analytic expressions for the distributional Shapley values.
For instance, consider estimating the mean µ of a distribu-
tion D supported on Rd. For a finite subset S ⊆ Rd, we
take a potential U(S) based on the empirical estimator µ̂S .

Uµ(S) = E
s�D

h
‖s− µ‖2

i
− ‖µ̂S − µ‖2

Proposition 2.4. Suppose D has bounded second moments.
Then for z ∈ Z and m ∈ N, ν(z;Uµ,D,m) for mean
estimation over D is given by

ES�Dm [U(S)]

m
+
Cm
m
·
�

E
s�D

h
‖s− µ‖2

i
− ‖z − µ‖2

�
for an explicit constant Cm = Θ(1) determined by m.

Intuitively, this proposition (proved in Appendix B) high-
lights some desirable properties of distributional Shapley:
the expected value for a random z ∼ D is an uniform share
of the potential for a randomly drawn data set S ∼ Dm;
further, a point has above-average value when it is closer to
µ than expected. In general, analytically deriving the distri-
butional Shapley value may not be possible. In Section 3,
we show how the characterization of Theorem 2.3 leads to
an efficient algorithm for estimating values.



A Distributional Framework for Data Valuation

2.2. Stability of distributional Shapley values

Before presenting our algorithm, we discuss stability proper-
ties of distributional Shapley, which are interesting in their
own right, but also have algorithmic implications. We show
that when the potential function U satisfies a natural stabil-
ity property, the corresponding distributional Shapley value
inherits stability under perturbations to the data points and
the underlying data distribution. First, we recall a standard
notion of deletion stability, often studied in the context of
generalization of learning algorithms (Bousquet & Elisseeff,
2002).

Definition 2.5 (Deletion Stability). For potentialU : Z� →
[0, 1] and non-increasing β : N→ [0, 1], U is β(k)-deletion
stable if for all k ∈ N and S ∈ Zk�1, for all z ∈ Z

|U(S ∪ {z})− U(S)| ≤ β(k).

We can similarly discuss the idea of replacement stability,
where we bound |U(S ∪ {z})− U(S ∪ {z0})|; note that by
the triangle inequality, β(k)-deletion stability of U implies
2β(k)-replacement stability. To analyze the properties of
distributional Shapley, a natural strengthening of replace-
ment stability will be useful, which we call Lipschitz sta-
bility. Lipschitz stability is parameterized by a metric d,
requires the degree of robustness under replacement of z
with z0 to scale according to the distance d(z, z0).

Definition 2.6 (Lipschitz Stability). Let (Z, d) be a metric
space. For potential U : Z� → [0, 1] and non-increasing
β : N→ [0, 1], U is β(k)-Lipschitz stable with respect to d
if for all k ∈ N, S ∈ Zk�1, and all z, z0 ∈ Z ,

|U(S ∪ {z})− U(S ∪ {z0})| ≤ β(k) · d(z, z0).

By taking d to be the trivial metric, where d(z, z0) = 1
if z 6= z0, we see that Lipschitz-stability generalizes the
idea of replacement stability; still, there are natural learning
algorithms that satisfy Lipschitz stability for nontrivial met-
rics. As one example, we show that Regularized empirical
risk minimization over a Reproducing Kernel Hilbert Space
(RKHS) – a prototypical example of a replacement stable
learning algorithm – also satisfies this stronger notion of
Lipschitz stability. We include a formal statement and proof
in Appendix C.

Similar distributions yield similar value functions.
The distributional Shapley value is naturally parameterized
by the underlying data distribution D. For two distributions
Ds andDt, given the value ν(z;U,Ds,m), what can we say
about the value ν(z;U,Dt,m)? Intuitively, if Ds and Dt
are similar under an appropriate metric, we’d expect that the
values should not change too much. Indeed, we can formally
quantify how the distributional Shapley value is stable under

distributional shift under the Wasserstein distance.3

Theorem 2.7. Fix a metric space (Z, d) and let U : Z� →
[0, 1] be β(k)-Lipschitz stable with respect to d. SupposeDs
and Dt are two distributions over Z . Then, for all m ∈ N
and all z ∈ Z ,

|ν(z;U,Ds,m)− ν(z;U,Dt,m)|

≤ 2

m

m�1X
k=1

kβ(k) ·W1(Ds,Dt).

