PoWER-BERT: Accelerating BERT Inference via
Progressive Word-vector Elimination

Saurabh Goyal! Anamitra Roy Choudhury' Saurabh M. Raje! Venkatesan T. Chakaravarthy '
Yogish Sabharwal ! Ashish Verma 2

Abstract

We develop a novel method, called POWER-BERT,
for improving the inference time of the pop-
ular BERT model, while maintaining the accu-
racy. It works by: a) exploiting redundancy
pertaining to word-vectors (intermediate trans-
former block outputs) and eliminating the re-
dundant vectors. b) determining which word-
vectors to eliminate by developing a strategy for
measuring their significance, based on the self-
attention mechanism. c¢) learning how many
word-vectors to eliminate by augmenting the
BERT model and the loss function. Experiments
on the standard GLUE benchmark shows that
PoOWER-BERT achieves up to 4.5x reduction in
inference time over BERT with < 1% loss in
accuracy. We show that PoWER-BERT offers
significantly better trade-off between accuracy
and inference time compared to prior methods.
We demonstrate that our method attains up to
6.8x reduction in inference time with < 1%
loss in accuracy when applied over ALBERT, a
highly compressed version of BERT. The code
for POWER-BERT is publicly available at https:
//github.com/IBM/PoWER-BERT.

1. Introduction

The BERT model (Devlin et al.| [2019) has gained popular-
ity as an effective approach for natural language process-
ing. It has achieved significant success on standard bench-
marks such as GLUE (Wang et al) 2019a) and SQuAD
(Rajpurkar et al.| 2016), dealing with sentiment classifica-
tion, question-answering, natural language inference and

"IBM Research, New Delhi, India 2IBM Research, York-
town, New York, USA. Correspondence to: Saurabh Goyal
<sauragol @in.ibm.com, saurabhiit2007 @gmail.com>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

language acceptability tasks. The model has been used in
applications ranging from text summarization (Liu & La-
pata, |2019) to biomedical/insight text mining (Palakodety
et al., [2020; |Lee et al., [2019).

The BERT model consists of an embedding layer, a chain
of transformer blocks and an output layer. The input words
are first embedded as vectors, which are then processed by
the pipeline of transformer blocks and the final prediction
is derived at the output layer (see Figure [T). The model
is known to be compute intensive, resulting in high infras-
tructure demands and latency, whereas low latency is vital
for a good customer experience. Therefore, it is crucial to
design methods that reduce the computational demands of
BERT in order to successfully meet the latency and resource
requirements of a production environment.

Consequently, recent studies have focused on optimizing
two fundamental metrics: model size and inference time.
The recently proposed ALBERT (Lan et al.l |2019) achieves
significant compression over BERT by sharing parameters
across the transformer blocks and decomposing the embed-
ding layer. However, there is almost no impact on the in-
ference time, since the amount of computation remains the
same during inference (even though training is faster).

Other studies have aimed for optimizing both the met-
rics simultaneously. Here, a natural strategy is to re-
duce the number of transformer blocks and the idea has
been employed by DistilBERT (Sanh et al.l 2019b) and
BERT-PKD (Sun et al., 2019b) within the knowledge distil-
lation paradigm. An alternative approach is to shrink the in-
dividual transformer blocks. Each transformer block com-
prises of multiple self-attention heads and the Head-Prune
strategy (Michel et al.l 2019b) removes a fraction of the
heads by measuring their significance. In order to achieve
considerable reduction in the two metrics, commensurate
number of transformer blocks/heads have to be pruned, and
the process leads to noticeable loss in accuracy. The above
approaches operate by removing the redundant model pa-
rameters using strategies such as parameter sharing and
transformer block/attention-head removal.

https://github.com/IBM/PoWER-BERT
https://github.com/IBM/PoWER-BERT

POWER-BERT: Accelerating BERT Inference via Progressive Word-vector Elimination

Figure 1: lllustration oPoWER-BEREheme oveBER#asethat had. = 12 transformer blocks and hidden sie= 768. The words

are rst embedded as vectors of lendgth = 768. The numbers show output sizes for each transformer block for input sequence of
lengthN = 128. The numbers on the top and the bottom correspor@BREsscand POWER-BEREspectively. In this example, the

rst transformer block eliminated8 and retain880 word-vectors, whereas the second eliminateésore and retaing3 word-vectors.