The proof of Theorem 2.7 is included in Appendix C. Note
that the theorem bounds the difference in values under shifts
in distribution holding the potential U fixed. Often in ap-
plications, we will take the potential function to depend on
the underlying data distribution. For instance, we may take
UD(S) = Ez�D [`S(z)] to be a measure of population accu-
racy, where `S(z) is the loss on a point z ∈ Z achieved by a
model trained on the data set S ⊆ Z . In the case where we
only have access to samples from Ds, we still may want to
guarantee that ν(z;UDs ,Ds,m) and ν(z;UDt ,Dt,m) are
close. Thankfully, such a result follows by showing that
UDs

is close to UDt
. For completeness, we formalize this

argument in Appendix C.

Similar points receive similar values. As discussed, a
key limitation with the data Shapley approach for fixed
data set B is that we can only ascribe values to z ∈ B.
Intuitively, however, we would hope that if two points z and
z0 are similar according to some appropriate metric, then
they would receive similar Shapley values. We confirm this
intuition for distributional Shapley values when the potential
function U satisfies Lipschitz stability.
Theorem 2.8. Fix a metric space (Z, d) and a distribution
D over Z; let U : Z� → [0, 1] be β(k)-Lipschitz stable
with respect to d. Then for all m ∈ N, for all z, z0 ∈ Z ,

|ν(z;U,D,m)− ν(z0;U,D,m)| ≤ E
k�[m]

[β(k)] · d(z, z0).

Proof. For any data set size m ∈ N, we expand
ν(z0;U,D,m) to express it in terms of ν(z;U,D,m).

ν(z0;U,D,m) = E
k�[m]

S�Dk�1

[U(S ∪ {z0})− U(S)]

= E
k�[m]

S�Dk�1

[U(S ∪ {z})− U(S)]

+ E
k�[m]

S�Dk�1

[U(S ∪ {z0})− U(S ∪ {z})]

≤ ν(z;U,D,m) + E
k�[m]

[β(k)] · d(z, z0) (2)

3Fixing a metric d over Z , the Wasserstein distance over two
distributions Ds,Dt is the infimum over all couplings γ 2 �st of
the expected distance between (s, t) � γ.
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where (2) follows by the assumption thatU is � (k)-
Lipschitz stable and linearity of expectation.

Theorem 2.8 suggests that in many settings of interest, the
distributional Shapley value will be Lipschitz inz. This
Lipschitz property also suggests that, given the values of a
(suf�ciently-diverse) set of pointsZ , we may be able to infer
the values of unseen pointsz0 62Z through interpolation.
Concretely, in Section 3.1, we leverage this observation
to give an order of magnitude speedup over our baseline
estimation algorithm.

3. Ef�ciently Estimating Distributional
Shapley Values

Here, we describe an estimation procedure,D-SHAPLEY,
for computing distributional Shapley values. To begin, we
assume that we can actually sample from the underlyingD.
Then, in Section 3.1, we propose techniques to speed up the
estimation and look into the practical issues of obtaining
samples from the distribution. The result of these consid-
erations is a practically-motivated variant of the estimation
procedure,FAST-D-SHAPLEY. In Section 3.2, we investi-
gate how these optimizations perform empirically; we show
that the strategies provide a way to smoothly trade-off the
precision of the valuation for computational cost.

Obtaining unbiased estimates. The formulation from
Theorem 2.3 suggests a natural algorithm for estimating the
distributional Shapley values of a set of points. In particular,
the distributional Shapley value� (z; U;D; m) is the expec-
tation of the marginal contribution ofz to S � Z on U,
drawn from a speci�c distribution over data sets. Thus, the
change in performance when we add a pointz to a data set
S drawn from the correct distribution will be an unbiased
estimate of the distributional Shapley value. Consider the
Algorithm 1,D-SHAPLEY, which given a subsetZ0 � Z
of data, maintains for eachz 2 Z0 a running average of
U(S [ f zg) � U(S) over randomly drawnS.