The hidden size remains a68.

Our Objective and Approach. We target the metric of We show that our scheme can also be used to accel-
inference time for a wide range of classi cation tasks. The erateALBERTa highly compressed variant 8ERT
objective is to achieve signi cant reduction on the metric, yielding up to6:8x reduction in inference time. The
while maintaining the accuracy, and derive improved trade- code forPOWER-BERS publicly available at https:

off between the two. /lgithub.com/IBM/POWER-BERT.

In contrast to the prior approaches, we keep the model pa-

rameters intact. Instead, we identify and exploit a differ-pajated Work. In general, different methods for deep

ent type of redundancy that pertains to the the intermedipe 5| network compression have been developed such as

ate_ vectors computed along the transformer block pipelineprumng network connections (Han et &l-, 2015; Molchanov
which we henceforth denote amrd-vectors We demon- 541 5017), pruning Iters/channels from the convolution

strate that, due to the self-attention mechanism, there is diflayers (He et al, 2017: Molchanov et|al,, 2016), weight
fusion of information: as the word-vectors pass throughgantization [(Gong et all, 2014), knowledge distillation
the transformer block pipeline, they start carrying simi- fom teacher to student modeél (Hinton et ., 2015; Sau &
lar information, resulting in redundancy. Consequently;gaiasubramaniafn, 2016) and singular value decomposition

a signi cant fraction of the word-vectors can be elimi- weight matrices (Denil et al., 2013; Kim et al., 2015).
nated in a progressive manner as we move from the rst

to the last transformer block. The removal of the word-Some of these general techniques have been explored for
vectors reduces the computational load and results in imBERTweight quantization (Shen et al., 2019; Zafrir et al.,
proved inference time. Based on the above ideas, w&019), structured weight pruning (Wang et al., 2019b) and
deve|op a novel scheme Ca”@]bWER_BEF{]:Progressive dimensionality reduction (Lan et al., 2019; Wang et al.,

Word-vectorElimination for inference timeReduction of = 2019b). Although these techniques offer signi cant model
BERT). Figure[1 presents an illustration. size reduction, they do not result in proportional inference

time gains and some of them require speci ¢ hardware to
Main Contributions. Our main contributions are sum- €Xecute. Another line of work has exploited pruning entries
marized below. of the attention matrices (Zhao et al., 2019; Correia et al.,
2019; Peters et al., 2019; Martins & Astudillo, 2016). How-
ever, the goal of these work is to improve translation accu-
er%r%?/Yr?éol?f)EaR'?r%\éir?gZ%Tnz.Cl?lils@“bb;/\s/eEollqc-)ﬁijgroit- racy, they QO not result in either model size or infer_ence
ing a new type of redundancy within tRERTnodel tlme reduction. TheBERTmodeI allows for compression
ertaining to the word-vectors. As part of the scheme V12 other methods: sharing of _transformer block param-
\F/)ve design strategies for determining how many an ! ters (I__an et al., 2019), removing transformer bl(_)CkS via
which word-vectors to eliminate at each transformerd'St'”atlon (Sanh. etal., 20.19b; Sun et al.., 2019b; Liu etal.,
block. 2019), and pruning attention heads (Michel et al., 2019b;
McCarley, 2019).

We present an e);per?mental ev:?lluation on a wideypst of these prior approaches are based on removing re-
spectrum of classi cation/regression tasks from theqyyngant parametersPoWER-BERT an orthogonal tech-
popular GLUE benchmark. The results show thatpique that retains all the parameters, and eliminates only
PoWER-BERiEhieves up ta:5x reduction in infer- the redundant word-vectors. Consequently, the scheme can
ence time oveBERgasewith < 1%loss in accuracy. pe applied over and used to accelerate inference of com-

. . . pressed models. Our experimental evaluation demonstrates
We perform a comprehensive comparison with the

state-of-the-art inference time reduction methods anéhe phenomenon by applying the scheme ERT

demonstrate th&®0WER-BERTers signi cantly bet- In terms of inference time, removing a transformer block
ter trade-off between inference time and accuracy. can be considered equivalent to eliminating all its output

https://github.com/IBM/PoWER-BERT
https://github.com/IBM/PoWER-BERT

POWER-BERT: Accelerating BERT Inference via Progressive Word-vector Elimination

word-vectors. However, transformer block elimination is
a coarse-grained mechanism that removes the block in to-
tality. To achieve considerable gain on inference time,
a commensurate number of transformer blocks need to
pruned, leading to accuracy loss. In contrast, word-vector
elimination is a ne-grained method that keeps the trans-
former blocks intact and eliminates only a fraction of word-
vectors. Consequently, as demonstrated in our experimen-
tal study, word-vector elimination leads to improved infer-
ence time gains.

2. Background

In this section, we present an overview of BERTmodel

focusing on the aspects that are essential to our discussio@i.g#'r;e dz;tacs‘é?i“fhz,ﬁmg:r”rtg f?eizlil”caonssi‘;‘gr;ﬂilgL?tC‘% rotthéthe
ThrOUQhOUt the paper, we consider IEEREASEVHS'.O” transformer blnck, averagegover all pairs of WOFd-VgCtOt‘S and all
with L = 12 transformer blocksA = 12 self-attention inputs.

heads per transformer block and hidden dite= 768.

The techniques can be readily applied to other versions.

The inputs in the dataset get tokenized and augmented witd- POWER-BERT Scheme

aC.LStoken at the beginning. A suitable maximum length 3.1. Motivation

N is chosen, and shorter input sequences get padded to

achieve an uniform length of . BERTerives the nal prediction from the word-vector cor-
responding to th&€LStoken. We conducted experiments
to determine whether it is critical to derive the nal predic-

ded as a vector of lengti = 768. The word-vectors are tion from theCLStoken during inference. The results over

then proces_sed by the .chaln of transforrner bIoc!<s USINBitterent datasets showed that other word positions can be
a self-attention mechanism that captures information from

the other word-vectors. At the outout laver. the nal pre- used as well, with minimal variations in accuracy. For in-
S . . P yer, P stance, on the SST-2 dataset from our experimental study,
diction is derived from the vector corresponding to €ieS

) the mean drop in accuracy across the different positions
token and the other word-vectors are ignoredWER-BERT was only1:2% with a standard deviation d%:23% (com-

utilizes the self-attention mechanism to measure the signi pared to baseline accuracy @243%). We observed that

icance of the word-vectors. This mechanism is describetﬁ] . .)
below e fundamental reason was diffusion of information.

Given an input of lengtiN, each word rst gets embed-

Diffusion of Information. As the word-vectors pass

Self-Attention Mechanism. Each transformer block through the transformer block pipeline, they start progres-
comprises of a self-attention module consistinglafat- sively carrying similar information due to the self-attention
tention heads and a feed-forward network. Each heaf’®chanism. We demonstrate the phenomenon through co-
h 2 [1;12]is associated with three weight matridé/sg, sine similarity measurements. Let2 [1;12] be a trans-

W andW h, called the query, the key and the value ma_former block. For each |npu_t, compute the cosine similar-
trices. ity between each of thé; pairs of word-vectors output by

the transformer block, whend is the input length. Com-
Let M be the matrix of sizé&\ 768input to the trans- pute the average over all pairs and all inputs in the dataset.
former block. Each heal computes amttention matrix ~ As an illustration, Figure 2 shows the results for the SST-
2 dataset. We observe that the similarity increases with
_ h haT the transformer block index, implying diffusion of informa-
An = softmaf(M Wgq) (M Wy)'] tion. The diffusion leads to redundancy of the word-vectors
and the model is able to derive the nal prediction from any

with softmax applied row-wise. The attention matrixy, word-vector at the output layer.

is of sizeN N, wherein each row sums tb The head The core intuition behindPoWER-BER$ that the re-

computes matriceg, = M WC andZ, = A V. dundancy of the word-vectors cannot possibly manifest
The transformer block concatenates the matrices over abruptly at the last layer, rather must build progressively
all the heads and derives its output after further processindhrough the transformer block pipeline. Consequently, we

POWER-BERT: Accelerating BERT Inference via Progressive Word-vector Elimination

should be able to eliminate word-vectors in a progressive
manner across all the transformer blocks.