In each iteration, Algorithm 1 uses a �xed sampleSt to
estimate the marginal contribution toU(St [ f zg) � U(St )
for eachz 2 Z . This reuse correlates the estimation errors
between points inZ , but provides computational savings.
Recall that each evaluation ofU(S) requires training a ML
model using the points inS; thus, using the sameS for each
z 2 Z reduces the number of models to be trained byjZ j per
iteration. In cases where theU(S [ f zg) can be derived ef�-
ciently fromU(S), the savings may be even more dramatic;
for instance, given a machine-learned model trained onS, it
may be signi�cantly cheaper to derive a model trained on
S [ f zg than retraining from scratch (Ginart et al., 2019).

The running time of Algorithm 1 can naively be upper
bounded by the product of the number of iterations before

Algorithm 1 D-SHAPLEY

Fix: potentialU : Z � ! [0; 1]; distributionD; m 2 N
Given: data setZ � Z to valuate; # iterationsT 2 N

for z 2 Z do
� 1(z)  0 // initialize estimates

end for
for t = 1 ; : : : ; T do

SampleSt � D k � 1 for k � [m]
for z 2 Z do

� zU(St )  U(St [ f zg) � U(St )
� t +1 (z)  1

t � � zU(St ) + t � 1
t � � t (z)

// update unbiased estimate
end for

end for
return f (z; � T (z)) : z 2 Z g

terminationT, the cardinalityjZ j of the points to valuate,
and the expected time to evaluateU on data sets of size
k � [m]. We analyze the iteration complexity necessary to
achieve"-approximations of� (z; U;D; m) for eachz 2 Z .

Theorem 3.1. Fixing a potentialU and distributionD, and

Z � Z , supposeT � 

�

log( jZ j=� )
" 2

�
. Algorithm 1 pro-

duces unbiased estimates and with probability at least1� � ,
j� (z; U;D; m) � � T (z)j � " . for all z 2 Z .

Remark. When understanding this (and future) formal ap-
proximation guarantees, it is important to note that we
take" to be anabsoluteadditive error. Recall, however,
that � (z; U;D; m) is normalized bym; thus, as we takem
larger, therelativeerror incurred by a �xed" error grows.
In this sense," should typically scale inversely asO(1=m).

The claim follows by proving uniform convergence of the
estimates for eachz 2 Z . Importantly, while the samples in
each iteration are correlated acrossz; z0 2 Z , �xing z 2 Z ,
the samples� zU(St ) are independent across iterations. We
include a formal analysis in Appendix D.

3.1. Speeding upD-Shapley: theoretical and practical
considerations

Next, we propose two principled ways to speed up the base-
line estimation algorithm. Under stability assumptions, the
strategies maintain strong formal guarantees on the quality
of the learned valuation. We also develop some guiding
theory addressing practical issues that arise from the need
to sample fromD. Somewhat counterintuitively, we argue
that given only a �xed �nite data setB � D M , we can still
estimate values� (z; U;D; m) to high accuracy, forM that
grows modestly withm.

Subsampling data and interpolation. Theorem 2.8
shows that for suf�ciently stable potentialsU, similar points
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have similar distributional Shapley values. This property of
distributional Shapley values is not only useful for inferring
the values of pointsz 2 Z that were not in our original
data set, but also suggests an approach for speeding up the
computations of values for a �xedZ � Z . In particular, to
estimate the values forz 2 Z (with respect to a suf�ciently
Lipschitz-stable potentialU) to O(")-precision, it suf�ces
to estimate the values for an"-cover ofZ , and interpolate
(e.g. via nearest neighbor search). Standard arguments show
that random sampling is an effective way to construct an
"-cover (Har-Peled, 2011).

As our �rst optimization, in Algorithm 2, we reduce the
number of points to valuate through subsampling. Given
a data setZ to valuate, we �rst choose a random subset
Zp � Z (where eachz 2 Z is subsampled intoZp i.i.d. with
some probabilityp); then, we run our estimation procedure
on the points inZp; �nally, we train a regression model
on (z; � T (z)) pairs fromZp to predict the values of the
points fromZ n Zp. By varying the choice ofp 2 [0; 1], we
can trade-off running time for quality of estimation:p � 1
recovers the originalD-SHAPLEY scheme, whereasp � 0
will be very fast but likely produce noisy valuations.