POWER-BERT Components. The PoWER-BERT
scheme involves two critical, inter-related tasks. First,
we identify aretention con guration a monotonically

number of word-vectors’; to retain at transformer
block j. For example, in Figure 1, the con guration is
(80; 73,70, 50; 50; 40; 33; 27; 20; 15; 13; 3). Secondly, we
do word-vector selection.e., for a given input, determine
which °; word-vectors to retain at each transformer block
j - We rst address the task of word-vector selection.

Figure 3: Figure shows signi cance score computation for word-

3.2. Word-vector Selection vectorw using the computed self-attention matrix.
Assume that we are given a retention con guration
(1;2;:::; 12). Consider a transformer blogk2 [1; 12]
The input to the transformer block is a collection’'pf 1 Attention-based Scoring. Consider a transformer block
word-vectors arranged in the form of a matrix of size; |n the POWER-BERSEtting, the input matrisM is
j 1 768(taking’o = N). Ouraim s to selectj word- of size*; ;, 768and the attention matrices are of size
vectors to retain and we consider two kinds of strategies. i 1} 1. Consider an attention hed2 [1;12] For

a wordw?, tl]g rowZp[w® :] computed by the heald can
Static and Dynamic Strategies. Static strategies X be written as ,, An[w%Ww] Vp[w;:]. In other words, the

positions and retain the word-vectors at the same positiongw Zn[w?] is the weighted average of the rows ¢,
across all the input sequences in the dataset. A natural stafigking the attention values as weights. Intuitively, we inter-
strategy is to retain the rst (or head) word-vectors. The ~ pret the entryA [w®, w] as the attention received by word
intuition is that the input sequences are of varying lengthsv® from w on heach.

and an uniform I_engt_h an is gchleved by adde_ADo- Our scoring function is based on the intuition that the sig-
kens that carry little information. The strategy aims to ré-ni cance of a word-vectomw can be estimated from the
move as manfADokens on the average as possible, EVeLttention imposed by on the other word-vectors. For a

though actual word-vectors may also get eliminated. ’Nvord—vectorw and a head, we de ne the signi cance
related method is to X positions at random and retain . . o6 ¢00h asSig, (W) = An[W%w]. The over-
h - wo »

word-vectors only at those positions across the dataset. Wﬁl - ;
) signi cance score ofv is then de ned as the aggregate
denote these strategies ldsad-W&ndRand-WSrespec- o ihe headsSig(w) = =, Sig,,(w). Thus, the signif-

tively (head/random word-vector selection). icance score is the total amount of attention imposed/by
In contrast to the static strategies, the dynamic strategien the other words. See Figure 3 for an illustration.

seletct trle %O,[S'tlons on a.lper.-l?put bt§13|s. tVt\thle trﬁ Word'\/Ve conducted a study to validate the scoring function. We
vectors tend fo carry simifar information at i€ nal rans- ;64 mytual information to analyze the effect of elimi-

fqrmer blocks, in t_he earlier transformer bIOCI_(S’_ they havenating a single word-vector. The study showed that higher
different levels of in uence over the nal prediction. The

» f the siani d h the score of the eliminated word-vector, lower the agree-
positions of the signi cant word-vectors vary across e o q¢ \ith the baseline model. Thus, the scoring function

dataset. .Henc.e, it is a better idea to select the p05|thn§aﬁs es the criterion we had aimed for: the score of a word-
for each input _mdependently, as con rmed by our EXPEM"yector is positively correlated with its in uence on the nal
mental evaluation. prediction. A detailed description of the study is deferred
We develop a scoring mechanism for estimating the signiffo the supplementary material.

icance of the word-vectors satisfying the following crite-

rion: the score of a word-vector must be positively cor-

related with its in uence on the nal classi cation out- Word-vector Extraction. Given the scoring mechanism,
put (namely, word-vectors of higher in uence get higher we perform word-vector selection by insertingexiract
score). We accomplish the task by utilizing the self-layer between the self-attention module and the feed for-
attention mechanism and design a dynamic strategy, deaward network. The layer computes the scores and retains
noted asAttn-WS. the top’; word-vectors. See Figure 4 for an illustration.

POWER-BERT: Accelerating BERT Inference via Progressive Word-vector Elimination

Figure 5:soft-extract layer. First transformer block is shown,
takingN = 4. In this example, the sorted sequence of the word-
vectors isws; wa; W1;Wz; the most signi cant word-vectows
gets multiplied byr1[1] and the least signi cant word-vectav,

by r1[4].

Figure 4: Word-vector selection over the rst two transformer
blocks. HereN =6, 1 = 4 and’, = 2. The rst trans-
former block eliminates two word-vectors, andw, with least tuitively, the parameter; [k] represents thextentto which
signi cance scores; the second transformer block further elimi-thekth sorted position is retained.
nates word-vector&; andws.
The soft-extract layer is added in between the self-

attention module and the feed forward network, and per-
3.3. Retention Con guration forms the following transformation. LeE™ denote the
matrix of sizeN 768 output by the self-attention layer.
We next address the task of determining the retention coneorj 2 [1; N, the rowE™ [i; ;] yields the word-vectow; .
guration. Analyzing all the possible con gurations is un- The layer multiplies the word-vector by the retention pa-
tenable due to the exponential search space. Instead, we d@meter corresponding to its sorted position:
sign a strategy that learns the retention con guration. Intu-
itively, we wish to retain the word-vectors with the topmost E%Ui; ;] = rj[SigPs(w;)] E™[i; :]:
signi cance scores and the objective is to learn how many
to retain. The topmost word-vectors may appear in arbi-The modi ed matrixE°" [i; :] is input to the feed-forward
trary positions across different inputs in the dataset. Therenetwork. The transformation ensures that all the word-
fore, we sort them according to their signi cance scores.vectors in th&™ sorted position get multiplied by the same
We shall learn the extent to which the sorted positionsParameter; [K]. Figure 5 presents an illustration.
must be retained. We accomplish the task by introducing
soft-extract layers and modifying the loss function. Loss Function. We de ne themassat transformer block
j to be the extent to which the sorted positions are retained,

Soft-extract Layer. Theextract layer either selects or €.

- X
eliminates a word-vector (based on scores). In contrast, the mass{ ;r) = ri k]
soft-extract layer would retain all the word-vectors, but k=1

to varying degrees as determined by their signi cance. Our aim is to minimize the aggregate mass over all the

Consider a transformer blogk and letwy;ws;:::;wy transformer blocks with minimal loss in accuracy. Intu-
be the sequence of word-vectors input to the transformeitively, the aggregate mass may be viewed as a budget on
block. The signi cance score ofi; is given bySig(w;). the total number of positions retainethass(;r) is the

Sort the word-vectors in the decreasing order of theibreakup across the transformer blocks.

scores. For a word-vectar;, let SigP°s (w;) denote the
position ofw; in the sorted order; we refer to it as therted
positionof w;.

We modify the loss function by incorporating &3 regu-
larizer over the aggregate mass. As demonstrated earlier,
the transformer blocks have varying in uence on the clas-
The soft-extract layer involvesN learnable parame- sication output. We scale the mass of each transformer
ters, denoted; [1];:::;r; [N], called retention parameters. block by its index. Let denote the parameters of the
The parameters are constrained to be in the rididd. In- baselineEBERTodel and. () be the loss function (such as

POWER-BERT: Accelerating BERT Inference via Progressive Word-vector Elimination

cross entropy loss or mean-squared error) as de ned in th&able 1|3 fDataset stdagstics:_ NEA'\ and QA refekrs to Natl_Jra: L?\ln_
- . : . guage Inference and Question Answering tasks respectively. Note
original task. We de ne the new objective function as: that STS-B is a regression task, therefore doesn't have classes.