Importance sampling for smaller data sets. To under-
stand the running time of Algorithm 1 further, we denote
the time to evaluateU on a set of cardinalityk 2 N by
R(k).4 As such, we can express the asymptotic expected
running time asjZ j � T � Ek � [m ] [R(k)]. Note that when
U(S) corresponds to the accuracy of a model trained onS,
the complexity of evaluatingU(S) may grow signi�cantly
with jSj. At the same time, as the data set sizek grows, the
marginal effect of addingz 2 Z to the training set tends
to decrease; thus, we should need fewer large samples to
accurately estimate the marginal effects. Taken together,
intuitively, biasing the sampling ofk 2 [m] towards smaller
training sets could result in a faster estimation procedure
with similar approximation guarantees.

Concretely, rather than samplingk � [m] uniformly, we
can importance sample eachk proportional to some non-
uniform weightsf wk : k 2 [m]g, where the weights de-
crease for largerk. More formally, we weight the draw
of k based on the stability ofU. Algorithm 2 takes as in-
put a set of importance weightsw = f wk g and samples
k proportionally; without loss of generality, we assumeP

k wk = 1 and letk � [m]w denote a sample drawn such
that Pr[k] = wk . We show that for the right choice of
weightsw, samplingk � [m]w improves the overall run-
ning time, while maintaining"-accurate unbiased estimates
of the values� (z; U;D; m).

Theorem 3.2(Informal). SupposeU is O(1=k)-deletion

4We assume that the running time to evaluateU(S) is a func-
tion of the cardinality ofS (and not other auxiliary parameters).

stable and can be evaluated on sets of cardinalityk in time
R(k) � 
( k). For p 2 [0; 1] andw = f wk / 1=kg, Algo-
rithm 2 produces estimates that with probability1 � � , are
"-accurate for allz 2 Zp and runs in expected time

RTw (m) � ~O
�

p � jZ j �
log(jZ j =� ) � R(m)

"2m2

�
:

To interpret this result, note that if the subsampling prob-
ability p is large enough thatZp will " -coverZ , then us-
ing a nearest-neighbor predictor asR will produceO(")-
estimates for allz 2 Z . Further, if we imagine" = �(1 =k),
then the computational cost grows as the time it takes to
train a model onm points scaled by a factor logarithmic
in jZ j and the failure probability. In fact, Theorem 3.2 is
a special case of a more general theorem that provides a
recipe for devising an appropriate sampling scheme based
on the stability of the potentialU. In particular, the general
theorem (stated and proved in Appendix D) shows that the
more stable the potential, the more we can bias sampling in
favor of smaller sample sizes.

Estimating distributional Shapley from data. Estimat-
ing distributional Shapley values� (z; U;D; m) requires
samples from the distributionD. In practice, we often
want evaluate the values with respect to a distributionD
for which we only have some databaseB � D M for some
large (but �nite)M 2 N. In such a setting, we need to be
careful; indeed, avoiding artifacts from a single draw of data
is the principle motivation for introducing the distributional
Shapley framework. In fact, the analysis of Theorem 3.2
also reveals an upper bound on how big the database should
be in order to obtain accurate estimates with respect toD.
As a concrete bound, ifU is O(1=k)-deletion stable and we
take" = �(1 =m) error, then the database need only be

M � ~O (m � log(jZ j =� )) :

In other words, for a suf�ciently stable potentialU, the data
complexity grows modestly withm. Note that, again, this
bound leverages the fact that in every iteration, we reuse the
same sampleSt � D k for eachz 2 Z . See Appendix D for
a more detailed analysis.