2 3
min4L(;r) + j massf;r)d INPUT SE
" 1 1 Q
i i=1 DATASET TASK # CLASSES LENGTH (N)
st:rj[k]2 [0;1] 8(2 [LL]; k2 [L;N]); CoLA A CCEPTABILITY 2 64
. . RTE NLI 2 256
where L is the number of transformer blocks. While QQP SMILARITY 2 128
L(;r) controls the accuracy, the regularizer term controls MRPC FARAPHRASE 2 128
SST-2 ENTIMENT 2 64
the aggregate mass. The hyper-parametanes the trade- \/NL1-w NLI 3 128
off. MNLI- MM NLI 3 128
] o QNLI QA/NLI 2 128
The retention parameters are initialized gi&] = 1, mean- STS-B SMILARITY - 64
ing all the sorted positions are fully retained to start with. —;pg SENTIMENT 5 512
We train the model to learn the retention parameters. The RACE QA 2 512

learned parametar; [k] provides the extent to which the
word-vectors at th&™ sorted position must be retained.
We obtain the retention con guration from the mass of

the above parameters: for each transformer blacket from the GLUE benchmark (Wang et al., 2019a), and the

| = ceil (mass()). In the rare case where the con g- g (Maas et al., 2011) and the RACE (Lai et al., 2017))
uration is non-monotonic, we assign=minf-; ;" 1g. datasets. The datasets details are shown in Table 1.

3.4. Training POWER-BERT

Given a dataset, the scheme involves three training steps:'-;’r’]"ﬂsenne n;e:]hods. W]? compare POV\GER'.BERW“T] g
1. Fine-tuning: Start with the pre-traineBERTmodel the state-of-the-art inierence time reduction methods:

and ne-tune it on the given dataset DistiBERT (Sanh et al., 2019bBERT-PKRSun et al.,
' 2019b) andHead-Prune (Michel et al., 2019b). They op-

2. Con guration-search: Construct an auxiliary model erate by removing the parameters: the rst two eliminate
by inserting thesoft-extract layers in the ne transformer blocks, and the last prunes attention heads.
tuned model, and modifying its loss function. The Publicly available implementations were used for these
regularizer parameter is tuned to derive the de- methods (Sanhetal., 2019a; Sun etal., 2019a; Michel et al.,
sired trade-off between accuracy and inference time2019a).

The model consists of parameters of the original

BERTnodel and the newly introducessft-extract

layer. We use a higher learning rate for the latter. WeHyper-parameters and Evaluation. Training
train the model and derive the retention con guration. POWER-BER@rimarily involves four hyper-parameters,

L . which we select from the ranges listed below: a) learning
3. Re-training: Substitute thesoft-extract layer by rate for the newly introducedoft-extract layers -

textractt Ia;r/]etrs. Tfhe numtt;ierlgf Wgr?—vegtorg LO rteh_ [10 #;10 2]; b) learning rate for the parameters from
ain at each transformer block is determined by they, original BERTmodel - 2 10 5:6 10 5)

retention con guration computed in the previous step.
The word-vectors to be retained are selected based
their signi cance scores. We re-train the model.

egularization parameter that controls the trade-off
etween accuracy and inference timgle 4;10 3]; d)
batch size {4;8;16;32,649. Hyper-parameters specic

. . to the datasets are provided in the supplementary material.
In our experiments, all the three steps required ¢hly P P y

3 epochs. Inference is performed using the re-trainedrhe hyper-parameters for boRoWER-BERINd the base-
PoWER-BERilodel. TheCLStoken is never eliminated line methods were tuned on the Dev dataset for GLUE and
and it is used to derive the nal prediction. RACE tasks. For IMDB, we subdivided the training data
into 80% for training and 20% for tuning. The test accu-
racy results for the GLUE datasets were obtained by sub-
mitting the predictions to the evaluation sefyewvhereas
4.1. Setup for IMDB and RACE, the reported results are on the pub-

. licly available Test data.
Datasets. We evaluate our approach on a wide spectrum

of classi cation/regression tasks pertaining odatasets Yhttps://gluebenchmark.com

4. Experimental Evaluation

POWER-BERT: Accelerating BERT Inference via Progressive Word-vector Elimination

Table 2: Comparison betwedtoWER-BERNABER® s We limit the accuracy loss fd?PoOWER-BERG be within1% by tuning the
regularizer parameter. Inference done on a K80 GPU with batch size of 128 (averaged over 100 runs). Matthew's Correlation reported
for CoLA; F1-score for QQP and MRPC; Spearman Correlation for STS-B; Accuracy for the rest.

‘METHOD ‘COLA RTE QQP MRPC SST-2 MNLIM MNLI-mM QNLI STS-B IMDB RACE

BERTase 525 68.1 71.2 887 93.0 84.6 84.0 91.0 858 93.5 66.9
TESTACCURACY

POWER-BERT52.3 67.4 70.2 88.1 921 83.8 83.1 90.1 851 925 66.0

BERZase 898 3993 1833 1798 905 1867 1881 1848 881 9110 20040
INFERENCETIME (MS)

POWER-BERT 201 1189 405 674 374 725 908 916 448 3419 10110
SPEEDUP \ | (4.5x) (3.4x) (4.5X) (2.7x) (2.4x) (2.6x) (2.1x) (2.0x) (2.0x) (2.7x) (2.0x)

Table 3: Comparison betwedtoWER-BERIhd ALBERTHere POWER-BER®@&presents application of our scheme AtBERTThe
experimental setup is same as in Table 2

| MetHOD |CoLA RTE QQP MRPC SST-2 MNLIM MNLI-MM QNLI STS-B

ALBERT | 42.8 65.6 68.3 89.0 93.7 82.6 82.5 89.2 80.9
TESTACCURACY
POWER-BERT43.8 64.6 67.4 88.1 927 81.8 81.6 89.1 80.0
ALBERT | 940 4210 1950 1957 922 1960 1981 1964 956
INFERENCETIME (MS)
POWER-BERT 165 1778 287 813 442 589 922 1049 604
SPEEDUP \ | (5.7x) (2.4X) (6.8x) (2.4x) (2.1x) (3.3x) (2.1x) (1.9%) (1.6x)

Implementation. The code folPoOWER-BER#s imple- thatPoWER-BERTfers at leasR:0x reduction in inference
mented in Keras and is available at https://github.comtime on all the datasets and the improvement can be as high
IBM/POWER-BERT. The inference time experiments for as4:5x, as exhibited on the CoLA and the QQP datasets.
PoWER-BERd the baselines were conducted using Kera§N

framework on a K80 GPU machine. A batch size of 128" - present an |[Iustrat|ve analysis by considering the RTE.
dataset. The input sequence length for the dataset is

(averaged over 100 runs) was used for all the datasets &Xi = 256. Hence across the twelve transformer blocks
cept RACE, for which the batch size was set to 32 (sinceB : ' ’
EREase Needs to proces§2 256 = 3072 word-

each input question has 4 choices of answers). . .
vectors for any input. In contrast, the retention con-
. . guration used byPoWER-BERIn this dataset happens
Maximum '”pf“t S.equlencehLerégth' Thded 'gp“t S€- 10 be(153 125 111; 105 85; 80; 72, 48, 35; 27; 22 5) sum-
form length ofN. Prior work use clfferent values of . G 10868 Thus, POWER BERTocesses an aggregate
. 9 i _ Il GLUE d ' of only 868 word-vectors. The self-attention and the feed
E(r)\:\?:\}:?cc?r:\I;BaElsqr:asﬁfr\;c;ig)nlf) ff?rr]:inputs area:f)l(;trféth forward network modules of the transformer blocks per-
’ form a xed amount of computations for each word-vector.

closg to the mfmr'?um. Lgrlge value'sl‘d)f\g\ijlglgﬁ;lrzer\;"_asy Consequently, the elimination of the word-vectors leads to
pruning opportunities and larger gains o O reduction in computational load and improved inference
make the baselines competitive, we set stringent values qF