In practice, we �nd that sampling subsets of data from the
database with replacement works well; we describe the full
procedure in Algorithm 2, where we denote an i.i.d. sample
of k points drawn uniformly from the database asS � B k .
Finally, we note that ideally,m should be close to the size
of the training sets that model developers to use; in practice,
these data set sizes may vary widely. One appealing aspect
of bothD-SHAPLEY algorithms is that when we estimate
values with respect tom, the samples we obtain also allow
us to simultaneously estimate� (z; U;D; m0) for anym0 �
m. Indeed, we can simply truncate our estimates to only
include samples corresponding toSt with jSt j � m0.
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Algorithm 2 FAST-D-SHAPLEY

Fix: potentialU : Z � ! [0; 1]; distributionD; m 2 N
Given: valuation setZ � Z ; databaseB � D M ; # it-
erationsT 2 N; subsampling ratep 2 [0; 1]; importance
weightsf wk g; regression algorithmR

SubsampleZp � Z s.t.z 2 Zp w.p.p for all z 2 Z
for z 2 Zp do

� 1(z)  0 // initialize estimates
end for
for t = 1 ; : : : ; T do

SampleSt � B k � 1 for k � [m]w
for z 2 Zp do

� zU(St )  U(St [ f zg) � U(St )
� t +1 (z)  1

t � � z U (St )
wk m + t � 1

t � � t (z)
// update unbiased estimate

end for
end for
h  R (f (z; � T (z)) : z 2 Zpg)

// regress on (z,val(z)) pairs
return f (z; h(z)) : z 2 Z g

3.2. Empirical performance

We investigate the empirical effectiveness of the distribu-
tional Shapley framework by running experiments in three
settings on large real-world data sets.5 The �rst setting uses
the UK Biobank data set, containing the genotypic and phe-
notypic data of individuals in the UK (Sudlow et al., 2015);
we evaluate a task of predicting whether the patient will be
diagnosed with breast cancer using 120 features. Overall,
our data has 10K patients (5K diagnosed positively); we use
9K patients as our database (B ), and take classi�cation ac-
curacy on a hold-out set of 500 patients as the performance
metric (U). The second data set is Adult Income where the
task is to predict whether income exceeds$50K/yr given 14
personal features (Dua & Graff, 2017). With 50K individ-
uals total, we use 40K as our database, and classi�cation
accuracy on 5K individuals as our performance metric. In
these two experiments, we take the maximum data set size
m = 1K andm = 5K, respectively.

For both settings, we �rst runD-SHAPLEY without opti-
mizations as a baseline. As a point of comparison, in these
settings the computational cost of this baseline is on the
same order as running theTMC-SHAPLEY algorithm of
(Ghorbani & Zou, 2019) that computes the data Shapley
values� (z; U; B) for eachz in the data setB .

We evaluate the effectiveness of the proposed optimizations,
using importance sampling and interpolation (separately),
for different levels of computational savings, by varying

5Code is available on Github athttps://github.com/
amiratag/DistributionalShapley

Figure 1.Point removal performance.Given a data set and task,
we iteratively a point, retrain the model, and evaluate its perfor-
mance. Each curve corresponds to a different point removal order,
based on the estimated distributional Shapley values (compared to
random). For example, the10% curve correspond to estimating
values with10%of the baseline computation of Algorithm 1. We
plot classi�cation accuracy vs. fraction of data points removed
from the training set, for each task and each optimization method.

the weightsf wk g and subsampling probabilityp. All algo-
rithms are truncated when the average absolute change in
value in the past100iterations is less than1%.

To evaluate the quality of the distributional Shapley esti-
mates, we perform a point removal experiment, as proposed
by (Ghorbani & Zou, 2019), where given a training set, we
iteratively remove points, retrain the model, and observe
how the performance changes. In particular, we remove
points from most to least valuable (according to our esti-
mates), and compare to the baseline of removing random
points. Intuitively, removing high value data points should
result in a more signi�cant drop in the model's performance.
We report the results of this point removal experiment using
the values determined using the baseline Algorithm 1, as
well as various factor speed-ups (wheret% refers to the
computational cost compared to baseline).

As Figure 1 demonstrates, when training a logistic regres-
sion model, removing the high distributional Shapley valued
points causes a sharp decrease in accuracy on both tasks,
even when using the most aggressive weighted sampling and
interpolation optimizations. Appendix E reports the results
for various other models. As a �ner point of investigation,
we report the correlation between the estimated values with-