N: we determined the lengt ° such that at most% of me-
the input sequences are longer théfAand xed N to be

the value fron 64; 128 256,512 closest toN°. Table 1 Comparison to Prior Methods. In the next experiment,

presents the lengths speci ¢ to each dataset. we comparePoWER-BER®ith the state-of-the-art infer-
ence time reduction methods, by studying the trade-off be-
4.2. Evaluations tween accuracy and inference time. The Pareto curves for

six of the GLUE datasets are shown in Figure 6; others are

Comparison to BERT. In the rst experiment, we : . X
demonstrate the effectiveness of the word-vector eIimi-prOV'ded in the supplementary material. Top-left comers
orrespond to the best inference time and accuracy.

nation approach by evaluating the inference time gainsC
achieved byPoWER-BERVer BERgase We limit the ac- ForPoWER-BERThe points on the curves were obtained by
curacy loss to be withil% by tuning the regularizer pa- tuning the regularizer parameterFor the two transformer
rameter that controls the trade-off between inference timeblock elimination methodsDistiBERT and BERT-PKD
and accuracy. The results are shown in Table 2. We obserwge derived three points by retaini8g4, and6 transformer

POWER-BERT: Accelerating BERT Inference via Progressive Word-vector Elimination

Figure 6: Comparison to prior methods. Pareto curves showing accuracy vs. inference time trade-off. Top-left corners correspond to
the best inference time and accuracy. PointsHoWER-BERbtained by tuning the regularizer parameterFor DistiiBERT and
BERT-PK[the points correspond to retainif@; 4; 6g transformer blocks. Fadead-Prune, points obtained by varying number of
retained attention-heads. The cross repred@BREaseperformance; dotted line represents its accuracy (for the ease of comparison).
Over the best baseline methdhWER-BERTers: accuracy gains as high 8% on CoLA and6% on RTE at inference tim805 ms
and1326ms, respectively; inference time gains as higl2:@x on CoLA and2x on RTE at accurac$8:2% and65:5%, respectively.

blocks; these choices were made so as to achieve inferendable 4: Comparison of the accuracy of the Worq-vector seleg:tion
time gains comparable BoWER-BERSimilarly, for the methods on the SST-2 Dev set for a xed retention con guration.

Head-Prune strategy, the points were obtained by varying
the number of attention-heads retained. Head-WS Rand-WS Attn-WS

Figure 6 demonstrates thROWER-BERKhibits marked ~ ENTIRE DATASET 85.4% 85.7% 88.3%
dominance over all the prior methods offering: INPUT SEQUENCELENGTH> 16 83.7% 83.4% 87.4%

Accuracy gains as high d$% on CoLA and6% on

RTE for a given inference time. over ALBERTone of the best known compression methods
for BERTThe results are shown in Table 3 for the GLUE
datasets. We observe that tReWER-BERTrategy is able

to acceleratdLBERnference by2x factors on most of the

The results validate our hypothesis that ne-grained word-datasets (with 1%loss in accuracy), with the gain being

vector elimination yields better trade-off than coarse-aS nigh a®:8x on the QQP dataset.
grained transformer block elimination. We also observe
that Head-Prune is not competitive. The reason is that Ablation Study. In Section 3.2, we described three
the method exclusively targets the attention-heads constmethods for word-vector selection: two static techniques,
tuting only 26% of the BEREaseparameters and further- Head-WSand Rand-WS and a dynamic strategy, de-
more, pruning a large fraction of the heads would obliteratenoted Attn-WS, based on the signi cance scores de-
the critical self-attention mechanism BERT rived from the attention mechanism. We demonstrate
the advantage oAttn-WS by taking the SST-2 dataset
Accelerating ALBERT. As discussed earlier, word- as an illustrative example. For all the three meth-
vector elimination scheme can be applied over compressealds, we used the same sample retention con guration of
models as well. To demonstrate, we appPlgWER-BERT (64; 32, 16; 16; 16, 16; 16; 16; 16). The accuracy results are

Inference time gains as high &s7x on CoLA and
2:0x on RTE for a given accuracy.

	Introduction
	Background
	PoWER-BERT Scheme
	Motivation
	Word-vector Selection
	Retention Configuration
	Training PoWER-BERT

	Experimental Evaluation
	Setup
	Evaluations

	Conclusions

